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Abstract

The transition from the Mesolithic (last hunter-gatherers) culture to the Neolithic
(farmers) is one of the most important socioeconomic changes in human history. It took
place in Europe from about 9000 to 5000 years ago. This thesis presents population
dynamics models that can be applied to predict the rate of spread of the Neolithic
transition across the European continent from the Near East.
The first models in this thesis provide results that can be compared to the average

rate of expansion of the Neolithic transition in Europe at a continental scale. In chapter
3, we develop population dynamics models with explicit dispersion probability distri-
butions as a function of distance (kernels). We derive expression for the front speed
when using discrete approximations to real population dispersive patterns (obtaining
reasonable results) as well as for the Gauss and the Laplace distributions (obtaining
that they sometimes overestimate the speed).
In chapter 4, we derive a new time-delayed reaction-diffusion equation, now taking

proper care of the reproduction process as opposed to previous derivations. This new
result yields speeds about a 10% slower than previous models when applied to the
Neolithic transition, but still consistent with the average estimations for the expansion
of the Neolithic in Europe.
Chapters 5 and 6 deal with a regional variability: the slowdown of the Neolithic front

when reaching the North of Europe. This slowdown is measured by the analysis of an
interpolation map of early Neolithic dates. We develop simple reaction-diffusion models
that can predict the measured speeds in terms of the non-homogeneous distribution of
pre-Neolithic (Mesolithic) population in Europe, which were present in higher densities
at the North of the continent. Such models can explain the observed speeds.
In this thesis we apply both cohabitation and non-cohabitation models, obtaining

speeds up to 38% faster for cohabitation models. Cohabitation models are more realistic
for human populations (they model the cohabitation between parents and children until
adulthood of the later). The regional study in this thesis provides an example in which
cohabitation models clearly perform better than non-cohabitation models (chapter 6).





Resum

La transició del mesolític (darrers caçadors-recol·lectors) al neolític (agricultors) és
un dels canvis socioeconòmics més importants en la història de la humanitat. Aquest
canvi va tenir lloc a Europa fa entre 9000 i 5000 anys. Aquesta tesi presenta models
de dinàmica de poblacions que es poden aplicar a la transició del neolític per tal de
predir-ne la velocitat d’expansió des de l’orient proper i a través de tot el continent
europeu.
Els primers models inclosos en aquesta tesi proporcionen prediccions de la velocitat

mitjana d’expansió del neolític a Europa a escala continental. Al capítol 3, desenvolu-
pem models de dinàmica poblacional incloent expressions explícites de la distribució de
la probabilitat de dipersió en funció de la distància (kernel). Derivem expressions per
a la velocitat del front usant aproximacions discretes als patrons de dispersió de pobla-
cions humanes reals (pels que obtenim resultats raonables) així com les distribucions
de Gauss i Laplace (pels que obtenim en alguns casos velocitats poc realistes i massa
ràpides).
Al capítol 4 desmotrem una nova equació de reacció-difusió amb retard temporal

tractant, en aquest cas, el terme de reacció de manera adequada, a diferència que en
demostracions anteriors. Amb aquest nou resultat s’obtenen velocitats entorn d’un 10%
més lentes que en models previs de retard temporal, tot i que són encara coherents amb
el rang mitjà estimat per l’expansió del neolític a Europa.
Els capítols 5 i 6 fan referència a una variabilitat regional: la disminució del ritme

d’expansió del front neolític al nord d’Europa. La mesura d’aquest alentiment es realitza
per mitjà de l’anàlisis d’un mapa d’interpolació de dates d’arribada del neolític inicial.
Desenvolupem models de reacció-difusió senzills que tenen en compte la distribució no
homogènia de poblacions preneolítiques (mesolítiques) a Europa, les quals eren presents
amb majors densitats al nord del continent. Aquests models poden predir les velocitats
mesurades.
En aquesta tesi apliquem models tant de cohabitació com de no cohabitació, i obten-

im que els models de cohabitació prediuen velocitats fins a un 38% més ràpides. Els
models de cohabitació són més realistes per poblacions humanes (modelitzen la cohab-
itació entre pares i fills fins que els darrers arriben a l’edat adulta). L’estudi regional
portat a terme en aquesta tesi presenta un cas en què els models de cohabitació clara-
ment dónen resultats millors (capítol 6).
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Capítol 1

Introduction

The Neolithic transition, the change from hunter-gathering economics to farming, is a
crucial process in human history that has been subject of numerous studies, not only
from archaeological or anthropological perspectives, but also by means of mathematical
and computational models.
This Ph.D. thesis comprises four papers on modeling applied to the spread of the

Neolithic transition in Europe. These publications aim to be a contribution to bet-
ter understand the Neolithisation process of the European continent by analyzing the
importance and effect on the spreading front of applying realistic dispersion kernels
(chapter 3), using cohabitation models (chapters 3 and 6) or assuming anisotropic dis-
tributions of pre-Neolithic populations (chapters 5 and 6), as well as by improving the
derivation of a time-delayed model for the Neolithic expansion (chapter 4).
The following sections in this introduction give a brief overview on the Neolithic

transition and some previous population dynamics models, as well as a summary of the
studies included in this thesis.

1.1 The Neolithic transition in Europe

The transition from hunter-gathering economics (Mesolithic) to farming economics (Ne-
olithic) is known as the Neolithic transition. This transition is one of the most important
changes in human history because it meant not only the beginning of animal and plant
domestication, but also a global socioeconomic change from the foraging subsistence
led by human beings for several million years. The new farming technologies provided
reliable food resources which allowed human populations to grow in number.1 Hence,
settlements became larger, with the appearance of the first cities, and more complex
social structures and belief systems also appeared [1].
The appearance of agricultural economics took place at least in seven independent

regions of the world between 10000 and 4500 years ago and spread across most of the
planet [1]. About 10000 years ago, the first agricultural economies appeared at the Near

1The carrying capacity, maximum number of individuals that the environment can sustain, increased
with farming societies due to the increase in reliable food resources and storage capability.
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Figura 1.1: Map of radiocarbon dates analyzed by Ammerman and Cavalli-Sforza [6].
The arcs show the expected positions for a constant rate expansion from Jericho. Dates
are in years Before Present (BP).2

East, at the Fertile Crescent, and spread gradually all over the European continent.
The idea that the Neolithic transition penetrated Europe from the Near East was

first introduced by Childe in 1925 [2, 3], who proposed a demic expansion due to de-
mographic pressure, with farmers from the Near East migrating and colonizing Europe.
This idea was consistent with the first attempt to analyze spatiotemporal patterns of
Neolithic radiocarbon dates realized by Clark in 1965 [4, 5]. Clark classified the avail-
able radiocarbon dates from Europe and the Near East in three time intervals and
represented them on a map. The obtained map gave a rough picture of the trend that
verified the hypotheses of a Neolithic expansion from the Near East.
In 1971, Ammerman and Cavalli-Sforza [6] led the first quantitative analysis of the

spread of farming in Europe. Using the available radiocarbon dates from 53 settlements,
they fitted a linear regression curve to dates and distances (great-circle distances) for
five possible origins. All sources gave a relatively high correlation coefficient (R > 0.8)
with the highest value obtained for Jericho, which was chosen as the most probable
source. This analysis suggested a rate of spread of the Neolithic in Europe of about
1km/yr on average (c = 1.0 ± 0.2km/yr 3 [7]) with minor variations in some parts of

2The time scale years BP, or Before Present, is a time scale used in archaeology that uses year 1950
as origin.

3The observed speed range is calculated from the archaeological data by performing two linear
regressions: one of distances versus dates and one of dates versus distances [7], and combining both
slopes and their errors.
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the continent. Figure 1.1 shows the map of radiocarbon dates analyzed by Ammerman
and Cavalli-Sforza and the expected positions of the front with Jericho as source of the
expanding wave.
More recently, in 2003, Gkiasta et al. [8] performed a similar analysis, now using 510

radiocarbon dates, and obtaining a rate of spread of 1.3km/yr. However, this analysis
assumed Jericho as origin of the spread, instead of searching for the most probable
source (i.e., that with the highest correlation coefficient) and did not compute an error
range.
In 2005 Pinhasi et al. [9] did perform a more complete analysis with a database

of 735 early Neolithic sites from Europe and the Near East. They used 35 possible
origins (10 real sites and 25 hypothetical locations) and fitted linear regression curves
to age and distance, with distances calculated both as great-circle and shortest-path
distances. This analysis yielded a highly probable source region (centers with R > 0.8)
and a range for the spreading speed of the Neolithic in Europe of 0.6− 1.3km/yr (95%
confidence level)4. Thus, these results are consistent with the initial analysis undertaken
by Ammerman and Cavalli-Sforza [6] and imply that a constant spread rate is a good
approximation at the continental scale.

1.2 Previous population dynamics models for the
Neolithic spread

Since the first mathematical model proposed by Ammerman and Cavalli-Sforza in 1973
[10] to describe the expansion of the Neolithic transition in Europe, the modeling of this
process has been tackled in numerous studies. Previous population dynamics models
applied to the Neolithic expansion include time-delayed models [7, 11], dispersion along
waterways [12], cohabitation and non-cohabitation models [13, 14], settlement formation
[15] and models for interacting populations [14, 16]. The following points present some
previous population dynamics models that are directly related to the models included
in this Ph.D. thesis.

1.2.1 Fisher’s model

The first attempt to model the Neolithic transition mathematically was undertaken by
Ammerman and Cavalli-Sforza [10, 17]. Their observations of a steady rate of spread [6]
were consistent with a population wave of advance generated when a population with
local migratory activity undergoes an increase in population number. On this account,
they applied to the Neolithic transition the wave of advance model initially proposed by
Fisher [18] to predict the spread of advantageous genes, and later applied by Skellam
[19] to population spread (biological invasions). Similar models have been applied to
the propagation of combustion flames [20].

4See footnote 3.
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Fisher’s model assumes a logistic population growth and a randommigratory process.
The logistic growth model describes a growth process that is exponential, with an initial
growth rate a, for low values of the population density p (x, y, t), and that is self-limiting
for large densities, with a maximum possible density pmax. Then, the rate of change of
the population size when undergoing a logistic growth is [21]

∂p

∂t

∣∣∣∣
growth

= ap

(
1− p

pmax

)
. (1.1)

On the other hand, the migratory process can be described in terms of the mobility, or
mean squared displacement per unit time, m = 〈∆2〉 /T , where ∆ is the displacement
of an individual during a time interval T (usually, a generation) and the symbols 〈...〉
denote average. Then, if the migration takes place in a 2−dimensional space, the
diffusion coefficient is D = 〈∆2〉 /4T .5
According to Fisher, these two assumptions (logistic growth and local migrato-

ry diffusion) yield the following reaction-diffusion equation for the population density
p (x, y, t),

∂p

∂t
= D

(
∂2p

∂x2
+
∂2p

∂y2

)
+ ap

(
1− p

pmax

)
, (1.2)

with the first term on the right describing the diffusive process and the last term
being the logistic growth equation. Front solutions to Fisher’s equation (1.2) describe
population invasions expanding at a steady rate given by (see section 2.3.1)

cFisher = 2
√
aD. (1.3)

In their study, Ammerman and Cavalli-Sforza [17] estimated the values of a and D
from anthropological data.

1.2.2 A time-delayed model

Fisher’s model considers a continuous migration in time (in the sense that there is no
delay between the end of an individual’s migration and the beginning of the migration
of their children). However, in sedentary farming societies children usually stay with
their parents at the place of birth until they reach adulthood and can migrate to create
their own family. Thus, there is a time delay between birth and migration that Fisher’s
equation does not consider.
Fort and Méndez [7] studied the effect of a time delay on reaction-diffusion systems

(that would otherwise led to Fisher’s model) by incorporating second-order terms. In
this way, in reference [7] it was argued that then, equation (1.2) is generalized into

∂p

∂t
+
T

2

∂2p

∂t2
= D

(
∂2p

∂x2
+
∂2p

∂y2

)
+ F +

T

2

∂F

∂t
, (1.4)

5In fact, Ammerman and Cavalli-Sforza [17] approximated the diffusion coefficient D to the mobility
m, instead of the more correct expression for a 2−dimensional dispersion D = m/4.
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where F is the time derivative of p (x, y, t) due to reproduction, which can be described
by the logistic growth equation (1.1). This time-delayed reaction-diffusion equation
yields a front speed that is significantly slower than Fisher’s wave of advance, as ex-
pected because of the effect of the time delay,

cHRD =
2
√
aD

1 + aT
2

. (1.5)

T is the time delay between two migrations (here referred to as the generation time,
see also section 2.1.3) and the subindex HRD stands for hyperbolic reaction-diffusion,
which is the mathematical type to which the differential equation (1.4) belongs. In
reference [7], the diffusion coefficient D was already estimated as D = 〈∆2〉 /4T (see
footnote 5), which corresponds to a diffusion in a 2-dimensional space. Note that
equation (1.5) becomes Fisher’s speed (1.3) when the time delay is negligible, that is,
for T ≪ 1/a.

1.2.3 Cohabitation and non-cohabitation models

Both Fisher’s and the generalized time-delayed model can be obtained by assuming
that the population density p (x, y, t) follows an evolution equation such as [7]

p (x, y, t+ T )− p (x, y, t) =

∫∫
p (x−∆x, y −∆y, t)φ (x, y; ∆, θ) d∆xd∆y − p (x, y, t)

+R [p (x, y, t)] , (1.6)

which gives the variation in population density during a generation time T (left-hand
side) in terms of the population dispersal (first two terms on the right-hand side) and
population growth (last term). The integral term on the right-hand side of equation
(1.6) gives the final population density after the dispersion process, and the disper-
sion kernel φ (x, y; ∆, θ) gives the probability that an individual initially at position
(x−∆x, y −∆y) moves to (x, y) after a generation time T , with ∆ =

√
∆2
x +∆

2
y and

θ = tan−1 (∆y/∆x). Note that when ∆ = 0 (or ∆x = ∆y = 0) the kernel φ (x, y; ∆, θ)
gives the persistency (p0) or probability of staying at the initial place. The last term in
equation (1.6) is the reproduction function R [p (x, y, t)] which gives the increase in pop-
ulation density due to population growth (births minus deaths).6 For isotropic kernels,
Fisher’s equation (1.2) is obtained by Taylor expanding equation (1.6) up to first-order
in time and second-order in space, whereas the HRD equation (1.4) was obtained by
including also second order terms in time [7].
Recently it has been argued that the evolution equation (1.6) may not be the most

realistic way to represent human behavior, as it implies that newborn children stay at
their birthplace (last term) whereas parents migrate away from them (first term on

6The definition of the reproduction function R [p (x, y, t)] here and in chapter 6 is not exactly the
same as the function RT [p] in chapter 3. R [p] represents the net increase in population density, while
in chapter 3, RT [p] gives the final population number after the growth process (initial population plus
increase). Therefore, R [p] = RT [p]− p.
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the right). Thus, an equation modeling the cohabitation between parents and children,
until adulthood of the latter, would be a more realistic framework. Such a cohabitation
equation can be written as [13]

p (x, y, t+ T )− p (x, y, t) =

∫∫
p (x−∆x, y −∆y, t)φ (x, y; ∆, θ) d∆xd∆y − p (x, y, t)

+R

[∫∫
p (x−∆x, y −∆y, t)φ (x, y; ∆, θ) d∆xd∆y

]
. (1.7)

Cohabitation models lead to faster speeds, with substantial corrections to non-
cohabitation models [13], because in a cohabitation model the whole population (par-
ents and children) can disperse whereas in a non-cohabitation model only the parent
population does migrate. Further discussion and comparison between cohabitation and
non-cohabitation models when applied to the Neolithic is shown in the papers presented
in chapters 3 and 6, as well as in the general discussion in chapter 7.

1.3 Population dynamics models in this thesis

1.3.1 Realistic dispersion kernels

Most models on the Neolithic spread, such as Fisher’s and the HRD models described
before, include the dispersion of populations simply as a parameter, namely, the diffu-
sion coefficient D. Chapter 3 presents a study of the effect on the front speed of using
complex dispersion kernels based on observational data and mathematical functions.
Chapter 3 aims to check the compatibility of the results from using realistic data with
the observed front speed, as well as to assess the validity of using the diffusion coefficient
D as an approximation to the dispersion process.
In chapter 3, front speeds are computed using dispersive data from six human popu-

lations. The kernels studied are (i) a simple model with dispersion to a single distance,
(ii) a continuous approximation using Gauss and Laplace distributions, and (iii) a dis-
crete approximation to the recorded data using a sum of Dirac deltas. Moreover, all of
the kernels are applied in both cohabitation and non-cohabitation models. Thus, this
analysis yields a wide range of values for the front speed, but it is interesting that most
of the results lie within the observed range of speeds for the Neolithic transition, or are
at least marginally consistent with the observed speeds.
Chapter 3 also includes comparison between analytic results and numerical simu-

lations. Analytic results are calculated from integrodifference equations, such as (1.6)
and (1.7), by applying continuous-space and discrete-space random walks [see sections
2.2.1 and 2.2.2], and verified with reactive random walk simulations [see section 2.2.3]
(with both deterministic and stochastic dispersal processes).

1.3.2 New time-delayed equation

When carefully Taylor expanding up to second order in time and space the non-
cohabitation model in chapter 3, the differential equation obtained does not yield the
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time-delayed result (1.5) but a new time-delayed speed. Chapter 4 introduces and
compares this new time-delayed equation with the HRD equation.
The reaction-diffusion equation derived in chapter 4 is rather similar to the HRD

equation (1.4), but the difference lies in how the reactive terms are treated. The model
derived in chapter 4 takes care of the fact that, if F is the time derivative due to
reproduction, then the second order term [last term in equation (1.4)] must also relate
only to the reproduction process. So, taking proper care of the effect of the time delay
T in the population growth process, the speed of the spreading front is (see chapter 4)

ctime-delayed =
2
√
aD (1 + aT/2)

1 + aT
. (1.8)

When applied to the Neolithic transition, this new time-delayed speed yields slow-
er speeds than the HRD equation when using realistic parameters for the Neolithic
transition (see chapter 4).

1.3.3 Models for the slowdown of the Neolithic expansion

All of the models introduced up to this point study the Neolithic spread as an homo-
geneous process taking place in an isotropic space. Even though from a global point of
view this is consistent with observations, as noted in the previous sections, there are
also some regional variabilities worth studying. Chapters 5 and 6 tackle the observed
slowdown of the Neolithic spreading front as higher latitudes were reached. Chapter
5 focuses on how the non-homogeneous distribution of Mesolithic populations (with
higher densities at northern regions) can explain the observed decrease in the rate of
spread. Chapter 6 applies the modified growth function and anisotropic dispersion
kernel derived in chapter 5 to cohabitation models, obtaining a better agreement with
observations.
The main premise in these models is that the presence of another population (Mesolith-

ic population) using the same space and resources will reduce the available space for
the Neolithic invaders, and thus, there will be an effect on the spreading front. On
the one hand, the dispersion kernel is constructed so that the Neolithic populations
have a higher probability to move to the directions where the presence of Mesolithic
individuals is lower (more free space). On the other hand, the reduction of available
space due to the Mesolithic populations must also be included in the population growth
equation, because the logistic equation (1.1) is only a single-population model.7

These modifications on the reaction and diffusion processes lead to fronts that slow
down at regions where the density of Mesolithic populations increases, in accordance
with observations (chapter 5). Furthermore, when improving the initial model by in-
troducing the cohabitation effect (chapter 6), the results can also explain the absolute
values of the measured Neolithic front speeds.

7Single-population models do not consider the effect of the interaction with other populations.

7



8



Capítol 2

Materials and methods

In order to make this Ph.D. thesis as much self-contained as possible, this chapter
contains a discussion on some empirical data for which a detailed explanation does not
appear in the papers included in the next chapters. This chapter also contains details
on the analytical and numerical methods applied in the following chapters to calculate
the front speeds for each model. The population dynamics models contained in this
Ph.D. thesis are described by two kind of equations: integrodifference equations and
differential equations. As these two kinds of equations require quite different techniques
to calculate the front speed, the analytical and numerical methods are also classified
according to which kind of equation they are appropriate to solve.

2.1 Empirical data

2.1.1 Initial growth rate a

For a population following a logistic growth, the initial growth rate a indicates the rate
of growth when the population number is low, i.e., when the increase in population is
approximately exponential (see equation (1.1) and figure 2.1). This parameter can be
estimated from data on the evolution of the population number for human populations
established in a previously unpopulated space. Birdsell [22] reported this kind of data
for two populations: (i) the colony settled in the Pitcairn Island (about 4000 miles
west of Chile), which remained essentially closed during the period 1790 — 1856, (ii)
and the isolated populations inhabiting the islands of the Furneaux group in the Bass
Strait (between Australia and Tasmania) during the period 1820 — 1945. Birdsell noted
that when plotting these data against the elapsed time (in terms of τ intervals for
each population, with τ the mean age of parents at the birth of their first child) the
results fitted almost the same exponential curve, with the population number doubling
approximately every time interval τ . Fitting the data for the Pitcairn Island to an
exponential curve, with age at the birth of the first child τ = 20 yr [22], yields a =
(0.037 44± 0.001 49) yr−1. On the other hand, using τ = 25 yr [22] for the Bass Strait
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Figura 2.1: Comparison between logistic and exponential growth curves with the same
initial growth rate a. At low values of population density both models behave in a
similar way.

islands we obtain a = (0.026 26± 0.000 52) yr−1.1
The initial growth rate can also be estimated from the Tristan da Cunha islands (in

the middle of the South Atlantic Ocean). There are records on the population number
for these islands from the first colonization in 1817 reported by Roberts [23], however,
they experienced two main episodes of emigration, thus not the whole range of the data
is usable. Fitting the values for the period 1892 — 1946 to an exponential curve with
τ = 24.5 yr [22] leads to a = (0.025 79± 0.000 33) yr−1 (see footnote 1). Although
immigration from Europe took place, from 1885 the island became nearly isolated [22],
and this value of a similar to the ones quoted above seems to indicate that the effect of
immigration may have been indeed negligible.
The evolution of the population number of the United States during the period

1790 — 1910 analyzed by Lotka [24] is another useful source. Lotka fitted these data
to a logistic growth, which yields an initial growth rate a = (0.031 35± 0.000 63) yr−1
(see footnote 1), for an average age at the first child’s birth of τ = 25 yr [7, 17]. The
increase in population in the United States also includes immigration together with
internal growth, but again the obtained range is consistent with those calculated above,
so in this case immigration does not lead to a substantially higher value of a (two
possible reason for this are that the effect of immigration was not strong enough, or
that the mortality rate was higher than in the other three example above).
Even though these four populations yield similar values of the initial growth rate a,

a better way to compare and analyze them is in terms of the age at the birth of the first

1We have performed all fits to obtain paramer a in this chapter without fixing the inital value of
the population number, as this first datum is not more reliable than the rest of the set.
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child τ as in the analysis led by Birdsell, because in this way the curves almost overlap
[22]. When expressed in terms of τ , the initial growth rates calculated above become
a = (0.749± 0.030) gen−1 for Pitcairn, a = (0.657± 0.013) gen−1 for the Bass Strait,
a = (0.631± 0.008) gen−1 for Tristan da Cunha and a = (0.784± 0.016) gen−1 for
the United States. Then, the 80% confidence level range is a = (0.705± 0.122) gen−1.
Assuming for the mean age at the birth of the first child the characteristic value τ =
25 yr [7, 17], this yields a = (0.028± 0.005) yr−1 which is the range applied in the
following chapters.2 ,3

2.1.2 Mobility m

The mobility of a population is the mean squared displacement per generation, m =
〈∆2〉 /T , where the displacement ∆ corresponds to the distance between a person’s
birthplace and his/her children’s birthplace, T is the time difference between the migra-
tion of parents and their children (averaged over all children) and 〈...〉 denotes average.
Data on mobility patterns for primitive farming cultures are scarce, but using data for
present farming or hunter-gathering populations may lead to rather different results [25].
The only data on mobility of primitive farmers known to us corresponds to the Majangir
people, a population of shifting agriculturalist in Ethiopia, collected by Stauder [26].
Ammerman and Cavalli-Sforza obtained the mean squared displacement per generation
for three groups (Gilishi 10-19 year-old age group, Gilishi 20-29 and Shiri 10-19) with
values m1 = 1115.7 km

2/gen, m2 = 1325.6 km
2/gen and m3 = 2153.0 km

2/gen [17].4

They selected these groups because according to Stauder [26] their mobility corresponds
to one generation, as older age groups were chased away from their earlier territory by
raids of foreign tribes. Thus, the mean mobility that will be applied in this thesis is
m = 1531 km2/gen (933 — 2129 km2/gen at 80% confidence level).
An approximation to the mobility is sometimes obtained from mating distances

(distance between birthplaces of the two parents). This is the case for the data for
Issocongos (preindustrial agriculturalists, m = 404 km2/gen) [27]5, Yanomamo [28]
(preindustrial horticulturists, m = 1728 km2/gen) and modern Parma Valley [27]6

populations (m = 508 km2/gen) used in chapter 3 together with the three Majangir
populations mentioned above (see footnote 4). Even though the values of mobility
obtained from mating distances will differ from the real mobility value, this kind of

2In reference [7] the range a = (0.032± 0.003) yr−1 was obtained in a similar way using only data
from Pitcairn and Bass Strait Islands, and fixing the initial value when fitting, as opposed to the
procedure here (see footnote 1).

3The initial growth rates for the four populations that appear in chapter 3 can be obtained from
the results in gen−1 units calculated here by dividing them by 25 yr, i.e., they are normalized to a
standard value τ = 25 yr.

4Note that these mobilities are slightly different than those in table 3.1 for the same populations
(m1 = 1003 km

2/yr,m2 = 1210 km
2/yr andm3 = 2197 km

2/yr). In chapter 3, instead of using directly
the mobilities in reference [17] (p. 155), they are calculated using the dispersal data in reference [26].
In this way, the mobility values are consistent with the discrete kernel (3.25).

5Mating distances for Issocongos is obtained from figure 8.16.B in this reference.
6Mating distances for modern Parma Valley populations is calculated from data on table 8.7 in this

reference.
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data is useful in chapter 3 when studying the sensitivity of the front speed on the
dispersion kernel.

2.1.3 Time between migrations T (generation time)

The time interval between two successive migrations can be (as a first approximation)
assumed to be a generation time, defined as the mean age difference between parents
and one of their children, not necessarily the eldest (this later quantity corresponds to τ
in section 2.1.1). The value of the generation time T has been calculated in reference [11]
using data for preindustrial agriculturalists, the Majangir people in Ethiopia, collected
by Stauder [26]. Table 5 (in page 58) in Stauder’s book [26] gives the age distribution of
unmarried people, which allows to estimate the age at which people leave their parents.
According to these data, the number of people leaving a domestic group are N1 = 44,
N2 = 49, N3 = 2 and N4 = 1, at mean ages a1 = 19 yr, a2 = 27.5 yr, a3 = 37.5 yr
and a4 = 47.5 yr.7 These values lead to a mean age when leaving a domestic group
〈a〉 ≃ 24 yr [11].8
Then, since the mean number of children per family for preindustrial agriculturalists

is about 6.5 [29] and the average birth interval is about 2.5 yr [17, p. 66], the mean
time interval between migration and the birth of a child is about 8 yr. Hence, the value
of generation time to be used in the models is T = 32 yr (29 — 35 yr at 80% confidence
level [9]).

2.1.4 Early Neolithic dates and measurement of the local
speed

Chapters 5 and 6 study the slowdown of the Neolithic spreading front when Northern
regions were reached. The variation of the speed value with distance is obtained from
the analysis of an interpolation map for early Neolithic dates.
The data on early Neolithic sites used is obtained from the database published by

Pinhasi et al. [9] in 2005 (see a sample in table 2.1), which contains data on 765 early
Neolithic dates. The main fields contained in this database, in terms of the analysis
of the front speed, are the geographic coordinates, Latitude and Longitude, and the
calibrated dates (field CAL C14 BP in table 2.1) in years BP.9 The calibrated dates
were calculated from the uncalibrated radiocarbon dates (UNCAL 14 BP) using Oxcal
2004 software (www.oxcal.de). The database also contains information on the Site
name, location (Country), Period, lab code for the dated sample (Lab Number), and

7When calculating T in this reference (note [24]) there is a typographic mistake: where it says
a1 ≃ 15yr, it should say a1 ≃ 19yr.

8Note that a mean age when leaving a domestic group 〈a〉 ≃ 24yr is consistent with a mean age at
the birth of the first child τ = 25yr [7, 17], if adding about 1yr between the migration and the birth of
the child.

9The time scale years BP, or Before Present, is a time scale used in archaeology that uses year 1950
as origin.
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Latitude Longitude Site name Country Period Lab Number Uncal C14 BP Uncal C14_SD CAL C14 BP CAL C14_SD

38,3700 34,2500 Asikli Höyük Turkey Aceramic GrN-19116 8920 50 10047 101

36,7830 34,5670 Yumuktepe Turkey Pottery Neolithic Rome-467 7920 90 8787 147

38,2800 34,5700 Kaletepe Turkey Aceramic GifA-100396 9030 80 10122 128

47,8200 13,4500 See am Mondsee Austria LBK 4820 82 5531 100

48,6000 15,0833 Guttenbrunn Austria LBK Bln-2227 5935 50 6759 64

48,7000 15,5667 Poigen Austria LBK H-2121/1552 6017 90 6866 114

48,6700 15,6300 Frauenhofen Austria Stichbandkeramik KN-2566 6290 65 7181 96

48,6333 15,6833 Mold Austria LBK Bln-58 5990 160 6853 205

48,7000 15,8600 Pulkau Austria LBK Bln-83 6215 100 7099 126

48,1000 16,2800 Brunn am Gebirge Austria LBK ETH-11148 6785 75 7637 55

48,7500 16,4700 Schletz Austria LBK ETH-13289 6175 65 7073 98

47,5000 16,5000 Unterpullendorf Austria Early painted Ware VRI-42 6130 140 7001 178

47,5000 16,5000 Frankenau Austria LBK VRI-207 5660 100 6464 113

47,6000 16,5500 Neckenmarkt Austria LBK OxA-1536 6210 80 7104 106

47,9500 16,8300 Winden am See Austria LBK Bln-55 5940 100 6773 121

50,5800 3,6800 Blicquy, Couture de la Belgium LBK Hv-9271 6705 165 7575 135

50,6100 3,7500 Irchonwelz Belgium Blicquy Group Bln-2531 6030 60 6867 81

50,8000 5,0500 Wange Belgium Late LBK Lv-1116 6310 75 7207 106

50,6500 5,1800 Darion Belgium LBK Lv-1579 6240 100 7126 123

50,6500 5,2000 Omal Belgium LBK Hv-9285 6505 105 7412 97

Taula 2.1: Sample of the early Neolithic radiocarbon dates database published by
Pinhasi et al. [9]. The database contains data on 765 early Neolithic sites.

statistical deviations of the calibrated and uncalibrated dates (Uncal C14_SD and CAL
C14_SD)10.
The analysis of the database to measure the front speed has been performed using

ArcGIS 9.3 software. This software allows us to represent all the data on a map and
interpolate the dates to obtain an isochron map; the selected region of study is a
rectangular area 1300 km long comprised between the Balkans and the North Sea (see
figure 5.1 in chapter 5). The front speeds are estimated by computing the area comprised
between two isochrones (separated 250 yr) within the region of study. From the value
of each area, and the width of the studied region (about 400 km), one can calculate
the mean distance covered by the spreading front during a 250-year period, and thus
estimate the mean speed during this period.
In order to plot the speed of the spreading front as a function of the distance (e.g.,

figure 5.3), the values for the distances are computed from the position of the centroid
of each of the studied areas (i.e., the areas between isochrones separated 250 yr).

2.2 Fronts from integrodifference equations

Integrodifference equations are widely used in mathematical biology to model the dis-
persal and growth of populations. They are integral recurrence relations, discrete in
time, such as equations (1.6) and (1.7) in chapter 1. In chapter 3, in order to include the
effect of using the full kernel, the speed of range expansion has to be obtained from the
analysis of these integrodifference equations. This front speed can be calculated analyt-
ically by applying continuous-space random walks (CSRW) and discrete-space random

10The original database published by Pinhasi et al. [9] contains a larger number of fields related to
the calculus in their work but that are not necessary for the analyses performed in this thesis.
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walks (DSRW), or numerically by computing reactive random walk simulations. We
summarize these three methods in turn.

2.2.1 Continuous-space random walks (CSRW)

When searching for the front speed using analytical methods there are three main
assumptions. First, as the population density p at the leading edge of the front is very
low, the equation describing the dynamics there can be linearized (in terms of p). This
linearization affects mainly the growth process which becomes exponential (see figure
2.1). The second assumption is that for t→∞ and r →∞, the front can be considered
approximately planar at the local scale. Thus, the local velocity can be assumed parallel
to the radial axis (for example x) and the speed along the perpendicular direction (y)
will be negligible. Finally, the following ansatz is made for the solution at large values of
the coordinate z = (x− ct)moving with the front (z →∞), p = p̄ exp (−λz). Therefore

p (x, y, t+ T ) = p (x, y, t) eλcT ,

p (x+∆x, y +∆y, t) = p (x, y, t) e−λ∆x .
(2.1)

Applying these relations to an integrodifference equation leads to a complex equation
for the front speed c depending on the unknown parameter λ, which can be solved if
applying the usual assumption [30] that the minimum speed is, in fact, that of the front.
This is called the marginal stability or linear analysis assumption. For example, for the
cohabitation equation (1.7) with the solution to the logistic growth (1.1),

R [p (x, y, t)] =
p (x, y, t) pmaxe

aT

pmax + p(x, y, t)(eaT − 1) − p (x, y, t)

≃ p (x, y, t)
(
eaT − 1

)
, (2.2)

the front speed is

c = min
λ>0

ln
[
eaT
∫∫
e−λ∆xφ (x, y; ∆, θ) d∆xd∆y

]

λT
. (2.3)

If the integral
∫∫
e−λ∆xφ (x, y; ∆, θ) d∆xd∆y has an explicit solution, it is possible

to obtain an explicit expression for the front speed (for example, with the Gauss or
Laplace distributions, as shown in section 3.4). Otherwise, the minimum has to be
obtained numerically. The validity of equations such as (2.3) can be checked by means
of the methods in the two subsections below.

2.2.2 Discrete-space random walks (DSRW)

The previous method considers the space as a continuous, in the sense that individuals
can move to any point in space, but when performing numerical simulations, the space
is necessarily discrete. Using discrete-space random walks provides analytical results

14



( ),x y ( ),x y+ ∆

( ),x y+ ∆ + ∆( ),x y + ∆( ),x y− ∆ + ∆

( ),x y+ ∆ − ∆( ),x y − ∆

( ),x y− ∆

( ),x y− ∆ − ∆

Figura 2.2: Diagram of the discretized dispersion kernel with jump from the eight
nearest neighbors. Corresponds to the single-distance jump isotropic kernel.

for a dispersion process taking place in a discrete space, that are directly comparable
with the simulations.
The discretization of space is taken into account by discretizing the integral

∫∫
p (x−∆x, y −∆y, t)φ (x, y; ∆, θ) d∆xd∆y (2.4)

from the integrodifference equation (e.g., equation (1.6) or (1.7)), according to the
approximation used in the numerical simulation. For example, for the very simple case
in which only jumps from the eight nearest neighbors are included, (2.4) is replaced by

1

8
[p (x+∆, y +∆, t) + p (x+∆, y, t) + p (x+∆, y −∆, t) + p (x, y −∆, t)
+ p (x−∆, y −∆, t) + p (x−∆, y, t) + p (x−∆, y +∆, t) + p (x, y +∆, t)] (2.5)

for isotropic kernels (see figure 2.2). Then, the front speed is calculated by the same
mathematical analysis applied before, i.e., assuming low densities, planar fronts and
p ≃ p̄ exp (−λz), with z = (x− ct).

2.2.3 Reactive random walk simulations

This kind of numerical simulations follow the evolution of the population density in
time and space. A 2−dimensional grid must be defined, with each node being a po-
tential settlement. Before performing the simulation, the initial conditions must be
fixed (typically p = pmax at the center and p = 0 elsewhere). Then, the evolution of
the population density for each time interval T is computed according to the following
steps:

15



Dispersion For each node, the initial population is redistributed according to the
dispersion kernel φ (x, y; ∆, θ), but approximated to a discrete grid. For example,
if the population can either stay with probability p0 or disperse to the eight nearest
neighbors, a fraction p0 of the initial population at point (x, y) would remain in
the same position, and each of the eight nearest neighbors could be assigned a
fraction p1 = (1− p0) /8 of the initial population at (x, y) (see figure 2.2).11

The redistribution of the population can be performed in a deterministic way, as
in the example above, or following an stochastic process. The latter procedure
means that each individual initially at (x, y) is assigned a destination according
to a random function (see section 3.6).

Reaction The increase in population number due to the reaction (i.e., net reproduc-
tion) process is computed with the solution to the logistic growth equation (1.1),
namely

p (x, y, t+ T ) =
p (x, y, y) pmaxe

aT

pmax + p(x, y, t)(eaT − 1) (2.6)

for each node of the grid.

The front speed is obtained from linear regression of the position of successive fronts
(defined, e.g., as p = pmax/10) when the time is t≫ T .

2.3 Fronts from differential equations

In chapters 4, 5 and 6, the evolution of the population is modeled using reaction-
diffusion differential equations. Differential equations [such as (1.2) and (1.4) in chapter
1] require a different analysis and, specially, different numerical techniques than inte-
grodifference equations [such as equations (1.6) and (1.7) in chapter 1]. The front speed
for differential equations can be obtained from linear and variational analysis, or from
numerical integration.

2.3.1 Linear analysis (lower bound)

The three main assumptions made in the analysis of integrodifference equations also
apply when dealing with differential equations: (i) the population density is low at the
leading edge of the front, so the differential equation can be linearized in terms of the
population density p (x, y, t), e.g. Fisher’s equation (1.2) becomes

∂p

∂t
≃ D

(
∂2p

∂x2
+
∂2p

∂y2

)
+ ap , (2.7)

(ii) fronts can be considered approximately planar for t → ∞ and r → ∞; and (iii)
p (z) ≃ p̄ exp (−λz), with z = (x− ct). With differential equations, however, the

11This example corresponds to the Simplified model presented in section 3.5.1 (chapter 3).
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necessary relations, obtained from (iii), are the following

∂p

∂t
= λc p (x, y, t) ,

∂2p

∂t2
= (λc)2 p (x, y, t) ,

∂p

∂x
= −λ p (x, y, t) , ∂2p

∂x2
= (−λ)2 p (x, y, t) .

(2.8)

Applying these relations to the differential equation describing the model (e.g., the
linearized Fisher’s equation (2.7)) leads to a quadratic equation in terms of the para-
meter λ. As λ is a real value, the discriminant from the quadratic equation must be
non-negative, and from this condition follows a lower bound for the front speed (e.g.,
c > 2

√
aD for equation (2.7), which leads to Fisher’s speed (1.3) when combined with

the upper bound explained below).

2.3.2 Variational analysis (upper bound)

Even though according to marginal stability hypothesis the asymptotic velocity of
spreading fronts generically approaches the minimal velocity (which can be obtained
from the linear analysis above), this hypothesis does not hold for all reaction-diffusion
systems. Benguria and Depassier [31] described a variational analysis leading to an
upper bound for parabolic reaction-diffusion equations, that Méndez et al. [32] gener-
alized to hyperbolic reaction-diffusion equations. This is the variational analysis that
will be used in the following chapters to find an upper bound for the front speed of the
proposed reaction-diffusion models.
As usual, the front profile is assumed to be planar and that it depends only on

z = (x− ct), thus the following relations can be applied to the differential equation,

∂p

∂t
= −c∂p

∂z
,

∂2p

∂t2
= c2

∂2p

∂z2
,

∂p

∂x
=
∂p

∂z
,

∂2p

∂x2
=
∂2p

∂z2
,

(2.9)

and, as the analysis is performed in the phase space, it is convenient to define n (p) ≡
−∂p/∂z, with n (0) = n (pmax) = 0 , and n (p) > 0 for a front with c > 0 and p ∈
(0, pmax).
Let g (p) be an arbitrary positive function, with h (p) = −g′ (p) also positive. Mul-

tiplying the differential equation by g/n and integrating leads to an integral variational
principle for the speed of fronts [e.g., equation (4.16) in chapter 4], after integrating
by parts and applying that for r, s > 0, (r + s) ≥ 2

√
rs (the latter inequality follows

directly from the Pythagorean theorem). From this variational principle it is possible
to find an upper bound for the front speed (e.g., c < 2

√
aD for equation (2.7), which

leads to Fisher’s speed when combined with the lower bound above).
More detail on this variational analysis is given in chapter 4, section 4.2, where the

analysis is described step-by-step for a second-order reaction-diffusion equation.
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In the three reaction-diffusion equations studied (chapters 4, 5 and 6), the lower
and upper bounds coincide, so the calculated speed is the exact front speed for each
system.

2.3.3 Numerical integration: finite-difference method

Differential equations can be solved numerically. However, before performing numerical
integrations it is convenient to work with dimensionless variables, so that the results
can be applied to systems with any parameter values. For this purpose, time and space
variables are rescaled as follows

t∗ = t k

x∗ = x
√

k
D

(2.10)

where 1/k is the characteristic time of the reactive process [32]; for example, for the
logistic case k = a, the initial growth rate. Then, for example, the dimensionless form
of Fisher’s equation (1.2) is

∂p

∂t∗
=

(
∂2p

∂x∗2
+
∂2p

∂y∗2

)
+ p

(
1− p

pmax

)
. (2.11)

In order to numerically solve a differential equation, such as equation (2.11), the time
and space derivatives are finite differenced according to the fully implicit or backward
time differencing scheme [33]12

∂p

∂t∗
≃
pn+1j − pnj
∆t∗

,
∂2p

∂t∗2
≃
pn+1j − 2pnj + pn−1j

(∆t∗)2
,

∂p

∂x∗
≃
pn+1j+1 − pn+1j

∆x∗
,

∂2p

∂x∗2
≃
pn+1j+1 − 2pn+1j + pn+1j−1

(∆x∗)2
,

(2.12)

where the superscripts denote the time and the subscripts the space point at which p
is evaluated. The fully implicit differencing scheme is an unconditionally stable scheme
that leads to results that are first-order accurate in time. In contrast, the explicit
scheme (i.e., using the time instant n instead of n + 1 in the spatial derivatives) is
also first-order accurate in time but requires the use of very short time steps ∆t∗ in
order to be stable, and this means that the number of steps necessary to obtain results
is usually prohibitive [33].13 When applied to a reaction-diffusion equation, the fully
implicit differencing scheme yields, in general, a set of linear equations for each time
step n+ 1 such as

αjp
n+1
j−1 + βjp

n+1
j + γjp

n+1
j+1 = rj, j = 1, 2...J − 1, (2.13)

12See section 16.6 and chapter 19 in this reference for further details on finite-difference methods.
The fully implicit scheme is described in section 19.2 in this reference.
13The explicit scheme was applied to solve reaction-diffusion-advection equations modeling the Ne-

olithic transition by Davison [34] but using parallel computing.
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with αj, βj and γj the coefficients for pn+1j−1 , p
n+1
j and pn+1j+1 , respectively; and rj a

function of pnj for reaction-diffusion equations without the derivative ∂
2p/∂t∗2 (parabolic

equations), or function of pnj and p
n−1
j for reaction-diffusion equations with first and

second time derivatives (2.12) (hyperbolic equations). J is given by J = L∗/∆x∗, with
L∗ = L

√
k/D the dimensionless system size, and usually the system considered is a

square with side L. The set of linear equations (2.13), together with Dirichlet boundary
conditions pn0 = pmax and pnJ = 0 (for all n), conform a tridiagonal system that can be
easily solved by using the Tridag routine in Fortran [33]14, provided that the initial
conditions p0j (and p

−1
j for hyperbolic equations, e.g. p−1j = p0j for j = 1, 2...J − 1)

are implemented so that they have compact support, in order to obtain a travelling
wavefront that is independent of them [21]. For example, appropriate initial conditions
are such that {

p0j = pmax, for j ≤ jic
p0j = 0, for j ≥ jic + 1

, (2.14)

assuming p0j continuous between jic and jic + 1. In the model described in chapter 4,
when performing the numerical integration, jic was chosen jic = J/6. Biologically, the
range j ≤ jic is that initially occupied by the population.

14The Tridag routine code can be found in section 4.2 in this reference.
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Capítol 3

Realistic dispersion kernels applied
to cohabitation reaction-dispersion
equations [J Stat Mech - Theor Exp
2008; 2008: P10012 ]

This chapter is an exact transcription of the contents of the following paper (please,
find a copy of the published version in appendix A):

Isern N, Fort J, Pérez-Losada, J. Realistic dispersion kernels applied to cohabitation
reaction-dispersion equations. J Stat Mech - Theor Exp 2008; 2008: P10012.

Abstract We develop front spreading models for several jump distance probability
distributions (dispersion kernels). We derive expressions for a cohabitation model
(cohabitation of parents and children) and a non-cohabitation model, and apply
them to the Neolithic using data from real human populations. The speeds we
obtain are consistent with observations of the Neolithic transition. The correction
due to the cohabitation effect is up to 38%.

Keywords dynamics (theory), population dynamics (theory)

3.1 Introduction

In systems where dispersion and reaction process coexist, front spreading may be ob-
served. A front can be defined as a moving profile connecting an initial, unstable state
with a final, stable state. For example, in population dynamics the final state corre-
sponds to the maximum population density that can be supported by the environment,
whereas in combustion flames it corresponds to the burned state.

21



Previous work on front spreading includes analytical calculation of front speeds
for (i) reaction terms such that linear analysis is appropriate (pulled fronts), as well
as for the non-linear case (pushed fronts) [35], (ii) sequential reaction and dispersion
[36], (iii) dispersal kernel effects leading to the breakdown of classical diffusion [37],
(iv) biased random walks [12, 38], (v) age-structured systems [13, 39], (vi) distributed
delays [11, 40], etc. (For a recent review see [41]).
Front propagation models have been extensively applied to study physical and bi-

ological systems including population dispersals [12], combustion flames [42], Taylor-
Couette and Rayleigh-Bénard experiments [35], viral infections [43], tumor growth [44],
etc.
In most studies on human population dynamics, the velocity of fronts has been

calculated with Fisher’s equation (cFisher =
√
2aD, where a is the initial growth rate

and D the diffusion coefficient) or, more recently, with the HRD (hyperbolic reaction-
diffusion) equation [7, 45]. In the HRD model, it is assumed that (i) each individual
(or particle) rests for a time interval T between successive jumps, and (ii) the duration
of jumps is negligible compared to the rest time T . This leads to the front speed (for
the detailed derivation, see [7])

cHRD =
2
√
aD

1 + (aT/2)
. (3.1)

Fisher’s speed (cFisher =
√
2aD) is recovered for T ≪ 1/a, so it is valid only if the rest

time T is negligible.
Fisher’s and HRD equations include the dispersion just as a parameter, namely the

diffusion coefficient (D = 〈∆2〉/4T , where 〈∆2〉 is the mean squared displacement of
jumps). In this work, we study the effect of using the whole dispersion kernel (distrib-
ution of the dispersal probability on jump distance ∆) on front speeds. We tackle this
problem not only from hypothetical distributions, but also using data from real human
populations in order to obtain more realistic results and compare them to the observed
front speed of the Neolithic transition in Europe.
Results depending on the full kernel have to be obtained from an integrodifferen-

tial∗ evolution equation for the population density, rather than a differential equation
[7]. In previous work, we have already used integrodifferential† evolution equations for
population dynamics models in order to study persistency effects on front speeds [13],
fronts from biased random walks [38] and fronts for interacting species [14]. Howev-
er, realistic dispersion distributions obtained from observed human populations have
not been applied before. In section 3.2 we present two possible evolution equations
(a cohabitation model and a non-cohabitation one). Then we obtain analytical and
numerical results for the front speed for both evolution equations. In section 3.3 we
consider several-distance dispersion kernels in 2D, while in section 3.4 we apply Laplace
and Gauss 2D kernels. These results are applied to the Neolithic transition in Europe

∗In the published version of this work (Appendix A) there is a typographical error in this sentence;
the right word is integrodifference, rather than integrodifferential.

†See footnote ∗.
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in section 3.5 using real dispersion data from six human populations. In section 3.6 we
describe a stochastic model which we compare with the deterministic results. Finally,
in section 3.7 we present our conclusions.

3.2 Evolution equations

In order to study the effect of the dispersion kernel on front speeds, we need an in-
tegrodifferential‡ evolution equation for the population density p(x, y, t). A possible
expression for the evolution equation is [13, 14, 38],

p(x, y, t+ T ) =

∫ +∞

−∞

∫ +∞

−∞

p(x+∆x, y +∆y, t)φ(∆x,∆y) d∆x d∆y

+RT [p(x, y, t)]− p(x, y, t). (3.2)

The first term in equation (3.2) is the dispersal term, where the probability φ(∆x,∆y)
is the dispersion kernel, and gives the probability per unit area that an individual initial-
ly placed at (x+∆x, y+∆y) moves to (x, y) during a time interval T of one generation
[7].

RT [p(x, y, t)] in equation (3.2) is the solution of the logistic growth equation, widely
used in population dynamics [21],

RT [p(x, y, t)] =
p(x, y, t) pmax e

aT

pmax + p(x, y, t) (eaT − 1) , (3.3)

where pmax is the carrying capacity. Equation (3.3) gives the final population density,
due to population growth, after a time interval T from the initial value p(x, y, t). So,
the last two terms in equation (3.2), RT [p(x, y, t)] − p(x, y, t), correspond to the net
growth (natality-mortality balance) during T .
However, according to equation (3.2), after a generation new individuals appear due

to reproduction at (x, y) while parents have moved to (x − ∆x, y − ∆y), i.e., parents
leave their children behind when the former migrate. But this is not realistic for human
populations; thus we use a more realistic evolution equation [13, 14, 38],

p(x, y, t+ T ) = RT

[∫ +∞

−∞

∫ +∞

−∞

p(x+∆x, y +∆y, t)φ(∆x,∆y) d∆x d∆y

]
. (3.4)

The difference between equation (3.2) and equation (3.4) is a very important point.
It is thus shown in figure 3.1 for the 1D case and a population at a single position at
t = 0 (figure 3.1(a)). For equation (3.4), figure 3.1(b), the initial population migrates
(full columns) and the population growth (hatched columns) takes place at the desti-
nation position. On the other hand, for equation (3.2), figure 3.1(c), population growth
(hatched column) takes place only at the initial position x due to the whole initial pop-
ulation, while part of this initial population has already migrated (full columns). So,
from now on, equation (3.2) and its results will be named as non-cohabitation (NCo-
hab), since parents migrate leaving their children behind, and equation (3.4) and its
results will be named as cohabitation (Cohab).

‡See footnote ∗.
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∆∆ ∆ ∆∆ ∆

Figura 3.1: Comparison of cohabitation (equation (3.4)) and non-cohabitation (equa-
tion (3.2)) model in 1D. Initially the population is at a single position p(x, t = 0)
(a). In (b) and (c) full columns correspond to the dispersed population (parents) and
hatched columns to the population growth (children). (p0 = 0.5, φ (∆x) = δ (x±∆x),
a = 0.028 yr−1, T = 32 yr)

3.3 Several-distances dispersion model

For real populations, the migrated distances per generation are usually continually
distributed. But available data are recorded in intervals, so here we consider a dis-
crete approximation with a kernel that allows dispersion to multiple discrete distances.
Therefore, assuming an isotropic kernel, the linear distribution of probability can be
expressed as a sum of Dirac deltas1

ϕ (∆) = 2π∆φ (∆) =
∑n

i=0
piδ(∆− ri), (3.5)

where pi is the probability for the individuals to move a distance ri = i ·d, for i =
0, 1, 2..., n, with d the width of the intervals used when recording the data.
Below we search the front speed using analytical methods (CSRW, DSRW) and

numerical simulations.

3.3.1 Continuous-space random-walks (CSRW)

In order to find an analytical expression for the front speed, we apply some simplifica-
tions to the evolution equation. Firstly, as the population density at the leading edge

1The linear distribution of probability, ϕ (∆), is the integration over the azimuthal coordinate θ
of the 2D kernel, φ(∆). For an isotropic kernel, i.e., independent of θ, the relation between both
distributions is ϕ (∆) = 2π∆φ (∆).
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of the front is low, equation (3.3) can be linearized there, becoming

RT [p(x, y, t)] = p(x, y, t) eaT . (3.6)

Moreover, since we have assumed an isotropic kernel, the front is azimuthally sym-
metric, so it can be considered approximately planar for t → ∞ and r → ∞. Then,
choosing x-axis as parallel to the local velocity of the front, c ≡ |cx|, we look for
constant-shape solutions with the form p = p̄ exp[−λ (x− ct)]. Applying these simpli-
fications to cohabitation equation (3.4), it may be rewritten as

eλcT = eaT
∫ +∞

−∞

∫ +∞

−∞

e−λ∆xφ(∆x,∆y) d∆x d∆y . (3.7)

Finally, changing the coordinate system to polar coordinates, i.e., defining
∆ ≡

√
∆2
x +∆

2
y and θ ≡ tan−1 (∆y/∆x), and using equation (3.5), we find an ex-

pression for the front velocity2,

c
Cohab

= min
λ>0

ln
[
eaT
∑n

i=0 piIo(λid)
]

λT
, (3.8)

where I0 (λid) is the modified Bessel function of the first kind and order zero,

I0 (λid) =
1

2π

∫ 2π

0

exp (λid cos θ) dθ. (3.9)

Applying the same steps to the non-cohabitation equation (3.2), we obtain the
expression for the front velocity (see footnote 2),

c
NCohab

= min
λ>0

ln
[(
eaT − 1

)
+
∑n

i=0 piIo(λid)
]

λT
. (3.10)

3.3.2 Reactive random walk simulations

Random walk numerical simulations follow the evolution of the population density
in space and time. We consider a 2D grid of 3000 × 3000 nodes, with the initial
condition p (x = 0, y = 0, t = 0) = 1, and p (x, y, t = 0) = 0 at every other node (x, y).
The evolution of the population is computed by repeating the following steps at each
time interval (T = 1 generation):
(i) We apply the dispersion kernel (3.5), but as the grid is Cartesian, the density is

in fact distributed into the four edges of n squares of side 2ri = 2id.3 Thus, to each of
the 8i nodes of the i-square corresponds a fraction (pi/8i) from the initial population.
(ii) The final population at each node is computed applying the population growth

equation (3.3) to the result of step (i) (in the case of equation (3.4)) or applying equation
(3.3) to the initial population and adding the result to that of step (i) (in the case of
equation (3.2)).

2The value of d for CSRW is related to the mean squared displacement by
〈
∆2
〉
=
∑n

i=0 pi (id)
2
.

3The value of d for DSRW (and numerical simulations) is related with the mean squared displace-
ment by the approximation

〈
∆2
〉
=
∑n

i=0 (pi/8i)
∑i−1

j=−i 4[(id)
2 + (jd)2].
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3.3.3 Discrete-space random walks (DSRW)

In the CSRW approach (section 3.3.1) we consider a continuous space. But the sim-
ulation grid (section 3.3.2) is necessarily discrete, and this in fact modifies the kernel
shape. Thus, the results from these two methods may be different. Therefore, here we
suppose a discrete space in order to reproduce analytically the results obtained from
the numerical simulations.
We first discretize equation (3.4) so that the kernel is square shaped as in the

simulations. The dispersion term, namely

∫ +∞

−∞

∫ +∞

−∞

p(x+∆x, y +∆y, t)φ(∆x,∆y)d∆xd∆y, (3.11)

as a result of the discretization, becomes

p0 p(x, y, t) +

n∑

i=1

pi
8i

{
i∑

j=−i

[p(x+ ri, y + rj, t) + p(x− ri, y + rj, t)]

+

i−1∑

j=−i+1

[p(x+ rj, y + ri, t) + p(x+ rj, y − ri, t)]

}
. (3.12)

Applying now the same simplifications as with the CSRW (section 3.3.1) we obtain
that the expression for the front speed is (see footnote 3)

c
Cohab

= min
λ>0

ln
[
eaT Ψ(λd)

]

λT
, (3.13)

where

Ψ(λd) ≡ p0 +
n∑

i=1

pi
4i

[
1 +

i−1∑

j=1

2 cosh(λjd) + (2i+ 1) cosh(λid)

]
. (3.14)

Following the same method as above we find that the speed expression for the non-
cohabitation equation (3.2) is (see footnote 3)

c
NCohab

= min
λ>0

ln
[(
eaT − 1

)
+Ψ(λd)

]

λT
. (3.15)

3.4 Continuous dispersion models

In this section, instead of a multiple Dirac delta for the kernel (section 3.3), we consider
isotropic continuous probability distributions in 2D.
In order to find analytical results we apply the same simplifications than in sec-

tion 3.3: linearization of the growth equation and assumption of constant-shape front
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solutions p = p̄ exp[−λ (x− ct)]. In this way, using again polar coordinates as in the
CSRW, we obtain the following general expression for the cohabitation equation (3.4):

c
Cohab

= min
λ>0

ln
[
eaT
∫ +∞
0

ϕ (∆) I0 (λ∆)d∆
]

λT
, (3.16)

where, as in equation (3.5), ϕ (∆) = 2π∆φ (∆) (see footnote 1).
The exact solution for this expression can be obtained from the value of λ that

satisfies dc
Cohab

/dλ = 0. Thus λ is to be calculated from the relation

ϕ̃ (λ) ln
[
eaT ϕ̃ (λ)

]
= λϕ̃′ (λ) , (3.17)

where we have defined ϕ̃ (λ) ≡
∫ +∞
0

ϕ (∆) I0 (λ∆)d∆ and ϕ̃′ (λ) ≡ dϕ̃ (λ) /dλ.
Applying the same steps to the non-cohabitation equation (3.2), we obtain the

expression

β + ϕ̃ (λ) ln [β + ϕ̃ (λ)] = λϕ̃′ (λ) , (3.18)

where we have introduced β ≡ eaT − 1.
Some important kernels that have been widely applied to population dispersal are

the Gauss and Laplace distributions [46]—[48]. These two kernels will also allow us
to derive explicit equations for the front speed. In contrast to previous work in 1D
[37, 48, 49], here we consider a 2D space, as necessary for application to the Neolithic
transition (section 3.5).

3.4.1 Gauss distribution

The Gauss lineal probability distribution is ϕ (∆) = (2∆/α2) e−(∆/α)
2

, so we obtain
that

ϕ̃ (λ) = eα
2λ2/4. (3.19)

For the cohabitation equation (3.4), using equation (3.19) into equation (3.17) we
obtain the exact result,

c
Cohab

= α

√
a

T
. (3.20)

For the non-cohabitation equation (3.2), an exact solution cannot be found, but
expanding equation (3.18) up to second order in αλ (αλ≪ 1), we obtain the following
explicit result:

c
NCohab

=
α

2T

√
1 + β ln(1 + β)

(1 + β) ln(1 + β)
× ln

[
(1 + β)(1+β)/[1+β ln(1+β)] + β

]
. (3.21)
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3.4.2 Laplace distribution

The Laplace linear probability distribution can be expressed as ϕ (∆) = (∆/α2) e−∆/α,
so we have that

ϕ̃ (λ) = 1/(1− α2λ2)3/2. (3.22)

The second order approximation in αλ (αλ≪ 1) for the front speed for the cohab-
itation equation, i.e., when using equation (3.22) into equation (3.17), is

c
Cohab

=
α

T

√
1 +

3

2aT

(
aT +

3

2
ln

[
1 +

2aT

3

])
. (3.23)

For the non-cohabitation equation, the second-order expansion in αλ (αλ≪ 1) for
equation (3.18) leads to the expression

c
NCohab

=
α

T

√
3
2
+
(
1 + 5

2
β
)
ln (1 + β)

(1 + β) ln (1 + β)

× ln



(
1 +

(
2
3
+ 5

3
β
)
ln (1 + β)

(1 + β) ln (1 + β)

)3/2
+ β


 . (3.24)

3.5 Application to the Neolithic Transition

We apply the results from sections 3.3 and 3.4 to the Neolithic transition, i.e., the
transition from hunter-gatherer to agricultural economics (the corresponding front speed
has been measured from archaeological data on the first arrival of farmer populations
[9]). We study two cases: (i) a simple approximation with single-distance dispersion
(migration to nearest neighbors), and (ii) a more realistic case using mobility data from
real populations (using both discrete and continuous kernels).
The generation time we apply in all cases is T = 32 yr, which was estimated in

reference [11]4 as the mean age of the parents when a child is born (not necessarily the
first one).
The range of values for the initial growth rate a that we use at the rest of the paper

has been estimated from data of four human populations (Pitcairn [22], Bass Strait
[22] and Tristan da Cunha [23] Islands, and the United States population during the
nineteenth century [24]). Fits to exponential growth of the population data from the
three islands yield a = 0.029 95±0.001 19 yr−1 for Pitcairn, a = 0.026 26±0.000 52 yr−1
for Bass Strait and a = 0.025 27± 0.000 32 yr−1 for Tristan da Cunha. The growth rate
calculated from the same logistic equation as was used by Lotka [24] for the US is
a = 0.031 35± 0.000 63 yr−1. These four values yield the range a = 0.028± 0.005 yr−1
(80% confidence level). For populations colonizing a new habitat prior to the existence
of the modern health and medicine [50], we are not aware of any population number
time series leading to higher values of a.

4For the estimation of the generation time T = 32 yr, see note [24] in this reference.
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Population
〈
∆2
〉

p0 vmin Cohab vmax Cohab vmin NCohab vmax NCohab

(km2) (km yr−1) (km yr−1) (km yr−1) (km yr−1)
A Gilishi15 [26] 1003 0.54 0.850 1.010 0.659 0.734
B Gilishi25 [26] 1210 0.40 0.899 1.055 0.693 0.764
C Shiri15 [26] 2197 0.19 1.161 1.335 0.891 0.967
D Yanomamo [28] 1728 0.19 0.926 1.066 0.711 0.772
E Issocongos [27] 404 0.41 0.521 0.612 0.402 0.443
F Parma [27] 508 0.77 0.674 0.825 0.533 0.611

Taula 3.1: Front speeds for the simplified model. The front speeds have been com-
puted for the six human populations with the cohabitation equation (3.4) and the
non-cohabitation one (3.2), using the values of the parameters 〈∆2〉 and p0 from the
present table, and the extreme values of the range a = 0.028± 0.005 yr−1 (vmin and
vmax).

3.5.1 Simplified model

Here we analyze a simplified model in which individuals can either stay at the initial
position, with a persistency (probability of resting) p0, or migrate to a single distance
d, determined by the values of persistency p0 and the mean-squared displacement (mo-
bility) 〈∆2〉 (see footnotes 2 and 3).
In table 3.1 we present the parameter values and computed speeds for four prein-

dustrial farmer populations (Gilishi15 [26], Gilishi25 [26], Shiri15 [26] and Issocongos
[27]5), the Yanomamo [28] (who are horticulturists), and the modern populations in
the Parma Valley [27]6 already considered by Ammerman and Cavalli-Sforza [17]. The
values for the front speed have been calculated for both the cohabitation equation (3.4)
and the non-cohabitation one (3.2), using the CSRW (section 3.3.1) and the minimum
and maximum values of the range a = 0.028± 0.005 yr−1, obtained above.
In figure 3.2 we present results for both evolution equations (3.2) and (3.4), obtained

with the three methods (CSRW, DSRW and simulations), the mean mobility value of
populations A, B and C (〈∆2〉 = 1531 km2), and two values of the persistency: (i) an
extreme case with all individuals migrating, p0 = 0.0 and (ii) a more realistic value,
p0 = 0.5 [13]. Front speed values in figure 3.2 have been computed over a large range
of a, and note that in all cases the speed increases and tends to a maximum for large
values of a (discrete methods saturate at this speed) which corresponds precisely to
d km/gen. We can understand this limit intuitively as follows. Since this is a single-
distance dispersion model, d is the distance individuals move along the x direction when
they migrate, and thus, d km/gen must be the maximum possible speed.7.
From figure 3.2 it can be seen that the speeds from the non-cohabitation equation

(3.2) are always lower than those from the cohabitation equation (3.4); up to 34%
lower when comparing results from the CSRW (full and dashed curves in figure 3.2).

5Data for the Issocongos has been obtained from Figure 8.16.B in this reference.
6Data for Parma populations is obtained from Table 8.7 in this reference.
7The value of d is calculated differently for the CSRW case (see footnote 2) or the DSRW case

and simulations (see footnote 3). Thus the speed limits obtained are different for continuous-space or
discrete-space random-walks (figure 3.2).
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Figura 3.2: Front speeds for single-distance dispersion kernels. The speeds for the
cohabitation equation (3.4), the non-cohabitation equation (3.2) and the HRD equation
(3.1), have been computed using the mobility value 〈∆2〉 = 1531 km2 and persistencies
p0 = 0.0 and p0 = 0.5. The hatched area corresponds to the observed ranges for a and
c.

This was to be expected because according to equation (3.2) just the parent generation
can disperse, whereas using equation (3.4) it is the whole population that can migrate
(parents and children); see figure 3.1.
Comparing the results from the two values of the persistency in figure 3.2, we find

that the front speed increases with the persistency, as it could be expected8 for pop-
ulations with the same mobility value. We can also see this effect on table 3.1, where
populations E and F have similar mobilities but population F has a higher persistency
and thus a higher front speed. On the other hand, in table 3.1 we can also observe how
for populations with the same persistency (C and D) a higher mobility (and thus, a
higher diffusion coefficient D = 〈∆2〉 /4T ) yields a higher speed.
The 95%-confidence-level speed for the Neolithic transition in Europe is currently

estimated as 0.6 — 1.3 km yr−1 [9]. In figure 3.2, the hatched box delimits this range
for the initial growth rate range obtained above (0.023 — 0.033 yr−1). Thus, although
we obtain different speed values for each model, they all lie within the observed for
the speed of the Neolithic transition. However, from table 3.1, we see that whereas for

8Front speed increases with persistency because the jump distance d has been calculated from the
same value of the diffusion coefficient D =

〈
∆2
〉
/4T ; so a larger probability of staying implies that

those who migrate have to move a larger distance d (see footnotes 2 and 3). Therefore, the front speed
increases. This effect cannot be predicted by equation (3.1) (full line and triangles at figure 3.2), for
example, as it only depends on D.
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Figura 3.3: Front speeds for three real human dispersal kernels. The speeds for the
cohabitation equation (3.4) and the non-cohabitation equation (3.2) are computed using
kernel (3.25) (results for each population are labeled). The results for equation (3.1)
are calculated from the value of D for each population obtained from kernels (3.25) (see
table 3.1). The hatched area corresponds to the observed ranges for a and c.

the cohabitation equation (3.4) the calculated speeds are consistent with the observed
range, for populations with low mobilities (E and F) the non-cohabitation equation
(3.2) yields lower front speeds than the observed range for the Neolithic transition (up
to 33% lower for population E).

3.5.2 Several-distances Dirac deltas model

Now we use the dispersion kernels obtained from real dispersion data of the six pop-
ulations studied above. Firstly, we consider the dispersion kernels for three of these
populations (namely, A, B and C in table 3.1),

PA = {0.54; 0.17; 0.04; 0.25} ,
PB = {0.40; 0.17; 0.17; 0.26} , (3.25)

PC = {0.19; 0.07; 0.22; 0.52} ,

where the values correspond to the probabilities pi for distances {2.4; 14.5; 36.2;
60.4} km.9 For the sake of clarity, in figure 3.3 we show the results only for these

9These values are the mean of each interval from Stauder’s data [26] according to the calculation
of mobility by Ammerman and Cavalli-Sforza [17]. The distances correspond to d = 2.4 km and
i = {1; 6; 15; 25} in the kernel expression (3.5).
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Population vmin Cohab vmax Cohab vmin NCohab vmax NCohab

(km yr−1) (km yr−1) (km yr−1) (km yr−1)
A Gilishi15 [26] 0.908 1.101 0.712 0.810
B Gilishi25 [26] 0.957 1.150 0.746 0.840
C Shiri15 [26] 1.196 1.397 0.920 1.011
D Yanomamo [28] 1.179 1.435 0.927 1.062
E Issocongos [27] 0.737 0.940 0.608 0.737
F Parma [27] 0.800 1.008 0.651 0.774

Taula 3.2: Front speeds for the Dirac deltas model. The front speeds have been com-
puted for the six human populations with the cohabitation equation (3.4) and the
non-cohabitation one (3.2), using the dispersion kernels from the text (section 3.5.2
and the extreme values of the range a = 0.028± 0.005 yr−1 (vmin and vmax).

three populations (computed with the results from sections 3.3.1 and 3.3.3). Here it is
seen that the speeds obtained using the full kernel are consistent with the observed range
(hatched area), and that again results from equation (3.2) are lower than those from
equation (3.4) (22% — 28% lower), for the same reasons given at the previous subsection.
In table 3.2 we present the front speed values computed with the cohabitation and

non-cohabitation models (using the CSRW) for all six populations and the range a =
0.028 ± 0.005 yr−1 obtained above. The dispersion kernels used for populations D, E
and F are

PD = {0.19; 0.54; 0.17; 0.04; 0.04; 0.02} (3.26)

for distances {5.0; 30.0; 50.0; 70.0; 90.0; 110.0} km,

PE = {0.42; 0.23; 0.18; 0.08; 0.07; 0.02; 0.01; 0.01} (3.27)

for distances {2.3; 7.3; 15; 25; 35; 45; 55; 100} km and

PF = {0.77; 0.04; 0.04; 0.03; 0.03; 0.01; 0.01; 0.02; 0.05} (3.28)

for distances {1.3; 4.5; 9.5; 16.5; 25.5; 36.5; 49.5; 64.4; 81.5} km.
Comparing results from tables 3.1 and 3.2 we see that, in all cases, the front speed is

faster when using the full kernel. The jump distance d used in the previous section will
always be lower than the longer possible distance of the kernel, and when individuals
have a certain probability of moving further, the front speed increases. Thus, the cor-
rection introduced by using the full kernel will be more important for those populations
with a certain probability of migrating to distances much higher than the value of d
calculated from 〈∆2〉. For example, for populations D and E, the corrections intro-
duced by applying the full kernel are of approximately 30% and 48% respectively for
the cohabitation equation (34% and 59% for the non-cohabitation equation). For both
populations, individuals can move to large distances (110 km and 100 km respectively),
while for the simplified model the dispersion distance d is about 41 km for population
D and about 26 km for population E (see footnote 2).
On the other hand, we can see that the values of front speed for population C in

tables 3.1 and 3.2 are approximately the same. It can be explained mathematically
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because for these populations, the characteristic dispersal distance for the simplified
model, d ≃ 51 km (see footnote 2), is similar to the maximum dispersed distance,
60 km. But it can also be explained qualitatively from the dispersion kernel (3.25), as
for this population over 50% of individuals move to a single, long-range distance. Thus,
this kernel behaves approximately as if the whole population could either not move
or migrate just to a single-distance (as the simplified model studied in the previous
section). This is also the reason why in figure 3.3 we see that there is a good agreement
between the results from the non-cohabitation equation (3.2) and the HRD equation
(3.1) for population C (figure 3.2 shows that equation (3.1) is a good approximation to
the non-cohabitation model in this case10), while for A and B the difference is up to
20%.
Here we have shown that, if a population has a strong long-range dispersal compo-

nent, then (i) its predicted speeds are faster, and (ii) the HRD equation (3.1) is a good
approximation to the exact non-cohabitation model (3.2).
Referring to the speed values obtained, with the exception of populations C and

D for equation (3.4) and large values of the growth rate a, they are all within the
range of observed speed for the Neolithic transition (0.6 — 1.3 km yr−1 [9]). But even
the speeds for populations C and D are marginally consistent with the observed range.
Therefore, we conclude that the application of realistic human kernels to reaction-
dispersion equations yields front speeds which are consistent with the values obtained
from archaeological data. It is important to note that the whole kernel is necessary,
because the single-distance model yielded speeds slower than the observed range for
populations E and F (table 3.1).

3.5.3 Several-distances continuous model

Now we apply Laplace and Gauss probability distributions. For the sake of brevity,
we consider the populations A, B and C from previous subsections. We calculate the
value of the parameter α for both distributions from the mobility 〈∆2〉 of each popu-
lation (α2 = 〈∆2〉 for the 2D Gauss distribution, and α2 = 〈∆2〉 /6 for the 2D Laplace
distribution).
Comparing the results obtained from the Gauss and Laplace distributions, in figure

3.4 we can see that the speed for Laplace distribution is always faster. This is due to
the fact that, for the same value of 〈∆2〉, the Laplace distribution has higher values of
probability at large distances than the Gauss distribution.
In figure 3.4 we also see that, whereas the difference between speeds from the Laplace

distribution and kernel (3.25) for populations A and B is lower than a 12%, for pop-
ulation C results from Laplace distribution are about a 30% faster. For the Gauss
distribution, we see that the difference from the speeds obtained with the Dirac deltas
kernel (3.25) is also larger for population C. This is due to the fact that for population
C the distribution maximum is displaced to larger distances than for the other two

10HRD equation (3.1) was deduced [7] from an analogous equation to equation (3.2), and thus it is
an approximation to it.
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Figura 3.4: Front speeds from continuous probability distributions. Speeds obtained
from the Gauss and Laplace cohabitation equations (3.20) and (3.23), using the mobility
values for each population obtained from kernels (3.25) (see table 3.1). Dirac deltas
correspond to the speeds from CSRW and cohabitation equation in figure 3.3. The
hatched area corresponds to the observed ranges for a and c.

populations and thus, there is a larger probability tail for population C.11

Here we have shown that, in the absence of a long-range dispersal component,
discrete and continuous kernels lead to similar speeds (figure 3.4, populations A and
B). However, long-range dispersal can make continuous kernels grossly overestimate the
front speed (figure 3.4, population C).

3.6 Stochastic model

In the previous sections, all the results for the front speed have been obtained from
deterministic models. Even the numerical simulations correspond to the deterministic
equations, and differ from the results of the CSRW (section 3.3.1) due to the discretiza-
tion of space.
However, population dynamics is a stochastic process that could introduce correc-

tions to the deterministic front propagation [51]. In this section we describe a stochastic
model that we apply to the simplified model studied in section 3.5.1. We perform the
numerical simulations repeating the following steps for each time interval (T ):

11For population C, the tail probability for distances beyond the range considered in equation (3.25)
is about a 40% (twice higher than for populations A and B).
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Figura 3.5: Front speeds for the stochastic model. Front speeds for (a) p0 = 0.0 and (b)
p0 = 0.5 are represented for different values of N (maximum number of individuals per
cell), and compared with the deterministic model (solid and dashed lines). (c) shows a
front profile for N = 75 individuals.(a = 0.028 yr−1)

(i) For the dispersion process, we first assign to each individual a random value n in
the interval [0, 1), so if n < p0 the individual stays, and otherwise it migrates. Here, as
in the simplified model (section 3.5.1) individuals can only migrate to the eight nearest
neighbors on a square with equal probability. So each individual who can migrate is
assigned randomly an integer value between 0 and 7 (each corresponding to one of
the eight possible final positions). Finally, the position of each individuals is changed
according to this random value.
(ii) The reaction process is computed as in section 3.3.2, but since here we are

dealing with individuals (instead of population densities) the final value is converted to
an integer (by simply truncating the computed number).
In figure 3.5 we show the stochastic results obtained for different values of the

number of individuals per cell N (and a = 0.028 yr−1). The error bars give the standard
deviation of 16 simulations. In order to compare the results from the stochastic model
with the deterministic simulations, we have used that the value of carrying capacity
for the Neolithic is pmax = 1.28 hab km

−2 following reference [52]. This value of pmax
corresponds to N = 1306 individuals per cell when d = 31.95 km (p0 = 0.0) (see
footnote 3), or to N = 2613 individuals per cell when d = 45.19 km (p0 = 0.5) (see
footnote 3). When the number of individuals per cell reaches the carrying capacity for
the Neolithic the results for front speed from the stochastic model are very close to the
deterministic ones (full horizontal line in figure 3.5); they are about 3% slower then the
deterministic speed when p0 = 0.0 and about 5% slower when p0 = 0.5. Nevertheless,
this difference is not only due to the randomness of the process, but also to the effect
of using a discrete number of individuals (instead of a continuous population density).
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As shown in the figure, when performing simulations with the deterministic model but
with a discrete number of individuals (dashed horizontal lines) the front speed obtained
is slower than when using population densities; and we see that for large N the results
from the stochastic model lie between the results from the two deterministic simulations.

3.7 Concluding remarks

In this paper we have developed discrete and continuous models for reaction-dispersion
systems with dispersion kernels. We have applied these models to the Neolithic tran-
sition using dispersion data sets from real human populations. Other authors [40, 53]
have previously studied the Neolithic transition using data from real populations assum-
ing that each individual is either a non-disperser or a disperser, with the same distance
for all dispersers. However, here we have used full kernel expressions and, for the first
time, we have applied them to a cohabitation evolution equation, equation (3.4).
The cohabitation equation, equation (3.4), is more realistic for human populations

since they do not leave their children behind when migrating as it happens with equa-
tion (3.2) (figure 1). Since equation (3.4) implies that more population migrates per
generation time, the front speeds are faster than those from equation (3.2). For real
populations, this difference is very important: up to 38% faster for the populations
studied (table 3.2). However, the front speeds are still consistent with the observed
range for the Neolithic transition (0.6 — 1.3 km yr−1 [9]). In the simplified model ignor-
ing the kernel shape (table 3.1) this is no longer true for some populations (E and F).
Thus, the whole kernel is essential when modeling human dispersals.
We also have provided new explicit equations for the front speed for the Gauss and

Laplace 2D distributions and the cohabitation model (3.4) (section 3.4).
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Capítol 4

Time-delayed reaction-diffusion
fronts [Phys Rev E 2009; 80:

057103 ]

This chapter is an exact transcription of the contents of the following paper (please,
find a copy of the published version in appendix A):

Isern N, Fort J. Time-delayed reaction-diffusion fronts. Phys Rev E 2009; 80: 057103.

Abstract A time-delayed second-order approximation for the front speed in reaction-
dispersion systems was obtained by Fort and Méndez [Phys. Rev. Lett. 82,
867 (1999)]. Here we show that taking proper care of the effect of the time
delay on the reactive process yields a different evolution equation and, therefore,
an alternate equation for the front speed. We apply the new equation to the
Neolithic transition. For this application the new equation yields speeds about
10% slower than the previous one.

PACS numbers 89.65.Ef, 87.23. Cc, 89.20 -a

4.1 Introduction

Reaction-diffusion systems have been applied to many complex biological and physi-
cal systems such as population dispersals [12], viral infections [43], chemical reaction
processes [54], combustion flames [42], etc. In reference [7] a time-delayed model for
the front speed was presented including terms up to second order. However, here we
will show that there was an error in the mathematical derivation, and we will derive
and analyze the behavior of the correct time-delayed equation for the front speed.
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In biological systems, variations in the population number density, p, are due to two
processes: population growth (reproduction minus deaths) and migration (dispersion).
The variation due to population growth can be expressed as a Taylor series,

[p (x, y, t+ T )− p (x, y, t)]g = T
∂p

∂t

∣∣∣∣
g

+
T 2

2

∂2p

∂t2

∣∣∣∣
g

+ · · ·

= TF +
T 2

2

∂F

∂t

∣∣∣∣
g

+ · · · (4.1)

where the subindex g denotes growth, we have introduced the growth function as
F (p) = ∂p

∂t

∣∣
g
, and T is the time delay (one generation in most applications [7]). As

usual, we assume that F (p) > 0.
On the other hand, for the migration (dispersion) we will define the dispersion kernel

φ (∆x,∆y) which gives the probability per unit area that an individual initially placed
at (x+∆x, y +∆y) has moved to (x, y) after a time interval T . Thus, the variation in
population number density due to migration can be expressed as [7]

[p (x, y, t+ T )− p (x, y, t)]m =

∫∫
p (x+∆x, y +∆y, t)φ (∆x,∆y) d∆xd∆y

− p (x, y, t) . (4.2)

In a system involving the two processes (population growth and migration), the
total variation in population density during a time interval T can be expressed as the
sum of both contributions,

p (x, y, t+ T )− p (x, y, t) =

∫∫
p (x+∆x, y +∆y, t)φ (∆x,∆y) d∆xd∆y − p (x, y, t)

+ TF +
T 2

2

∂F

∂t

∣∣∣∣
g

+ · · · (4.3)

We assume that the kernel is isotropic, i.e., φ (∆x,∆y)=φ (∆), with ∆=
√
∆2
x +∆

2
y,

and we Taylor-expand equation (4.3) up to second order in time and space, thus, ob-
taining the following reaction-diffusion equation:

∂p

∂t
+
T

2

∂2p

∂t2
= D

(
∂2p

∂x2
+
∂2p

∂y2

)
+ F +

T

2

∂F

∂t

∣∣∣∣
g

, (4.4)

where D is the diffusion coefficient D =
〈∆2〉
4T

=
〈∆2x〉
2T

=
〈∆2y〉
2T
.

Since F (p) depends only on the population density p, then the last term in equation
(4.4) can be written as

T

2

∂F

∂t

∣∣∣∣
g

=
T

2

dF

dp

∂p

∂t

∣∣∣∣
g

=
T

2
F ′F. (4.5)
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In addition, as the density at the leading edge of the front is low, p ≈ 0, we have
that F (p) ≈ pF ′ (0) and F ′ (p) ≈ F ′ (0). Therefore, for p ≈ 0 equation (4.4) may be
rewritten as

∂p

∂t
+
T

2

∂2p

∂t2
= D

(
∂2p

∂x2
+
∂2p

∂y2

)
+ pF ′ (0) +

T

2
pF ′(0)F (0), ∗ (4.6)

We now assume that for t → ∞ and r → ∞ the front can be considered locally
planar. Thus, choosing the x axis parallel to the local speed of the front, c ≡ |cx|, we
can look for constant-shape solutions with the form p = p̄ exp [λ (x− ct)]. Applying
this ansatz to equation (4.6) we see that the value of λ can be obtained from

λ =
−c±

√
c2 − 4

(
D − T

2
c2
)
F ′ (0)

[
1 + T

2
F ′ (0)

]

2
(
D − T

2
c2
) . (4.7)

As λ has to be real, we obtain a lower bound for the front speed

c >
2
√
DF ′ (0)

[
1 + T

2
F ′ (0)

]

1 + TF ′ (0)
. (4.8)

However, the result obtained in reference [7] was the so-called HRD speed, namely

cHRD >
2
√
DF ′ (0)

1 + T
2
F ′ (0)

, (4.9)

which is different from equation (4.8).
The reason of this difference is the following. Here we have used equation (4.5),

which allows us to rewrite equation (4.4) as

∂p

∂t
+
T

2

∂2p

∂t2
= D

(
∂2p

∂x2
+
∂2p

∂y2

)
+ F (p) +

T

2

dF

dp
F. (4.10)

In contrast, in reference [7] the following equation was used:

∂p

∂t
+
T

2

∂2p

∂t2
= D

(
∂2p

∂x2
+
∂2p

∂y2

)
+ F (p) +

T

2

dF

dp

∂p

∂t
. (4.11)

We can see that the last term is different. The reason is that in reference [7] the
subindex g was omitted in the last term in equation (4.4). Therefore, in reference [7],
the last term in equation (4.4) was not written as in equation (4.5) but as follows:

T

2

∂F

∂t
=
T

2

dF

dp

∂p

∂t
=
T

2
F ′
∂p

∂t
, (4.12)

∗In the published version of this work (Appendix A) there is a typographical error in this equation;
in the correct version the last term should be (T/2) pF ′ (0)F ′ (0).
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and thus leading to equation (4.11) instead of (4.10). This is why in reference [7],
speed (4.9) was obtained instead of equation (4.8). However, the derivation above
clearly shows that equation (4.8) is the right result. In this Brief Report, we will apply
variational analysis and show that equation (4.8) is not only a lower bound but the
exact speed (section 4.2). We will also analyze the difference between the new equation
(4.8) and the HRD speed (4.9) by applying both equations to the Neolithic transition
(section 4.3). In section 4.4 we present our conclusions.

4.2 Variational analysis. Upper bound

Equation (4.8) is just a lower bound for the speed of front solutions to the new differ-
ential equation (4.4) [or equation (4.10)]. In order to find an upper bound, we apply
variational analysis [31] to equation (4.10). As mentioned above, we assume that the
fronts have a profile p (z) = p (x− ct) travelling with a speed c > 0, so all of the deriv-
atives in equation (4.10) can be expressed in terms of z. We also assume that the pop-
ulation number density p > 0 cannot attain values above some value pmax, the so-called
saturation density. Then, defining n (p) = −pz and assuming that n (0) = n (pmax) = 0
and n > 0 in (0, pmax), the differential equation (4.10) can be rewritten as

(
D − c2

T

2

)
n
∂n

∂p
− cn+ F

(
1 +

T

2
F ′
)
= 0. (4.13)

Now, introducing an arbitrary function g (p) such that g (p) > 0 and h (p) =
−g′ (p) > 0, we multiply equation (4.13) by g(p)/n(p). Integrating the resulting ex-
pression by parts, we obtain

c

∫ pmax

0

gdp =

∫ pmax

0

[(
D − T

2
c2
)
h n+

g

n
F

(
1 +

T

2
F ′
)]
dp, (4.14)

Now, we can eliminate n (p) from equation (4.14) applying that for any positive numbers
r and s, it follows from (r − s)2 ≥ 0 that (r + s) ≥ 2

√
rs. Let us assume that the

condition

1 +
T

2
F ′ (p) > 0 (4.15)

holds for all p ∈ (0, pmax). As g (p), h (p), n (p), F (p) and
(
D − T

2
c2
)
are positive1,

we may choose r ≡
(
D − T

2
c2
)
hn and s ≡ g

n
F
(
1 + T

2
F ′
)
into (r + s) ≥ 2√rs and use

equation (4.14) to get the following restriction,

c√(
D − T

2
c2
) >

2
∫ pmax
0

√
hgF

(
1 + T

2
F ′
)
dp

∫ pmax
0

gdp
. (4.16)

1The condition
(
D − T c2/2

)
> 0 follows from λ < 0 and equation (4.7).
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Following the method in reference [30], section 3.3, it is easy to show that there is
a function g for which the equality holds. Then

c√(
D − T

2
c2
) = maxg



2
∫ pmax
0

√
hgF

(
1 + T

2
F ′
)
dp

∫ pmax
0

gdp


 . (4.17)

In order to obtain the upper bound for the front speed we will use Jensen’s inequality
[55]2 ∫ pmax

0
µ (p)

√
α (p)dp∫ pmax

0
µ (p) dp

6

√∫ pmax
0

µ (p)α (p) dp∫ pmax
0

µ (p) dp
, (4.18)

where µ(p)>0 and α(p)>0.We define µ(p)≡g(p) and α(p)≡
{
h(p)F(p)

[
1+ T

2
F ′(p)

]}
/g(p).

Using these functions into Jensen’s inequality (4.18), and applying the result to equation
(4.17), we obtain that

c√(
D − T

2
c2
) 6 2maxg

√∫ pmax
0

hF
(
1 + T

2
F ′
)
dp∫ pmax

0
gdp

. (4.19)

We want an upper bound independent of g (p), so we will first find an expression in
which h (p) = −g′ (p) no longer appears by integrating by parts the numerator in the
right-hand-side of equation (4.19),

∫ pmax

0

hF

(
1 +

T

2
F ′
)
dp =

∫ pmax

0

g

[
F ′
(
1 +

T

2
F ′
)
+
T

2
FF ′′

]
dp, (4.20)

where we have assumed that F (0) = F (pmax) = 0 (this holds for example for the
logistic growth, considered in section 4.3).
Moreover, from equation (4.20) we obviously have
∫ pmax

0

hF

(
1 +

T

2
F ′
)
dp 6 sup

p∈(0,pmax)

[
F ′
(
1 +

T

2
F ′
)
+
T

2
FF ′′

] ∫ pmax

0

gdp, (4.21)

so now the upper bound in (4.19) is independent of g (p),

c√(
D − T

2
c2
) 6 2

√
sup

p∈(0,pmax)

[
F ′
(
1 +

T

2
F ′
)
+
T

2
FF ′′

]
. (4.22)

Let us assume that the population growth function F (p) is a continuous function
with F ′′ (p) 6 0 and F (0) = 0 (again these assumptions are true for the logistic growth,
considered in section 4.3). Then F ′ (p) is a decreasing function for increasing values of

2See p. 1133 formula HL151 in this reference. The inequality is given for convex functions φ. If φ
is a convex function, then −φ is concave and the inequality for −φ holds with the sign reversed. Take
the function −φ to be the square root.
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p. Its maximum value is reached for p = 0. Thus, using the value p = 0 in equation
(4.22) we obtain that the upper bound for the front speed is

c 6
2
√
DF ′ (0)

[
1 + T

2
F ′ (0)

]

1 + TF ′ (0)
. (4.23)

As the lower bound given by equation (4.8) is the same as the upper bound (4.23),
we can predict the speed of front solutions to equation (4.10) without any uncertainty,

c =
2
√
DF ′ (0)

[
1 + T

2
F ′ (0)

]

1 + TF ′ (0)
. (4.24)

In contrast, for the HRD equation (4.11), the exact speed was previously shown to
be [7]

cHRD =
2
√
DF ′ (0)

1 + T
2
F ′ (0)

. (4.25)

4.3 Application to the Neolithic transition

In order to compare the predictions from equations (4.24) and (4.25), we will apply
them to the spread of the Neolithic transition in Europe, because this is the case to
which equation (4.25) was initially applied [7]. The Neolithic transition is the change
from hunter-gatherer to farming economics. In Europe, it took place as an invasion of
agricultural populations from the Southeast, which spread across Europe from 13000
to 5000 years before present [9].
In order to make quantitative predictions we will use the logistic growth function,

which has been widely applied to human populations [7, 21]:

F (p) = ap

(
1− p

pmax

)
, (4.26)

where a is called the initial growth rate and pmax is the saturation density.
Using the logistic function (4.26), equation (4.24) can be rewritten as

c =
2
√
aD
(
1 + aT

2

)

1 + aT
, (4.27)

whereas the HRD speed (4.25), used in reference [7], is

cHRD =
2
√
aD

1 + aT
2

. (4.28)

Both equations for the front speed depend on three parameters: the initial growth

rate, a, the diffusion coefficient, D =
〈∆2〉
4T
, and the generation time, T . We will use the
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Figura 4.1: Comparative plot between the front speed for equations (4.27) (solid line)
and (4.28) (dashed line). The symbols correspond to the speed obtained from numeri-
cally integrating equation (4.10), with F (p) given by equation (4.26). All results have
been calculated for a characteristic mobility value 〈∆2〉 = 1531 km2.

ranges a = 0.028± 0.005 yr−1 [56], 〈∆2〉 = 900− 2200 km2 [9]3, and the characteristic
value T = 32 yr [11]4, which have been measured for preindustrial farming populations.
For these ranges, the condition (4.15) is fulfilled, so equation (4.27) gives the speed of
fronts.
Figure 4.1 shows the front speeds obtained from equations (4.27) and (4.28), for a

characteristic mobility value 〈∆2〉 = 1531 km2. We can see that, for the range of values
for the initial growth rate a appropriate to this application, the new equation (4.27)
yields slower speeds than equation (4.28) (about 8% slower). However, this is not the
case for all values of a, as can be seen from the inset graph in figure 4.1.
In order to check the validity of equation (4.27), we have also numerically integrated

equation (4.10), with F (p) given by equation (4.26), and initially p = pmax in a finite
region and p = 0 elsewhere. The speed obtained from the numerical integrations corre-
sponds to the circles in figure 4.1. They agree with the new equation (4.27) within less
than 0.8%.
The range of speeds for the Neolithic transition front obtained from archaeological

data is 0.6 — 1.3 km/yr [9]. We can see in figure 4.1 that the results from equation (4.27)
lie within this range.
To what extent does our new result depend on the uncertainty in the value of the

mobility? In Fig 4.2, we consider the front speed values 0.6, 0.95 and 1.3 km/yr,

3For the estimation of mobility data see Supporting Text 3 for this reference.
4For the estimation of the generation time T = 32 yr, see note [24] in this reference.
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Figura 4.2: Predictions for the speed of the wave of advance in the Neolithic transition.
The labeled curves correspond to the maximum, minimum and mean speeds from Ne-
olithic data (0.6 — 1.3 km/yr). The hatched regions correspond to realistic ranges of the
initial growth rate and mobility for the Neolithic transition.

corresponding to the range obtained from archaeological data, for equations (4.27) (full
lines) and (4.28) (dashed lines).5 It is seen that the predictions of the new model (full
lines) are consistent with the observed front speed for most of the values of the mobility
appropriate to this system.

4.4 Concluding remarks

In this Brief Report we have improved the derivation of the HRD speed in reference [7].
We have obtained the correct evolution equation (4.10) and the new equation (4.24) for
the front speed.
We have applied the new equation (4.24) to the Neolithic transition. Using realistic

parameters the front speeds are consistent with the observed range for the Neolithic
transition in Europe (0.6 — 1.3 km/yr [9]). Comparing these results with those from the
HRD speed, we see that for the Neolithic transition our new equation leads to slower
speeds.
In this case, the correction obtained is only about a 10%, but it could be higher in

5The dashed lines in figure 4.2 are not exactly the same as the lines in figure 3 in reference [7]
because some parameter values have been estimated in a more precise way more recently, especially
the generation time T [11].
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other systems where generalizations of equation (4.24) can be useful. For example, our
framework could be applied in order to improve the predicted speeds of viral infection
fronts [43].
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Capítol 5

Anisotropic dispersion, space
competition, and the slowdown of
the Neolithic transition [New J

Phys 2010; 12: 123002 ]

This chapter is an exact transcription of the contents of the following paper (please,
find a copy of the published version in appendix A):

Isern N, Fort J. Anisotropic dispersion, space competition and the slowdown of the
Neolithic transition. New J Phys 2010; 12: 123002.

Abstract The front speed of the Neolithic (farmer) spread in Europe decreased as
it reached Northern latitudes, where the Mesolithic (hunter-gatherer) population
density was higher. Here, we describe a reaction-diffusion model with (i) an
anisotropic dispersion kernel depending on the Mesolithic population density gra-
dient and (ii) a modified population growth equation. Both effects are related to
the space available for the Neolithic population. The model is able to explain the
slowdown of the Neolithic front as observed from archaeological data.

5.1 Introduction

The spread of the Neolithic, one of the most important socioeconomic changes in human
history, has been widely studied using physical models in recent years (for a review, see
[57]). The Neolithic expansion has been tackled from different approaches such as age-
structured population models [39], population spread along rivers [12] and settlement
formation [15].
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Figura 5.1: Chronology of the Neolithic wave of advance in Europe. Map obtained by
interpolation of 765 early Neolithic data published by Pinhasi [9]. The arrow corre-
sponds to the y-direction in our model.

Here we will focus on the fact that the spread of the Neolithic in Europe was not
homogeneous from the macroscopic point of view. Archaeological observations show
that, as the front propagated from the Near East across Europe, its speed slowed down
as higher latitudes were reached [58].
This decrease of the front speed can be intuitively seen from figure 5.1, which shows

the arrival time of the Neolithic across Europe. The arrow on the map represents the
average direction along which the expansion from the Near East to the Baltic sea took
place (within the rectangle). In figure 5.1 it can be seen that the distance advanced
during 500 years is lower when reaching northern latitudes (a quantitative analysis will
be presented in section 5.5).
Although it would seem that the more intuitive reason for the decrease in speed

is the time needed by crops to adapt to temperate climates, evidence exists that this
effect was, in fact, minimal [59]. Indeed, when establishing their settlements at colder
regions, Neolithic populations just cultivated the more adaptable crops and dropped
the rest.
From archaeological studies, one of the most accepted reasons for the presence of

a gradient in the front speed when spreading to the North of Europe is the presence
of Mesolithic hunter-gatherer populations [60], which had higher densities at Northern
latitudes. Thus, motivated by the observational data, in this paper we extend a ho-
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mogeneous model [7] to study how the presence of indigenous Mesolithic populations
affects the speed of the Neolithic invasion front.
We describe a reaction-diffusion model for Neolithic population density with a

direction-dependent dispersion kernel determined by the space dependence of the Mesolith-
ic population density. We also introduce in this model the effect of the presence of
Mesolithic populations on the Neolithic population growth process. We compare the
results from the model with archaeological data [9].

5.2 Anisotropic dispersion kernel

In case we assumed that the spread of the Neolithic front took place in an homogeneous
space, it would be reasonable to consider that the probability φ to jump would be the
same in all directions; thus, mathematically we would have [7, 56]

φ (x, y; θ,∆) =
1

2π
ψ (∆) , (5.1)

that is, the jump probability could be expressed as a function ψ that depends only on
the jump distance, ∆, and is independent on the jump direction θ or the position in
space (x, y). We have assumed that

∫ 1
0
∆ψ (∆) d∆ = 1.

However, Neolithic individuals do no move in an homogeneous space, since the
density of Mesolithic individuals they encounter depends on the position and direction
they move. Then, for a given position (x, y), the Neolithic individuals will preferably
move in the direction along which they encounter a lower Mesolithic population density,
i.e., along the direction where more free space is available.
Thus, we can assume that, in this situation, the jump distance probability dis-

tribution (5.1) will be modulated by the available space, s, at the final jump point
(x+∆x, y +∆y), in each direction θ = tan−1 (∆y/∆x) and for every jump distance
∆ =

√
∆2
x +∆

2
x. Thus, the dispersion kernel is now of the form

φ (x, y; θ,∆) = α s (x+∆x, y +∆y) ψ (∆) , (5.2)

where α is a normalization constant.
We now need a mathematical expression for the available space s (x+∆x, y +∆y).

If Mmax is the carrying capacity for Mesolithic populations, and M (x, y) the actual
density of Mesolithic individuals at the position (x, y), then the fraction of occupied
space at this point can be expressed as

m (x, y) =
M (x, y)

Mmax

. (5.3)

Thus, the fraction of space available for Neolithic settlements is

s (x+∆x, y +∆y) = 1−m (x+∆x, y +∆y) (5.4)

and the space-dependent jump distance probability (5.2) can be written as

φ (x, y; θ,∆) = α [1−m (x+∆x, y +∆y)]ψ (∆) . (5.5)
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For simplicity, we assume that the variation in Mesolithic population density takes
place mainly in one direction, y, in figure 5.1, whereas it remains approximately constant
along the x-direction, i.e.

φ (x, y; θ,∆) = α [1−m (y +∆y)]ψ (∆) . (5.6)

Now, Taylor-expanding the term within square brackets in equation (5.6), we obtain
that the space-dependent jump distance probability is approximately

φ (x, y; θ,∆) = α

[
1−m (y)− ∂m

∂y
∆sin θ

]
ψ (∆) . (5.7)

Normalizing equation (5.7), we obtain that the normalization constant α is,

α =
1

2π

1

1−m (y)
, (5.8)

and the jump distance probability becomes

φ (x, y; θ,∆) =
1

2π

[
1− ∂m/∂y

1−m (y)
∆ sin θ

]
ψ (∆) . (5.9)

We can see from equation (5.9) that if the Mesolithic (indigenous) population density
M increases along direction y, then the probability of Neolithic invaders to jump forward
(θ = π/2) is minimum and the probability to jump backwards (θ = 3π/2) is maximum.

5.3 Population growth

In population dynamics, a commonly used expression to describe the first-order vari-
ation in population density due to population growth (reproduction minus deaths), is
the logistic growth equation [7, 21, 61],

F (N) =
∂N

∂t

∣∣∣∣
g

= aN

(
1− N

Nmax

)
(5.10)

where a is the initial growth rate, Nmax the carrying capacity and N the density of the
Neolithic population. The subindex g stands for population growth, i.e. for variations
in population density N due to births and deaths (but not to dispersal).
The logistic equation (5.10) describes an exponential growth for low values of pop-

ulation density, whereas it is self-limiting for large densities, saturating at Nmax. Note
that the limiting term (within brackets) in equation (5.10) is similar to the expression
(5.4) for the available space that we have used in the previous section. Therefore, one
can say that population growth, according to equation (5.10), is limited by the fraction
of available space [61].
Now, equation (5.10) corresponds to a single population reproducing without ex-

ternal competition. But when we have a second population using the same space and
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resources, the presence of this additional population must also contribute to limiting
the growth process. Thus, we can modify equation (5.10) so that the growth function of
the Neolithic population, N , also includes the effect of the fraction of space occupied by
Mesolithic populations, M [61]. A population density M occupies a fraction M/Mmax

of the space available, in addition to that occupied by N . Therefore, N within the
parentheses in equation (5.10) should be replaced by (N + (M/Mmax)Nmax). Then,

F (N) = aN

(
1− N

Nmax
− M

Mmax

)
. (5.11)

Growth functions similar to (5.11) have been applied to competing microorganisms [61].

5.4 Evolution equation

We can describe the variation in the Neolithic population densityN , during a generation
time T , as the sum of the variation due to the dispersion process and due to population
growth (see [7] for details),

N (x, y, t+ T )−N (x, y, t)

=

∫ ∫
N (x−∆x, y −∆y, t)φ (x, y; θ,∆)d∆xd∆y −N (x, y, t)

+ [N (x, y, t+ T )−N (x, y, t)]g , (5.12)

where, as in equation (5.10), the subindex g stands for population growth (as opposed
to dispersal, which corresponds to the first two terms on the right-hand side).
Now, if we Taylor-expand equation (5.12) up to first order in time and to second

order in space, we find that

∂N

∂t
= −Ux

∂N

∂x
− Uy

∂N

∂y
+ Uxy

∂2N

∂x∂y
+Dx

∂2N

∂x2
+Dy

∂2N

∂y2
+ F (N) . (5.13)

We could also have Taylor-expanded equation (5.12) up to second order in time [7],
finding in this case slightly lower speeds; however, the conclusions we find here would
not change.
The direction-dependent diffusion coefficients Dx and Dy, for our kernel (5.9), are

Dx =
〈∆2

x〉
2T

=
〈∆2〉
4T

≡ D (5.14)

Dy =

〈
∆2
y

〉

2T
=
〈∆2〉
4T

≡ D (5.15)

where T is the generation time, and the mean value of a variable, for example 〈∆2
x〉, is

defined as 〈
∆2
x

〉
=

∫ ∞

−∞

∫ ∞

−∞

∆2
xφ (∆x,∆y) d∆xd∆y. (5.16)
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The advection terms Ux, Uy and Uxy, using the kernel (5.9), are

Ux =
〈∆x〉
T

= 0 (5.17)

Uy =
〈∆y〉
T

= −2D ∂m/∂y

1−m (y)
(5.18)

Uxy =
〈∆x∆y〉

T
= 0 (5.19)

As could be expected from the fact that the jump probability distribution (5.9) depends
only on ∆y = ∆sin θ but not on ∆x, we have obtained advection only in the y-direction,
equation (5.18).

5.5 Front speed

As usual, we apply that for t → ∞ the front can be considered locally planar; thus
for y → ∞ we can consider the variation in the x-direction negligible [41], and the
evolution equation (5.13) for y →∞ becomes

∂N

∂t
= 2D

∂m/∂y

1−m (y)

∂N

∂y
+D

∂2N

∂y2
+ F (N) , (5.20)

where we will use equation (5.11) for the growth function F (N).
As usual [41], we look for constant-shaped solutions to equation (5.20) with the

form N = N0 exp [−λ (y − ct)] for N ≃ 0. As the Neolithic population density N at
the leading edge of the front is low, F (N) in equation (5.11) can be linearized, and we
obtain from equation (5.20),

λ =
(c− Uy)±

√
(c− Uy)

2 − 4aD (1−m)

2D
. (5.21)

In order for λ to be real, the term within the squared-root must be non-negative, so
the front speed c is

c = 2
√
aD
√
1−m (y)− 2D ∂m/∂y

1−m (y)
. (5.22)

Equation (5.22) can be also obtained, without need of equation (5.21), by noting that
equation (5.20) is simply Fisher’s equation with (i) a modified growth term (5.11),
which after linearization leads to a modified initial growth rate ã = a (1−m (y)) , and
(ii) an advection velocity v = 2D ∂m/∂y

1−m(y)
. Thus, the speed of front solutions to equation

(5.20) must de Fisher’s, namely 2
√
ãD, minus the advection velocity, in agreement with

equation (5.22). Moreover, the front speed obtained from the linear analysis described
above is a lower bound to the front speed c. However, it is easy to apply variational
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Figura 5.2: Test functions used for the increase of the reduced Mesolithic population
density (m = M/Mmax) along the y-direction. A1 =0.999/1300, B1 = 0; A2 = −0.1 =
−B2 = A3 = B3, τ2 = −ln(10.99)/1300= −τ3; A4 = 0.99, B4 = 42, τ4 = 1/0.007.∗

analysis [32] and derive an upper bound with the same result, so equation (5.22) is the
exact front speed for equation (5.20).

From equation (5.22), we see that if the Mesolithic population density increases
with y, then the front speed decreases due to two effects: (i) the higher the gradient of
the reduced Mesolithic density m, the higher the correction on the front speed; (ii) the
speed also changes if there is less available space for the Neolithic population, i.e. for
lower values of s = (1−m (y)) (if s = 1, this second effect disappears).

To see the actual behavior of the front speed, equation (5.22), we need an expres-
sion for the variation of the Mesolithic population density M with y. However, the
precise function M(y) is unknown because published data on Mesolithic settlements
are scarce and restricted to very specific local areas, and also because the estimation of
population densities from archaeological data relies on assumptions which are difficult
to test and cause important methodological problems [62]. However, as explained in the
introduction, we do know that the Mesolithic density increased at northern latitudes
[60]. Thus, we apply equation (5.22) to four different test functions for the reduced

∗In the published version of this work (Appendix A) some errors appeared in the caption to this
figure. The right values are A3 = B3 = 1.1, τ2 = 1300/ ln (10.99) and τ3 = 1300/ ln (11/1.01).
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Figura 5.3: Curves: relative Neolithic front speed predicted by a model with the dis-
persion and growth processes dependent on the presence of Mesolithic populations,
equation (5.25). Symbols: observed front speeds calculated from archaeological data
[9].

Mesolithic density m(y) =M(y)/Mmax (see figure 5.2),

m1 = A1y +B1,

m2 = A2 +B2 exp (y/τ2) ,

m3 = A3 −B3 exp (−y/τ3) , (5.23)

m4 =
A4

1 +B4 exp(−y/τ4)
.

To estimate the anthropological parameters a and D appearing in equation (5.22), we
apply that the initial growth rate for preindustrial populations has a mean value of
a = 0.028 year−1 [56], the mean-squared jump distance is 〈∆2〉 = 1531 km2 [7] and the
mean generation time is T = 32 years [11]1.
As we expected from equation (5.22), we see in figure 5.3 that each of the four

test functions leads to a decrease in the front speed along the y-direction. To better
compare the results with archaeological data, in figure 5.3 we have plotted c/cmax, where
the maximum speed from equation (5.22) is given by Fisher’s value [21],

cmax = 2
√
aD. (5.24)

1For the estimation of the generation time T = 32 years, see note [24] in this reference.
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In fact, this should be corrected due to a time-delay effect [7]. This would further com-
plicate our equations, so we will not include this effect because, rather than comparing
to the absolute value of the maximum front speed (which we already analyzed in [7]),
here we are interested in focusing our attention on the slowdown effect. This is simpler
by considering the relative speed from equation (5.22),

c

cmax
=
√
1−m (y)−

√
D

a

∂m/∂y

1−m (y)
. (5.25)

In figure 5.3 we compare the results obtained from equation (5.25) (curves) with Ne-
olithic front speed data (symbols). The latter was obtained by computing the areas
within isochrones separated 250 years inside the rectangle in figure 5.1 (such isochrones
are shown in figure 5.1 every 500 years for clarity).2

Comparing the results from equation (5.25) to those from archaeological data in
figure 5.3 we see that, even though none of the four test functions reproduce exactly
the behavior of the archaeological data (which is not surprising for such a complex
phenomenon), they do give a good approximation to the general behavior (specially
m4). Thus, a simple physical model can explain qualitatively the decrease in the front
speed during the Neolithic expansion range in Europe. Therefore, physical models are
useful no only to explain the average Neolithic front speed [7], but also its gradual
slowdown in space.
The reaction-diffusion model presented in this work could be applied to many exam-

ples of invasion fronts in which the indigenous population and the invasive one compete
for space in a single biological niche, both in natural habitats [63, 64] and in microbio-
logical essays [61, 65].
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Capítol 6

Cohabitation effect on the slowdown
of the Neolithic expansion
[Europhys Lett, submitted]

This chapter is an exact transcription of the contents of the following manuscript sum-
mited for publication at EPL: Europhysics Letters and that is being revised at the
moment of writing this Ph. D. thesis:

Isern N, Fort J. Cohabitation effect on the slowdown of the Neolithic expansion.
Europhys Lett Submitted.

Abstract We introduce the effect of cohabitation between generations to a previous
model on the slowdown of the Neolithic in Europe. This effect consists on the fact
that human beings do not leave their children alone when they migrate, but on
the contrary they cohabit until their children reach adulthood. The new equation
leads to a substantial correction, up to 35%, relative to previous results. The new
model is able to explain not only the relative speed but also the absolute speed
of the Neolithic front.

PACS numbers 87.23.Cc, 89.20.-a, 89.65.Ef

6.1 Introduction

Reaction-diffusion models have been applied to model many biological and cross-discipli-
nary complex systems such as the Neolithic transition, viral infections or tumor growth
(for recent reviews see [41, 57]).
The change from hunter-gathering economics to farming, known as Neolithic tran-

sition, has been analyzed in several studies using physical and mathematical models
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[7, 15, 16, 66]. A recent paper [66] presented a model to explain the slowdown of the
Neolithic transition in Europe as higher latitudes were reached. It is known that the
density of Mesolithic (i.e., hunter-gatherer) populations was higher at northern regions,
and the model in reference [66] includes the effect of encountering these pre-Neolithic
populations both in the dispersion and the reaction (or population growth) processes.
A simple and practical way of describing the evolution of the Neolithic population

density N (x, y, t) is by assuming that its variation after a generation time T is the sum
of the variations due to dispersion and population growth. In such a model, Neolithic
population density at position (x, y) and time t+ T would be

N (x, y, t+ T ) =

∫∫
N (x−∆x, y −∆y, t)φ (x, y; θ,∆)d∆xd∆y+R [N (x, y, t)] , (6.1)

where the dispersion kernel φ (x, y; θ,∆) gives the probability that an individual initially
at (x−∆x, y −∆y) jumps a distance ∆ in the direction θ during a generation time T ,
therefore reaching position (x, y) , with ∆ =

√
∆2
x +∆

2
y and θ = tan−1 (∆y/∆x). In

a recent model for the slowdown of the Neolithic [66], it was shown that if the jump
distance ∆ is proportional to the free space in the final location, then the dispersion
kernel for the Neolithic population N can be written as

φ (x, y; θ,∆) =
1

2π

[
1− ∂M/∂y

Mmax −M
∆sin θ

]
ψ (∆) , (6.2)

where M(y) is the Mesolithic population density (assumed independent of x for sim-
plicity), Mmax is the Mesolithic saturation density [i.e., the maximum possible value
of M(y)], and ψ (∆) is a function dependent only on the jump distance ∆, normalized
such that

∫∞
0
∆ψ (∆) d∆ = 1.

The last term in equation (6.1) gives the variation in Neolithic population density
due to population growth (reproduction minus deaths) during a generation time T .
This can generally be expressed as a Taylor series

R [N (x, y, t)] = TF +
T 2

2!

∂F

∂t
+
T 3

3!

∂2F

∂t2
+ ..., (6.3)

where F = ∂N
∂t

∣∣
g
is called the growth function and the subindex g stands for the growth

(as opposed to dispersion) process.
The presence of indigenous populations has an effect also on the growth function

F. This can be taken into account by noting that the free space available for Neolithic
individuals is reduced by M/Mmax in addition to the usual logistic saturation term
N/Nmax. It has been shown [66] that F in equation (6.3) is then given by

F = aN

(
1− N

Nmax
− M

Mmax

)
, (6.4)

where N is the Neolithic population density, Nmax the saturation density for the Ne-
olithic population and a is called the initial growth rate for the Neolithic population.
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In reference [66], in order to model the slowdown of the Neolithic front speed, the
kernel (6.2) and the growth function (6.4) were applied to the evolution equation (6.1),
from which the following equation for the front speed was found

c =
√
4Dã− 2D ∂M/∂y

Mmax −M
, (6.5)

where we have defined ã ≡ a (1−M/Mmax) and D ≡ 〈∆2〉 /4T . However, even though
equation (6.1) is often used for population dynamics, it is not realistic to describe human
populations. Indeed, equation (6.1) describes a system in which, after a generation
time T , new individuals (children) will appear at (x, y) while the parent population
has already moved to (x+∆x, y +∆y). However, although this behavior may be true
for other species (like fish), human populations migrate with their children (because
the latter cannot survive on their own until adulthood). Thus, it has been stressed
[13, 41, 56] that an evolution equation modeling this cohabitation between parents and
children should better represent human population dynamics. For this reason, in fact
population growth should be applied to the dispersed population rather than to the
initial one, i.e., the new population (children) appear where parents have moved. Then
equation (6.1) is replaced by [13, 41, 56]

N (x, y, t+ T ) =

∫∫
N (x−∆x, y −∆y, t)φ (x, y; θ,∆)d∆xd∆y

+R

[∫∫
N (x−∆x, y −∆y, t)φ (x, y; θ,∆)d∆xd∆y

]
. (6.6)

Alternatively, instead of equation (6.6) one could also write down a cohabitation model
where the reaction takes place initially1, but they would both lead to the same front
speed [13]. Equation (6.6) has been applied before [13, 56] but never using the non-
isotropic kernel (6.2) and modified growth function (6.4).
In this paper we will find the front speed for equation (6.6) using the kernel (6.2)

and growth function (6.4). We will apply the results to the slowdown of the Neolithic
expansion in Europe and compare them with those from equation (6.5) as well as with
archaeological data.

6.2 Cohabitation model

In order to derive a reaction-diffusion equation from the cohabitation equation (6.6) with
the kernel (6.2) and the growth function (6.4), we first Taylor-expand this equation up
to first order in time. This yields

N (x, y, t) + T
∂N

∂t
=

∫∫
N (x−∆x, y −∆y, t)φ (x, y; θ,∆)d∆xd∆y

+ T F

[∫∫
N (x−∆x, y −∆y, t)φ (x, y; θ,∆)d∆xd∆y

]
. (6.7)

1Then the last term in equation (6.6) would be
∫∫
R [N (x−∆x, y −∆y, t)]φ (x, y; θ,∆)d∆xd∆y.
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Now, since our aim is to find an expression for the front speed, we can apply that
at the leading edge of the front the Neolithic population density is N ≪ Nmax. Thus,
at the front we can linearize the growth equation F , equation (6.4), as follows

F ≈ aN

(
1− M

Mmax

)
when N ≪ Nmax. (6.8)

We now Taylor-expand equation (6.7) up to second order in space using the disper-
sion kernel (6.2) and the linearized approximation for the growth function (6.8), and
we find the following differential equation (which is valid at the leading edge of the
expanding front)

∂N

∂t
= ãN + 2D (1 + T ã)

∂M/∂y

Mmax −M

∂N

∂y
+D (1 + T ã)

(
∂2N

∂x2
+
∂2N

∂y2

)
, (6.9)

where again we have used ã ≡ a (1−M/Mmax) and D ≡ 〈∆2〉 /4T .
To find the front speed we note that for t −→ ∞ the spreading front can be con-

sidered as locally planar, thus for x = 0 and y →∞ the local speed c is parallel to the
y−axis [41]. We therefore look for constant-shaped solutions to equation (6.9) with the
form N = N0 exp [−λ (y − ct)] as (y − ct)→∞, with c > 0 and λ > 0. Since λ has to
be real, we find that the front speed c satisfies

c >
√
4Dã (1 + T ã)− 2D (1 + T ã)

∂M/∂y

Mmax −M
. (6.10)

Equation (6.10) gives a lower bound for the front speed in our model. However, it
is easy to apply variational analysis [32] to the differential equation (6.9) and derive
an upper bound for the front speed, which is again given by the same expression as in
equation (6.10). Thus, the exact speed for the front speed is2

c =
√
4Dã (1 + T ã)− 2D (1 + T ã)

∂M/∂y

Mmax −M
. (6.11)

6.3 Application to the Neolithic transition

Here we will apply equation (6.11) to the Neolithic transition in Europe and compare
the front speeds predicted by this equation with those from equation (6.5) and also
with archaeological data.
Archaeological data have been used to estimate Neolithic front speeds by analyzing

a rectangular region 1300 km long (comprised between the Balkans and the North Sea)
of an interpolation map of early Neolithic dates3 (see figure 1 in reference [66], which
defines the y direction). Here we will use data obtained from the same map and region

2If there is no Mesolithic population (∂M/∂y = 0, M = 0 and ã = a) equation (6.11) becomes
c =

√
4Da (1 + Ta). If we take into account that R0 = exp (aT ) ≃ 1 + aT (see note [26] in reference

[13]), this agrees with equation (23) in reference [13] up to first order in time, as it should.
3The map was constructed by interpolation of 765 early Neolithic data published by Pinhasi [9].
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Figura 6.1: Predicted speeds for the slowdown of the Neolithic in Europe for a non-
cohabitation model [66] (dashed line), equation (6.5), and a cohabitation model (solid
line), equation (6.11), when using a linear test function for M (y) /Mmax (inset graph).
Symbols correspond to archaeological data for the front speeds. A1 = 0.999/1300,
B1 = 0.

as in reference [66], but using absolute speeds (in contrast, reference [66] dealt only
with data for the relative speed c/cmax, with cmax = 2

√
aD).

In order to compare the predictions from the models with the archaeological speeds,
we will take into account that the anthropological parameters appearing in the mod-
els have been estimated as a = 0.028 yr−1 [56] for the initial growth rate for farmer
populations, T = 32 yr [11]4 for the generation time and 〈∆2〉 = 1531 km2 [7] for the
mean-squared displacement per generation.
The actual distribution of Mesolithic population in space, M(y), is unknown due

to the methodological difficulties in estimating population densities from archaeological
data [62] and the lack of comprehensive publications on Mesolithic. Therefore, figures
6.1 and 6.2 show the results obtained when using two possible functions for the spatial
dependency of the Mesolithic population density, M(y).
In the results shown in figure 6.1 we have assumed a very simple, lineal dependency

for the Mesolithic population density M on distance y (with M = 0 at y = 0 and
M ≃Mmax for the northern region),

M

Mmax

= A1y +B1. (6.12)

4See note [24] in this reference for estimation of the generation time T = 32 years.
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Figura 6.2: Predicted speeds for the slowdown of the Neolithic in Europe for a non-
cohabitation model [66] (dashed line), equation (6.5), and a cohabitation model (solid
line), equation (6.11), when using a logistic test function forM (y) /Mmax (inset graph).
Symbols correspond to archaeological data for the front speeds. A2 = 0.98, B2 = 150,
τ2 = 1/0.008.

In figure 6.1 we can see that both equations for the front speed, (6.5) and (6.11), predict
that the speed of the Neolithic front decreases with increasing distance y, as expected
because (i) ã decreases as M increases and (ii) the correction due to the non-isotropic
dispersal kernel [second term in equations (6.5) and (6.11)] is higher as M approaches
Mmax. However, although both models lead to a similar behavior at large distances, for
most of the range the front speeds predicted by the cohabitation equation (6.11) are
substantially faster, up to 35%, than those from the non-cohabitation equation (6.5).
Moreover, by comparing the calculated speeds in figure 6.1 with the archaeological data
(symbols), one can see that equation (6.11) clearly leads to better predictions for the
faster speeds observed at southern regions (lower values of y).
In figure 6.2 we show the results obtained when the dependency of the Mesolithic

population density is modeled by a function of the form

M

Mmax

=
A2

1 +B2 exp(−y/τ2)
, (6.13)

where again we have chosen the parameters so M ≃ 0 at y = 0 and M ≃ Mmax

at y = 1300 km. As expected, both equations for the front speed [equation (6.5)
and equation (6.11)] lead to fronts with decreasing speed, and again equation (6.11)
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yields faster speeds. Moreover, in contrast to figure 6.1, in figure 6.2 there is fair
quantitative agreement between equation (6.11) (full line) and the observed trend for
the speed (symbols). We conclude that the new cohabitation model is able to explain
the slowdown of the absolute speed, whereas the non-cohabitation model (dashed line
in figure 6.2) is only able to explain the relative speed c/cmax, with cmax = 2

√
aD (see

figure 3 in reference [66]).

6.4 Concluding remarks

In this paper we have derived a new cohabitation reaction-diffusion equation for a pop-
ulation invading a range where there is a pre-existing, indigenous population which
decreases the free space available for the newcomers, thereby diminishing their repro-
ductive dynamics and opposing their dispersal capability. We have applied the new
model to the slowdown of the Neolithic transition in Europe. The new cohabitation
equation is more reasonable than non-cohabitation models, because it takes into account
the fact that human populations migrate without leaving their children behind.
We have compared the results from the new cohabitation model to those from a pre-

vious non-cohabitation model for the slowdown, and found that the new model leads to
faster speeds, with substantial corrections (up to about 35%) relative to the previous,
non-cohabitation model. Therefore, the cohabitation effect should be taken into ac-
count when analyzing the front dynamics of interacting human populations. Moreover,
we have compared both the cohabitation and the non-cohabitation models with the
absolute speeds obtained from archaeological data (as opposed to the relative speeds,
already analyzed in reference [66]). This has lead us to the interesting conclusion that
the new, cohabitation model (equation (6.11)) can explain the absolute speeds obtained
from archaeological data, whereas the previous, non-cohabitation model (equation (6.5)
and reference [66]) cannot.
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Capítol 7

Results and discussion

This Ph.D. thesis has been prepared as a collection of papers, and as such, chapters 3
to 6 all discuss their own results and conclusions. Thus this chapter aims to give a more
global view discussing some important points studied in this thesis and comparing, when
possible, the results and conclusions from more than one of the papers. The first section
bellow focuses basically on the methods applied to solve the different models described
in this thesis, while the rest of the sections deal with the results and comparison of the
different approximations applied.

7.1 Front speeds from analytical and numerical
methods

The main aim of this thesis is to construct population dynamics models that can be
applied to the Neolithic transition in Europe to predict the observed speed of the range
expansion of this sociocultural change. To find the front speed for reaction-diffusion
models, one can apply both analytical and numerical methods, which will yield, in prin-
ciple, the same results. Indeed, as shown in chapters 3 (figure 3.2) and 4 (figure 4.1), the
differences between the results from numerical simulations and analytical expressions
are minimal. Thus, the discussion here will focus on comparing the advantages and
drawbacks of using analytical and numerical methods.1

Analytical approximations to the speed of spreading fronts for a reaction-diffusion
model constitute a practical tool that allows, for example, the study of the sensitivity
of the front speed to parameters in a simpler and faster way than using simulations.
In addition, analytical expressions provide a general result that can be easily applied
to similar systems (for example, when studying populations with different dispersal
behaviors in chapter 3). On the other hand, a potential drawback of analytical solutions
is the fact they are obtained by making assumptions for the conditions at the front (e.g.,
the validity of the linear approximation for the reactive process); these approximations

1The techniques required to calculate the front speed depend on if one is dealing with integrodif-
ference or differential equations, as explained in chapter 2, but as this is not an important point for
the purpose in this section, it will not be further discussed.
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are corroborated by the consistency between analytical and numerical results, as seen
in chapters 3 and 4.
Numerical simulations, on the other hand, might in principle provide more exact

results as no approximations to the front conditions are necessary. Yet, what is neces-
sary in this case is the discretization of the space domain, which can also modify the
results. For example, in chapter 3, when studying the effect of using dispersion kernels,
the discretization changes the shape of the kernel and modifies the front speed calcu-
lated along the x-direction;2 however this could be partially solved by defining grids
with finer spatial resolution. The main disadvantage of numerical simulations, when
compared with analytical solutions, is the computing time required to obtain results.
Even with a coarse grid as the one used in chapter 3, when simulating the Dirac deltas
kernels, the computing time spent was of around 15 hours per simulation.3 For this
reason, repeating the calculation for multiple values of the parameters is tedious and
usually impractical.
A distinctive feature of numerical simulations is that they make it possible to follow

the evolution of the population in time and space. This is important in chapter 3 when
studying the effect of applying a stochastic dispersion routine. The results show that
for the estimated values of the Neolithic population densities, the stochastic effect is
not strong. What does have an effect on the front speed is the fact of considering
the population as discrete individuals instead of a continuous populations density, i.e.,
without allowing fractional values for the population number. But is this effect really
important enough so that it should be included in future models? According to the
results in section 3.6, when forcing the population per cell to be an integer, the speeds
are about 3 — 5% slower. Probably a more extensive study should be necessary because
in that section the focus was on the stochastic effect, but it is possible to draw some
conclusions from the information available. On the one hand, clearly having half an
individual makes no sense; however, a population density of 0.5 individuals per cell
does simply mean that there is on average only one individual every two cells, and if
the stochastic dispersion routine is well constructed, this should not have in average an
important effect. What must have the strongest effect on the results is that, at each time
step, after the population growth process, the population number was made integer by
just taking the integer part of the number of individuals in each cell. Thus, a cell with
11.01 individuals in it and another with 11.99 individuals are both approximated to
having 11 individuals. Obviously 0.99 individuals is no individual, but the population
growth equation is a statistical function which is continuous in time, thus maybe taking
only the integer part amounts to introducing an error by underestimating the population
growth, and a better approximation might have been, for example, rounding to the
nearest integer. Even though results for this rounding scheme are not presented in the

2Although not shown (nor discussed) in chapter 3, the discretization of the kernel does also modify
the diagonal speed making this result faster than the CSRW results, as opposed to the slower speeds
obtained for the horizontal direction. This is due to using a non-isotropic square-shaped kernel instead
of the isotropic kernel considered for the CSRW results.

3These simulations were performed with a personal computer with an AMD Athlon64 3200+ CPU
and 1024Mb RAM.
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previous chapters, it is reasonable to infer that in this case the correction will be lower
than the range 3 — 5% obtained in section 3.6.
In conclusion, even though the use of numerical simulations does offer more in-

formation on the step-by-step process, as the purpose in this thesis is to study the
speed of propagating fronts, analytical results offer in this case a tool as accurate as
numerical simulations, while being more practical and specially less time consuming.
Consequently, the studies in this thesis have favoured obtaining analytical results in
order to apply them to the Neolithic transition, while numerical simulations have been
considered mainly as a means to verify the analytical results.

7.2 Cohabitation and non-cohabitation models

From a conceptual point of view, the difference between cohabitation and non-cohabi-
tation models lies on the fact that cohabitation models (such as equation (1.6)) take
into account that children cohabit with their parents until adulthood, while in non-
cohabitation models (such as equation (1.7)) parents leave their children behind (figures
3.1 and 7.1 show diagrams comparing both kinds of models). As the models in this
thesis are intended to be applied to the Neolithic transition, cohabitation models do
agree better with the expected behavior for human farming societies so they provide a
more realistic framework.
When translated into a mathematical model this difference lies on how the function

R [p] (giving the increase due to population growth) is applied in the evolution equa-
tion describing the model. With a non-cohabitation model, when describing the final
population density p (x, y, t+ T ) at position (x, y), the population growth is applied to
the individuals who were initially at position (x, y), i.e. R [p (x, y, t)] , so

p (x, y, t+ T ) =

∫∫
p (x−∆x, y −∆y, t)φ (x, y; ∆, θ) d∆xd∆y

+R [p (x, y, t)] (7.1)

with, as usual, φ (x, y; ∆, θ) the probability that the population will move from
(x−∆x, y −∆y) to (x, y), ∆ =

√
∆2
x +∆

2
y and θ = tan−1 (∆y/∆x). Clearly, for any

space point, new individuals (children) will appear at (x−∆x, y −∆y) due to the ini-
tial population at the very same point (last term in (7.1), empty circles in figure 7.1.a),
whereas due to the dispersion (first term in (7.1)), the parent population will migrate
away (full circles in figure 7.1.a). On the other hand, to describe a cohabitation model,
where parents do not leave their children behind, there are different options. In this
thesis the equation applied is

p (x, y, t+ T ) =

∫∫
p (x−∆x, y −∆y, t)φ (x, y; ∆, θ) d∆xd∆y

+R

[∫∫
p (x−∆x, y −∆y, t)φ (x, y; ∆, θ) d∆xd∆y

]
. (7.2)
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Figura 7.1: Diagram comparing non-cohabitation (a) and cohabitation (b) reaction-
diffusion models for a simple kernel with all individuals migrating. Full circles represent
the parent population and empty circles represent children (population growth).4

In this case the increase in population due to net reproduction (last term) is calcu-
lated on the population density after dispersion, that is, the new individuals at position
(x, y) due to reproduction will be the children from the population that has settled at
(x, y) after migration and who will stay there for a generation time (see figure 7.1.b).
Another possible approach is to calculate the population growth on the population be-
fore migration, and then apply the migration term on the whole population (initial plus
children)

p (x, y, t+ T ) =

∫∫
(p (x−∆x, y −∆y, t) +R [p (x−∆x, y −∆y, t)])

× φ (x, y; ∆, θ) d∆xd∆y. (7.3)

Other more general cases could also be defined [41], but even though it may not be
initially obvious, they will yield the same front speed. Indeed, if we assume as usual
that at the leading edge of the front population growth is exponential (see figure 2.1),
R can be expressed as R [p] ≃ p

(
eaT − 1

)
(see equation 2.2), and then it is easy to see

that both equations (7.2) and (7.3) become

p (x, y, t+ T ) = eaT
∫∫

p (x−∆x, y −∆y, t)φ (x, y; ∆, θ) d∆xd∆y. (7.4)

This means that, even though there are different options to mathematically describe
a cohabitation model, they will all lead to the same results when searching for the speed

4More precisely, in figure 7.1 the empty circles correspond to the net population growth (i.e., the
function R [...] in equations (7.1) and (7.2)) and the full circles represent both the individuals at time
t (i.e., p (x−∆x, y −∆y, t)) and the same number of individuals a generation T later (first term on
the right-hand side in equations (7.1) and (7.2)).
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of spreading fronts. Thus the fact that in this thesis cohabitation models have been
described using equation (7.2) rather than other possible cohabitation equations has no
effect on the results.
Note, however, that even though up to now we have assumed that the contribu-

tions p (x−∆x, y −∆y, t) and R [...] to the final population (i.e., p (x, y, t+ T )) can be
described as the parent population and the children respectively, this is not complete-
ly accurate. In fact, both the initial and the final populations [p (x−∆x, y −∆y, t)
and p (x, y, t+ T )] are age-structured, i.e., both are formed by individuals of all ages.5

Thus, this implies that after a generation time T , part of the individuals belonging to
the initial population p (x−∆x, y −∆y, t) will indeed become the parents of the new
children, but also part of the initial population will have died at time t+T . Therefore,
the number of new individuals that appear due to reproduction (children) during a
time generation T is R [...] plus the number of individuals necessary to compensate the
mortality of the initial population p (x−∆x, y −∆y, t). Thus, in equations (7.1) and
(7.2), R [...] are indeed children born during a generation time T (empty circles in figure
7.1), and p (x−∆x, y −∆y, t) is equal in number to the initial population (full circles
on the left in figure 7.1) but correspond to the individuals from that initial population
who are still alive, as well as part of the new children born during T (full circles on the
right in figure 7.1). So, this means that in equation (7.1) not all members of the new
population are left behind, but some of them, namely R [...] (empty circles in figure
7.1.a). In any case, even though a very precise description is somewhat complex, it is
right to say that equation (7.2) describes the cohabitation between parents and children
while equation (7.1) does not.
Now, focusing on the results, in all studies cohabitation equations lead to faster front

speeds than non-cohabitation ones, with corrections up to 38% in the models studied in
this thesis. The reason is that in cohabitation models the whole population is allowed
to disperse while in non-cohabitation models, such as equation (7.1), a fraction of the
final population (R [...] individuals) have their capability to disperse suppressed (figure
7.1.a). Apart from the fact that the number of individuals that cannot migrate can be
interpreted as children left behind, preventing the dispersive behavior is conceptually
similar to introducing a persistency effect, in addition to the dispersion pattern defined
by φ (x, y; ∆, θ). This additional persistency effect can be clearly observed in figure
7.1 which describes an extreme case with the kernel forcing all individuals to leave the
original site. See that for the cohabitation model, figure 7.1.b, after a generation time
the original site is in fact abandoned. On the contrary, at figure 7.1.a after a generation
time T new individuals appear at the original site regardless of how the dispersion
kernel has been defined.
But, even though from a conceptual point of view cohabitation models are more

realistic, do they lead to more consistent results? Actually, in most cases, when com-
paring to the archaeological results, this comparison does not give a clear indication
that cohabitation models perform better, because the range of estimated speeds for the

5Both the non-cohabitation equation (7.1) and the cohabitation equation (7.2) are consistent with
a distribution of ages in the population, as well as with age-dependant natality and mortality. For
age-structured derivations of these equations, see the appendixes in [13].
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Neolithic expansion in Europe at the continental scale (0.6 — 1.3 km/yr) is wide enough
so that results from both frameworks lie within this interval. A clear example are the
results in chapter 3, where the speeds obtained from models using data from six pop-
ulations with different dispersive behaviors are, for the most part, consistent with this
measured range. On the other hand, a case which does yield markedly better results
when using cohabitation models is the regional study of the slowdown of the Neolithic
transition when reaching the North of Europe, as shown in chapter 6.
In conclusion, when constructing a population dynamics model for human societies,

cohabitation models provide a better framework as they give a more realistic description
of human behavior. Besides, cohabitation models lead to faster speeds (up to 38%
faster) than non-cohabitation models, the former are in general consistent with the
observations, and even noticeably more accurate than the latter in some cases. Thus,
cohabitation models should be the preferred framework to model human population
dynamics.

7.3 Explicit dispersion kernels and diffusive
approximation

Integrodifference equations, as opposed to differential equations, allow the inclusion
of explicit dispersal patterns when modeling reaction-dispersion systems, because the
dispersal kernel φ (x, y; ∆, θ) appears in the former but not in the latter type of equations
(compare, e.g., equation (1.6) to (1.2)). This is why in chapter 3, where the focus was on
the effect on the spreading front of dispersion kernels, the studied models are described
using integrodifference equations. Chapter 3 includes the analysis of four kernels giving
different approximations to human dispersion behavior: jumping to a single distance,
jumping to several discrete distances (chosen according to the recorded intervals of
human dispersal data), jumping according to a Gauss distribution and to a Laplace
distribution. The results from these kernels when applied to dispersion data for six
human populations are tabulated in chapter 3, and figure 7.2 also shows a graphical
comparison, when using T = 32 yr and a = 0.033 yr−1.6 This figure also includes results
from the HRD equation (1.4) as well as from the new time-delayed speed derived in
chapter 4 (labeled as time-delayed) and Fisher’s equation (1.2). Note that, even though
chapter 3 studies the results from cohabitation models and that this framework is more
realistic, the results in figure 7.2 correspond to a non-cohabitation model scenario so
that Fisher’s, HRD and time-delayed equations can be included.7

We now turn to the kernels studied to describe realistic dispersion patterns. A very
simple approximation is to assume an isotropic kernel where individuals can either stay
or jump a single distance. When using dispersion data of real populations one obtains

6Using the minimum value of the initial growth rate a = 0.023 yr−1 would lead to similar results,
but in that case Fisher’s model and Laplace distribution nearly overlap and this could lead to incorrect
conclusions.

7As explained in section 1.2.3 and in chapter 4, Fisher’s, HRD and the corrected time-delayed equa-
tion can be obtained from non-cohabitation evolution equations, but not from cohabitation equations.
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Figura 7.2: Comparison of the front speeds calculated using different analytic models for
six farming populations. Lines joining symbols are plotted to facilitate comprehension,
not as trends. (T = 32yr, a = 0.033yr−1)

two easily foreseeable results: (i) given two populations with the same persistency
(probability to stay), the front speed will be faster for the population with higher
mobility 〈∆2〉 /T , and (ii) for two populations with the same mobility, if one has a
higher value of the persistency, the speed of the spreading front will also be faster
(because jumping individuals move a longer distance). Thus, even being a very simple
approximation, these predictions do already include certain variability related to real
dispersive patterns that differential-equation models cannot provide, because the latter
depend only on the mobility ("diffusive"approximation).8

A better approximation to the real behavior might obviously be obtained by using
more detailed information on the kernel shape. So, even though still being an approxi-
mation, the results from the Dirac deltas model, which gives a discrete approximation
to the recorded data, can be assumed as leading to more realistic results, because it
contains more detailed information on the dispersive patterns for each population. The
results from this approximation to the real kernel are given in table 3.2, and it is impor-
tant to notice that they are always consistent (at least marginally) with the observed
speeds, which is a desirable result but not obvious beforehand. Comparing these two
discrete models (emphasized results in figure 7.2), for the Dirac deltas approximation
the speeds are faster as they always include a certain probability to move to further

8Similar aproximations with each individual being either a non-disperser or a disperser have previ-
ously been applied to the Neolithic transition [13, 40, 53].
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distances than with the single-distance case. Moreover, the difference is larger for pop-
ulations with a slight probability to disperse large distances (110 km and 100 km for
populations D and E respectively) than those with shorter dispersive ranges. On the
other hand, population C, with more than 50% probability to move to large distances,
behaves in a similar way as the single-distance model, so in this case, the single-distance
and Dirac deltas models yield nearly the same results.
Contrarily to these discrete approximations to the real kernel, when using Gauss

and Laplace distributions, the real kernel shape is not really taken into account, ex-
cept for the mobility value (see section 3.5.3). Gauss and Laplace distributions have
been widely applied to population dispersal because they provide a reasonable scenario
where most individuals move relatively short distances, whereas long-distance dispersal
is restricted to very few individuals. Examining the dispersion data in chapter 3 (equa-
tions (3.25)—(3.28)) this is roughly the behavior of the studied dispersion patterns, and
for populations A, B and D the Gauss distribution yields a fairly good approximation.
The differences between these kernels and the discrete approximations increase special-
ly when the population has a large probability to move either to large distances (e.g.,
population C) or to very close destinations (e.g., population F). Moreover, according to
the explicit equations for Gauss and Laplace distributions (section 3.4), the dispersive
behavior is only included in terms of the mean-squared displacement 〈∆2〉 (see section
3.5.3). So, they provide in fact another possible "diffusive"approximation to the dis-
persion depending on the diffusion coefficient D = 〈∆2〉 /4T , as with Fisher’s speed
(1.3)

cFisher = 2
√
aD, (7.5)

the HRD speed (1.5)

cHRD =
2
√
aD

1 + aT/2
, (7.6)

and the new time-delayed speed (4.27)

ctime-delayed =
2
√
aD (1 + aT/2)

1 + aT
. (7.7)

One can see from figure 7.2 how all these five "diffusive"approximations lead in fact
to equivalent solutions, only with different scaling (in contrast to the single-jump and
Dirac deltas kernels). This is due to the fact that the speeds given by equations (7.5),
(7.6), (7.7), (3.21) and (3.24) are proportional to

√
D.9

According to these results, expressions for the front speed depending only on the
diffusion coefficient D cannot predict the effects of real dispersion patterns. Besides,
from the dispersive patterns used in chapter 3 one cannot infer a standard pattern to
describe the dispersive behavior for pre-industrial farming societies. Yet, the results
in chapter 3 and figure 7.2 show that the use of realistic dispersion kernels leads to

9According to section 3.5.3 and the definition D ≡
〈
∆2
〉
/4T , for the Gauss distribution, ϕ (∆) =

(
2∆/α2

)
exp

[
− (∆/α)2

]
(see section 3.4.1), the parameter α is α =

√
4T
√
D and for the Laplace

distribution, ϕ (∆) =
(
∆/α2

)
exp [−∆/α] (see section 3.4.2), α =

√
T/3

√
D.
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front speeds consistent with the estimated speeds for the Neolithic transition (0.6 —
1.3 km/yr) and that, for non-cohabitation equations, in most cases the time-delayed
equation (7.7) gives a lower bound and Fisher’s equation (7.5) an upper bound to these
results. Therefore it is reasonable to expect that, in general, front speeds from realistic
dispersion kernels will lie within the range between the speed predicted by reaction-
diffusion equations with second-order terms in time (slower speeds) and the predictions
when using only first-order terms in time (faster speeds). Moreover, among the models
describing the dispersion in terms of D, the Gauss distribution seems to provide the
best approximation to the speeds predicted by the kernels based on discrete data (Dirac
deltas in figure 7.2).

7.4 Time delay

In general, in farming societies one assumes that children stay with their parents at
their birthplace until they reach adulthood and migrate to form their own families. The
effect of this time delay between birth and migration was first applied to the Neolithic
transition in Europe in reference [7]. However, that derivation did not take proper care
of the reaction term, so chapter 4 includes the correct derivation of the front speed for
a non-cohabitation reaction-diffusion equation including the effect of the time delay up
to second order and assuming isotropic kernels. The new time-delayed result leads to
slower speeds, up to 10% slower, than the previous HRD equation for the ranges of
anthropological parameters estimated for pre-industrial farming populations.
When working with integrodifference equations, as in chapter 3, the time delay T

is also taken into account because the generation time T is used as the time step of
the recurrence process. In fact, in this case the time delay is taken into account up to
infinite order and not just in a second-order approximation as with reaction-diffusion
equations (chapter 4). However, according to the results in reference [67] the second-
order approximation leads to approximately the same results as when using a differential
equation with infinite terms. Even though this conclusion was drawn by treating the
reaction term in the same way as in reference [7] for the HRD equation, if assuming that
this conclusion still stands for the correct derivation, then the differences with the results
using integrodifference equations should be only due to the use of dispersion kernels and
not the second order approximation in time. In any case, it would also be interesting to
check if with the correct time-delayed result, the second order approximation in time
does still yield nearly the same result as with infinite terms.
Note that these equations are obtained from non-cohabitation models, while it has

been discussed before that a cohabitation model is a better representation when model-
ing human population dynamics. A second-order time-delayed equation for cohabitation
models was derived in reference [13]10, even though the reaction term was only a first-

10In this reference cohabitation models were called sequential models to stress the fact that reaction
and dispersion should not be applied simultaneously in the models (leading to parents abandoning their
children), but that the time order is important when constructing mathematical models for human
populations.
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order approximation that could also be interesting to generalize to higher orders using
equations (3.2) and (3.3).

7.5 Environmental effects: presence of Mesolithic
populations

According to archaeological observations, the rate of spread of the Neolithic transition
slowed down when reaching northern regions in Europe. This evolution of the front
speed has been estimated in chapters 5 (relative speed) and 6 (absolute speed) for a
region of study located between the Balkans and the North Sea (see the map in figure
5.1). A possible cause for this slowdown has been inferred to be the higher presence of
Mesolithic populations at northern regions; chapters 5 and 6 present models that can
indeed explain the observed slowdown in terms of this premise.
The effect of encountering pre-Neolithic populations is taken into account in the

models in terms of the available space for the Neolithic invaders, and by making the
reasonable assumption that Neolithic individuals will preferably move to locations where
more unoccupied space is available. This competition for space between Neolithic and
Mesolithic populations is also taken into account in the reaction term in chapters 5
and 6, because the presence of another population using the same space and resources
limits the increase in population number as the carrying capacity is modified. These
limitations introduced by the presence of Mesolithic populations have been neglected in
chapters 1 - 4, as well as in other previous models such as Fisher’s [17] or the HRDmodel
[7], even though Mesolithic populations were present in most of the continent. This is
reasonable because Mesolithic population densities are estimated to be very low, about
0.03 inhabitant per km2 [68], and as the Neolithic population density at the leading edge
of the front is also considered very low, at first approximation the interaction at the front
can be considered negligible. However, when studying the slowdown of the Neolithic
front, the densities of Mesolithic populations at Northern Europe are considered to be
large enough to have an effect on the front speed, so in this case taking into account
Mesolithic populations in the models is more reasonable. In any case, from the results
in chapter 5 one can also see that indeed, when Mesolithic population densities are low
and approximately constant (for example with test function m4 in figure 5.2), the effect
introduced by considering the presence of Mesolithic populations is not very significant
(figure 5.3), whereas for higher population densities the correction increases.
As explained in chapters 5 and 6, the fact that the density of Mesolithic populations

varies in space (and so does the free space) implies that, in this case, the dispersion
will take place in a non-isotropic way, as opposed to the isotropic dispersion kernels
considered in chapters 3 and 4. When searching for general results to be compared
with average values of the spreading speed in Europe, it is reasonable to use isotropic
kernels because, as explained in the Introduction (section 1.1), the analysis of early
Neolithic archaeological data suggests a fairly constant rate of spread of this cultural
change all across the continent. On the other hand, as chapters 5 and 6 make reference
to a regional variability, in this case the use of an anisotropic kernel is more adequate.
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Thus, from the results in chapters 5 and 6 one can see that, just by introducing a
limitation on the available space due to Mesolithic populations in a simple reaction-
diffusion model, it is possible to predict a decrease of the front speed similar to estimated
results from archaeological data. Chapter 5 compares with archaeological estimations
the prediction obtained when using four possible functions to describe the variation of
the Mesolithic population density in space, finding that the best fit is achieved when
using a S-shaped function (function m4 in figure 5.3). Even without having Mesolithic
data to compare this result with, in the literature the effect of Mesolithic population
to the Neolithic expansion is usually only described in studies concerning the North
of Europe [60], thus in principle it seems to make sense to consider that Mesolithic
densities are only significant enough at northern regions. Moreover, if comparing not
only the trend but also the absolute values for the front speed, the cohabitation model
in chapter 6 provides a much better approximation to the archaeological results, with
corrections up to 35%.
All in all, both models presented in chapters 5 and 6 are very simple and could

be improved by including the effect of the time delay (by using terms up to second
order in time), which would yield slower speeds, as seen in previous sections. Also the
function ψ (∆) in the dispersion kernel could be described using an explicit distribution
(for example, a Gauss distribution, as it is more practical than the Dirac deltas models
while leading to reasonable results). This would lead to faster speeds than the time-
delayed approximation. Such modifications will probably be included in future work,
together with the analysis of a new database for the Mesolithic in Europe that was
not available at the moment of preparing chapters 5 and 6. But in any case, the
main conclusion will presumably still stand, that a simple physical model can predict
a decrease in the front speed similar to the observed one, and that the cohabitation
model yields a better approximation to the archaeological data.
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Capítol 8

Conclusions

We have developed population dynamics models that can be applied to the Neolithic
transition (or other similar processes involving human dynamics) and analyzed several
effects such as the use of explicit dispersive patterns, the time delay between migra-
tions, the cohabitation or not between generations, and the influence on the front speed
of encountering indigenous (Mesolithic) populations. We have applied our models to
predict both average results and regional variabilities, obtaining consistent results when
compared to archaeological data. In addition to archaeological dates for the arrival time
of the Neolithic front at 765 sites, we have also used ethnographic data to estimate the
dispersion kernels and reproductive parameter values (chapter 2). We have applied
both analytical and numerical approaches to solve our new mathematical models.
We have considered both cohabitation and non-cohabitation frameworks in our

study. A cohabitation framework is more realistic for human populations as it as-
sumes that parents and children cohabit until adulthood of the latter, as opposed to
parents migrating away from their children as considered in non-cohabitation models.
However, even though cohabitation models lead to speeds up to 38% faster, in most
cases the results from cohabitation and non-cohabitation models are both consistent
with the estimated average speed for the Neolithic expansion (as seen in chapter 3).
The regional study of the slowdown of the Neolithic in norther Europe (studied in chap-
ters 5 and 6) does, on the other hand, provide a clear example where a cohabitation
framework leads to substantially better results.
When studying the Neolithic transition, the dispersion process is usually taken into

account only in terms of the diffusion coefficient D, and in fewer cases [13, 40, 53] the
dispersion has been studied considering the individuals as being either non-dispersers
or dispersers, with all disperses moving the same distance. We have generalized these
models by applying fully explicit dispersion kernels. We have derived a discrete ap-
proximation to recorded dispersion data and applied this model to the dispersive pat-
terns from six farming populations (chapter 3). For all six populations the predicted
speeds are consistent with the average range for the Neolithic expansion in Europe
(0.6 — 1.3 km/yr), at least marginally, thus the use of realistic dispersion patterns in a
simple integrodifference model leads to reasonable results.
In chapter 3, we have also derived explicit equations for the front cohabitation
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speed when assuming Gauss or Laplace kernels. When compared with the discrete
approximation, even though the Gauss and Laplace kernels do not include the real
shape of the kernels, the Gauss distribution does lead to a fairly good approximation to
speeds predicted with the discrete kernels, while the Laplace distribution overestimates
them.
In chapter 4, we have derived a new time-delayed reaction-diffusion equation, in-

cluding second-order terms in time and space, and taking proper care of the growth
process as opposed to the derivation of the HRD equation in reference [7]. When ap-
plied to the Neolithic transition, the new results yield speeds 10% slower than the
HRD equation, and when compared to results from other non-cohabitation models, the
new time-delayed equation constitutes in general a lower bound for the predicted front
speeds (chapter 7).
On a regional level, we have studied the observed decrease in the rate of expansion of

the Neolithic transition in northern Europe. The study is centered in a region located
between the Balkans and the North Sea, leaving out latitudes below 45o in order as
to exclude the sea-travel effects in the Mediterranean coast. We have obtained an
estimation of the average front speed at different positions within the studied area, by
analyzing an interpolation map of Early Neolithic dates, which clearly show a decrease
in the front speed (chapters 5 and 6).
A theorized cause for this slowdown in the front speed is the higher presence of

Mesolithic settlements at higher latitudes. This had been proposed by archaeologists
but no mathematical models of this effect had been proposed previously. We have
derived a model in which the influence of these pre-Neolithic populations has been tak-
en into account by means of a reduction of the free space available for the Neolithic
invaders, which affects the dispersal capability of individuals and reduces their repro-
ductive dynamics. The results from this model show a decrease in the front speed
consistent with the relative speed values estimated from archaeological data (chapter
5). Taking into account the cohabitation effect, the agreement is better and consistent
also with the observed trend for the absolute speed (chapter 6). Hence, we have proved
with simple mathematical models that the higher density of Mesolithic settlements at
northern Europe is indeed a plausible cause for the observed decrease in the speed of
the Neolithic expanding front.
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Apèndix A

Copy of published papers

In agreement with the regulations of the University of Girona, chapters 3-5 are an exact
transcription of the papers reproduced in this appendix.
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1. Introduction

In systems where dispersion and reaction processes coexist, front spreading may be
observed. A front can be defined as a moving profile connecting an initial, unstable state
with a final, stable state. For example, in population dynamics the final state corresponds
to the maximum population density that can be supported by the environment, whereas
in combustion flames it corresponds to the burned state.

Previous work on front spreading includes analytical calculation of front speeds for
(i) reaction terms such that linear analysis is appropriate (pulled fronts), as well as
for the non-linear case (pushed fronts) [1], (ii) sequential reaction and dispersion [2],
(iii) dispersal kernel effects leading to the breakdown of classical diffusion [3], (iv) biased
random walks [4, 5], (v) age-structured systems [6, 7], (vi) distributed delays [8, 9], etc.
(For a recent review see [10].)

Front propagation models have been extensively applied to study physical and
biological systems including population dispersals [5], combustion flames [11], Taylor–
Couette and Rayleigh–Bénard experiments [1], viral infections [12], tumor growth [13],
etc.

In most studies on human population dynamics, the velocity of fronts has been
calculated with Fisher’s equation (cFisher =

√

2aD, where a is the initial growth rate
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and D the diffusion coefficient) or, more recently, with the HRD (hyperbolic reaction–
diffusion) equation [14, 15]. In the HRD model, it is assumed that (i) each individual (or
particle) rests for a time interval T between successive jumps, and (ii) the duration of
jumps is negligible compared to the rest time T . This leads to the front speed (for the
detailed derivation, see [14])

cHRD =
2
√

aD

1 + (aT/2)
. (1)

Fisher’s speed (cFisher =
√

2aD) is recovered for T ≪ 1/a, so it is valid only if the rest
time T is negligible.

Fisher’s and HRD equations include the dispersion just as a parameter, namely the
diffusion coefficient (D = 〈∆2〉/4T , where 〈∆2〉 is the mean squared displacement of
jumps). In this work, we study the effect of using the whole dispersion kernel (distribution
of the dispersal probability on jump distance ∆) on front speeds. We tackle this problem
not only from hypothetical distributions, but also using data from real human populations
in order to obtain more realistic results and compare them to the observed front speed of
the Neolithic transition in Europe.

Results depending on the full kernel have to be obtained from an integrodifferential
evolution equation for the population density, rather than a differential equation [14]. In
previous work, we have already used integrodifferential evolution equations for population
dynamics models in order to study persistency effects on front speeds [7], fronts from biased
random walks [4] and fronts for interacting species [16]. However, realistic dispersion
distributions obtained from observed human populations have not been applied before.
In section 2 we present two possible evolution equations (a cohabitation model and a
non-cohabitation one). Then we obtain analytical and numerical results for the front
speed for both evolution equations. In section 3 we consider several-distance dispersion
kernels in 2D, while in section 4 we apply Laplace and Gauss 2D kernels. These results are
applied to the Neolithic transition in Europe in section 5 using real dispersion data from
six human populations. In section 6 we describe a stochastic model which we compare
with the deterministic results. Finally, in section 7 we present our conclusions.

2. Evolution equations

In order to study the effect of the dispersion kernel on front speeds, we need an
integrodifferential evolution equation for the population density p(x, y, t). A possible
expression for the evolution equation is [4, 7, 16]

p(x, y, t + T ) =

∫
+∞

−∞

∫
+∞

−∞

p(x + ∆x, y + ∆y, t)φ(∆x, ∆y) d∆x d∆y

+ RT [p(x, y, t)] − p(x, y, t). (2)

The first term in equation (2) is the dispersal term, where the probability φ(∆x, ∆y)
is the dispersion kernel, and gives the probability per unit area that an individual initially
placed at (x+∆x, y +∆y) moves to (x, y) during a time interval T of one generation [14].
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RT [p(x, y, t)] in equation (2) is the solution of the logistic growth equation, widely
used in population dynamics [17],

RT [p(x, y, t)] =
p(x, y, t) pmaxe

aT

pmax + p(x, y, t) (eaT
− 1)

, (3)

where pmax is the carrying capacity. Equation (3) gives the final population density, due
to population growth, after a time interval T from the initial value p(x, y, t). So, the
last two terms in equation (2), RT [p(x, y, t)] − p(x, y, t), correspond to the net growth
(natality–mortality balance) during T .

However, according to equation (2), after a generation new individuals appear due to
reproduction at (x, y) while parents have moved to (x−∆x, y−∆y), i.e., parents leave their
children behind when the former migrate. But this is not realistic for human populations;
thus we use a more realistic evolution equation [4, 7, 16]:

p(x, y, t + T ) = RT

[
∫

+∞

−∞

∫

+∞

−∞

p(x + ∆x, y + ∆y, t)φ(∆x, ∆y) d∆x d∆y

]

. (4)

The difference between equation (2) and equation (4) is a very important point. It
is thus shown in figure 1 for the 1D case and a population at a single position at t = 0
(figure 1(a)). For equation (4), figure 1(b), the initial population migrates (full columns)
and the population growth (hatched columns) takes place at the destination position. On
the other hand, for equation (2), figure 1(c), population growth (hatched column) takes
place only at the initial position x due to the whole initial population, while part of this
initial population has already migrated (full columns). So, from now on, equation (2) and
its results will be named as non-cohabitation (NCohab), since parents migrate leaving
their children behind, and equation (4) and its results will be named as cohabitation
(Cohab).

3. Several-distance dispersion model

For real populations, the migrated distances per generation are usually continually
distributed. But available data are recorded in intervals, so here we consider a
discrete approximation with a kernel that allows dispersion to multiple discrete distances.
Therefore, assuming an isotropic kernel, the linear distribution of probability can be
expressed as a sum of Dirac deltas1

ϕ (∆) = 2π∆φ (∆) =

n
∑

i=0

piδ(∆ − ri), (5)

where pi is the probability for the individuals to move a distance ri = i · d, for
i = 0, 1, 2, . . . , n, with d the width of the intervals used when recording the data.

Below we search for the front speed using analytical methods (CSRW, DSRW) and
numerical simulations.

1 The linear distribution of probability, ϕ(∆), is the integration over the azimuthal coordinate θ of the 2D
kernel, φ(∆). For an isotropic kernel, i.e., independent of θ, the relation between the two distributions is
ϕ(∆) = 2π∆φ(∆).
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∆∆ ∆ ∆∆ ∆

Figure 1. Comparison of cohabitation (equation (4)) and non-cohabitation
(equation (2)) models in 1D. Initially the population is at a single position
p(x, t = 0) (a). In (b) and (c) full columns correspond to the dispersed population
(parents) and hatched columns to the population growth (children). (p0 = 0.5,
φ(∆x) = δ(x ± ∆x), a = 0.028 yr−1, T = 32 yr.)

3.1. Continuous-space random walks (CSRW)

In order to find an analytical expression for the front speed, we apply some simplifications
to the evolution equation. Firstly, as the population density at the leading edge of the
front is low, equation (3) can be linearized there, becoming

RT [p(x, y, t)] = p(x, y, t) eaT . (6)

Moreover, since we have assumed an isotropic kernel, the front is azimuthally
symmetric, so it can be considered approximately planar for t → ∞ and r → ∞.
Then, choosing the x-axis as parallel to the local velocity of the front, c ≡ |cx|, we
look for constant-shape solutions with the form p = p̄ exp[−λ(x − ct)]. Applying these
simplifications to cohabitation equation (4), it may be rewritten as

eλcT = eaT

∫ +∞

−∞

∫ +∞

−∞

e−λ∆xφ(∆x, ∆y) d∆x d∆y. (7)

Finally, changing the coordinate system to polar coordinates, i.e., defining ∆ ≡
√

∆2
x + ∆2

y and θ ≡ tan−1(∆y/∆x), and using equation (5), we find an expression for

the front velocity2,

cCohab = min
λ>0

ln
[

eaT
∑n

i=0
piIo(λid)

]

λT
, (8)

2 The value of d for CSRW is related to the mean squared displacement by 〈∆2〉 =
∑

n

i=0
pi(id)2.
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where I0(λid) is the modified Bessel function of the first kind and order zero,

I0 (λid) =
1

2π

∫

2π

0

exp (λid cos θ) dθ. (9)

Applying the same steps to the non-cohabitation equation (2), we obtain the
expression for the front velocity (see footnote 2),

cNCohab = min
λ>0

ln
[(

eaT
− 1

)

+
∑n

i=0
piIo(λid)

]

λT
. (10)

3.2. Reactive random walk simulations

Random walk numerical simulations follow the evolution of the population density in
space and time. We consider a 2D grid of 3000 × 3000 nodes, with the initial condition
p(x = 0, y = 0, t = 0) = 1, and p(x, y, t = 0) = 0 at every other node (x, y). The
evolution of the population is computed by repeating the following steps at each time
interval (T = 1 generation):

(i) We apply the dispersion kernel (5), but as the grid is Cartesian, the density is in
fact distributed into the four edges of n squares of side 2ri = 2id.3 Thus, to each of the
8i nodes of the i-square corresponds a fraction (pi/8i) from the initial population.

(ii) The final population at each node is computed applying the population growth
equation (3) to the result of step (i) (in the case of equation (4)) or applying equation (3) to
the initial population and adding the result to that of step (i) (in the case of equation (2)).

3.3. Discrete-space random walks (DSRW)

In the CSRW approach (section 3.1) we consider a continuous space. But the simulation
grid (section 3.2) is necessarily discrete, and this in fact modifies the kernel shape. Thus,
the results from these two methods may be different. Therefore, here we suppose a
discrete space in order to reproduce analytically the results obtained from the numerical
simulations.

We first discretize equation (4) so that the kernel is square shaped as in the
simulations. The dispersion term, namely

∫ +∞

−∞

∫ +∞

−∞

p(x + ∆x, y + ∆y, t)φ(∆x, ∆y) d∆xd∆y, (11)

as a result of the discretization, becomes

p0 p(x, y, t) +
n

∑

i=1

pi

8i

{ i
∑

j=−i

[p(x + ri, y + rj, t) + p(x − ri, y + rj , t)]

+

i−1
∑

j=−i+1

[p(x + rj , y + ri, t) + p(x + rj , y − ri, t)]

}

. (12)

3 The value of d for DSRW (and numerical simulations) is related to the mean squared displacement by the
approximation 〈∆2〉 =

∑n

i=0
(pi/8i)

∑i−1

j=−i
4[(id)2 + (jd)2].
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Applying now the same simplifications as for the CSRW (section 3.1) we obtain that
the expression for the front speed is (see footnote 3)

cCohab = min
λ>0

ln
[

eaT Ψ(λd)
]

λT
, (13)

where

Ψ(λd) ≡ p0 +
n

∑

i=1

pi

4i

[

1 +
i−1
∑

j=1

2 cosh(λjd) + (2i + 1) cosh(λid)

]

. (14)

Following the same method as above we find that the speed expression for the non-
cohabitation equation (2) is (see footnote 3)

cNCohab = min
λ>0

ln
[(

eaT
− 1

)

+ Ψ(λd)
]

λT
. (15)

4. Continuous dispersion models

In this section, instead of a multiple Dirac delta for the kernel (section 3), we consider
isotropic continuous probability distributions in 2D.

In order to find analytical results we apply the same simplifications as in section 3:
linearization of the growth equation and assumption of constant-shape front solutions
p = p̄ exp[−λ(x − ct)]. In this way, using again polar coordinates as in the CSRW, we
obtain the following general expression for the cohabitation equation (4):

cCohab = min
λ>0

ln
[

eaT
∫ +∞

0
ϕ (∆) I0 (λ∆) d∆

]

λT
, (16)

where, as in equation (5), ϕ(∆) = 2π∆φ(∆) (see footnote 1).
The exact solution for this expression can be obtained from the value of λ that satisfies

dcCohab/dλ = 0. Thus λ is to be calculated from the relation

ϕ̃ (λ) ln
[

eaT ϕ̃ (λ)
]

= λϕ̃′ (λ) , (17)

where we have defined ϕ̃(λ) ≡
∫ +∞

0
ϕ(∆)I0(λ∆)d∆ and ϕ̃′(λ) ≡ dϕ̃(λ)/dλ.

Applying the same steps to the non-cohabitation equation (2), we obtain the
expression

β + ϕ̃ (λ) ln [β + ϕ̃ (λ)] = λϕ̃′ (λ) , (18)

where we have introduced β ≡ eaT
− 1.

Some important kernels that have been widely applied to population dispersal are
the Gauss and Laplace distributions [18]–[20]. These two kernels will also allow us to
derive explicit equations for the front speed. In contrast to the case for previous work in
1D [3, 20, 21], here we consider a 2D space, as is necessary for application to the Neolithic
transition (section 5).
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4.1. Gauss distribution

The Gauss linear probability distribution is ϕ(∆) = (2∆/α2)e−(∆/α)2 , so we obtain that

ϕ̃ (λ) = eα2λ2/4. (19)

For the cohabitation equation (4), using equation (19) in equation (17) we obtain the
exact result,

cCohab = α

√

a

T
. (20)

For the non-cohabitation equation (2), an exact solution cannot be found, but
expanding equation (18) up to second order in αλ (αλ ≪ 1), we obtain the following
explicit result:

cNCohab =
α

2T

√

1 + β ln(1 + β)

(1 + β) ln(1 + β)
× ln

[

(1 + β)(1+β)/[1+β ln(1+β)] + β
]

. (21)

4.2. Laplace distribution

The Laplace linear probability distribution can be expressed as ϕ(∆) = (∆/α2)e−∆/α, so
we have that

ϕ̃ (λ) = 1/(1 − α2λ2)3/2. (22)

The second-order approximation in αλ (αλ ≪ 1) for the front speed for the
cohabitation equation, i.e., when using equation (22) in equation (17), is

cCohab =
α

T

√

1 +
3

2aT

(

aT +
3

2
ln

[

1 +
2aT

3

])

. (23)

For the non-cohabitation equation, the second-order expansion in αλ (αλ ≪ 1) for
equation (18) leads to the expression

cNCohab =
α

T

√

(3/2) + (1 + (5/2)β) ln (1 + β)

(1 + β) ln (1 + β)

× ln

[

(

1 + ((2/3) + (5/3)β) ln (1 + β)

(1 + β) ln (1 + β)

)3/2

+ β

]

. (24)

5. Application to the Neolithic transition

We apply the results from sections 3 and 4 to the Neolithic transition, i.e., the transition
from hunter–gatherer to agricultural economics (the corresponding front speed has been
measured from archaeological data on the first arrival of farmer populations [30]). We
study two cases: (i) a simple approximation with single-distance dispersion (migration to
nearest neighbors), and (ii) a more realistic case using mobility data from real populations
(using both discrete and continuous kernels).
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Realistic dispersion kernels applied to cohabitation reaction–dispersion equations

Table 1. Front speeds for the simplified model. The front speeds have been
computed for the six human populations with the cohabitation equation (4) and
the non-cohabitation one (2), using the values of the parameters 〈∆2〉 and p0 from
the present table, and the extreme values of the range a = 0.028 ± 0.005 yr−1

(vmin and vmax).

Population

〈∆2〉

(km2) p0

vmin Cohab

(km yr−1)

vmax Cohab

(km yr−1)

vmin NCohab

(km yr−1)

vmax NCohab

(km yr−1)

A Gilishi15 [26] 1003 0.54 0.850 1.010 0.659 0.734
B Gilishi25 [26] 1210 0.40 0.899 1.055 0.693 0.764
C Shiri15 [26] 2197 0.19 1.161 1.335 0.891 0.967
D Yanomamo [27] 1728 0.19 0.926 1.066 0.711 0.772
E Issocongos [28] 404 0.41 0.521 0.612 0.402 0.443
F Parma [28] 508 0.77 0.674 0.825 0.533 0.611

The generation time that we apply in all cases is T = 32 yr, which was estimated in
reference [9] as the mean age of the parents when a child is born (not necessarily the first
one).

The range of values for the initial growth rate a that we use at the rest of the paper has
been estimated from data for four human populations (Pitcairn [22], Bass Strait [22] and
Tristan da Cunha [23] Islands, and the United States population during the nineteenth
century [24]). Fits to exponential growth of the population data from the three islands
yield a = 0.029 95±0.001 19 yr−1 for Pitcairn, a = 0.026 26±0.000 52 yr−1 for Bass Strait
and a = 0.025 27±0.000 32 yr−1 for Tristan da Cunha. The growth rate calculated from the
same logistic equation as was used by Lotka [24] for the US is a = 0.031 35±0.000 63 yr−1.
These four values yield the range a = 0.028 ± 0.005 yr−1 (80% confidence level). For
populations colonizing a new habitat prior to the existence of the modern health and
medicine [25], we are not aware of any population number time series leading to higher
values of a.

5.1. Simplified model

Here we analyze a simplified model in which individuals can either stay at the initial
position, with a persistency (probability of resting) p0, or migrate to a single distance d,
determined by the values of persistency p0 and the mean squared displacement (mobility)
〈∆2〉 (see footnotes 2 and 3).

In table 1 we present the parameter values and computed speeds for four preindustrial
farmer populations (Gilishi15 [26], Gilishi25 [26], Shiri15 [26] and Issocongos [28]), the
Yanomamo [27] (who are horticulturists), and the modern populations in the Parma
Valley [28] already considered by Ammerman and Cavalli-Sforza [29]. The values for the
front speed have been calculated for both the cohabitation equation (4) and the non-
cohabitation one (2), using the CSRW (section 3.1) and the minimum and maximum
values of the range a = 0.028 ± 0.005 yr−1, obtained above.

In figure 2 we present results for both evolution equations (2) and (4), obtained
with the three methods (CSRW, DSRW and simulations), the mean mobility value of
populations A, B and C (〈∆2〉 = 1531 km2), and two values of the persistency: (i) an
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Realistic dispersion kernels applied to cohabitation reaction–dispersion equations

Figure 2. Front speeds for single-distance dispersion kernels. The speeds for
the cohabitation equation (4), the non-cohabitation equation (2) and the HRD
equation (1), have been computed using the mobility value 〈∆2〉 = 1531 km2 and
persistencies p0 = 0.0 and 0.5. The hatched area corresponds to the observed
ranges for a and c.

extreme case with all individuals migrating, p0 = 0.0, and (ii) a more realistic value,
p0 = 0.5 [7]. Front speed values in figure 2 have been computed over a large range of a,
and note that in all cases the speed increases and tends to a maximum for large values of
a (discrete methods saturate at this speed) which corresponds precisely to d km/gen. We
can understand this limit intuitively as follows. Since this is a single-distance dispersion
model, d is the distance individuals move along the x direction when they migrate, and
thus, d km/gen must be the maximum possible speed4.

From figure 2 it can be seen that the speeds from the non-cohabitation equation (2)
are always lower than those from the cohabitation equation (4); up to 34% lower when
comparing results from the CSRW (full and dashed curves in figure 2). This was to
be expected because according to equation (2) just the parent generation can disperse,
whereas using equation (4) it is the whole population that can migrate (parents and
children); see figure 1.

Comparing the results from the two values of the persistency in figure 2, we find that
the front speed increases with the persistency, as could be expected5 for populations with

4 The value of d is calculated differently for the CSRW case (see footnote 2) and the DSRW case and simulations
(see footnote 3). Thus the speed limits obtained are different for continuous-space and discrete-space random
walks (figure 2).
5 Front speed increases with persistency because the jump distance d has been calculated from the same value
of the diffusion coefficient D = 〈∆2〉/4T ; so a larger probability of staying implies that those who migrate have
to move a larger distance d (see footnotes 2 and 3). Therefore, the front speed increases. This effect cannot be
predicted by equation (1) (full line and triangles in figure 2), for example, as it only depends on D.
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Realistic dispersion kernels applied to cohabitation reaction–dispersion equations

the same mobility value. We can also see this effect on table 1, where populations E and
F have similar mobilities but population F has a higher persistency and thus a higher
front speed. On the other hand, in table 1 we can also observe how for populations with
the same persistency (C and D) a higher mobility (and thus, a higher diffusion coefficient
D = 〈∆2〉/4T ) yields a higher speed.

The 95%-confidence-level speed for the Neolithic transition in Europe is currently
estimated as 0.6–1.3 km yr−1 [30]. In figure 2, the hatched box delimits this range for the
initial growth rate range obtained above (0.023–0.033 yr−1). Thus, although we obtain
different speed values for each model, they all lie within the observed range for the speed of
the Neolithic transition. However, from table 1, we see that whereas for the cohabitation
equation (4) the calculated speeds are consistent with the observed range, for populations
with low mobilities (E and F) the non-cohabitation equation (2) yields lower front speeds
than the observed range for the Neolithic transition (up to 33% lower for population E).

5.2. Several-distance Dirac deltas model

Now we use the dispersion kernels obtained from real dispersion data for the six
populations studied above. Firstly, we consider the dispersion kernels for three of these
populations (namely, A, B and C in table 1),

PA = {0.54; 0.17; 0.04; 0.25} ,

PB = {0.40; 0.17; 0.17; 0.26} ,

PC = {0.19; 0.07; 0.22; 0.52} ,

(25)

where the values correspond to the probabilities pi for distances {2.4; 14.5; 36.2; 60.4} km.6

For the sake of clarity, in figure 3 we show the results only for these three populations
(computed with the results from sections 3.1 and 3.3). Here it is seen that the speeds
obtained using the full kernel are consistent with the observed range (hatched area), and
that again results from equation (2) are lower than those from equation (4) (22%–28%
lower), for the same reasons as were given in the previous subsection.

In table 2 we present the front speed values computed with the cohabitation and
non-cohabitation models (using the CSRW) for all six populations and the range a =
0.028± 0.005 yr−1 obtained above. The dispersion kernels used for populations D, E and
F are

PD = {0.19; 0.54; 0.17; 0.04; 0.04; 0.02} (26)

for distances {5.0; 30.0; 50.0; 70.0; 90.0; 110.0} km,

PE = {0.42; 0.23; 0.18; 0.08; 0.07; 0.02; 0.01; 0.01} (27)

for distances {2.3; 7.3; 15; 25; 35; 45; 55; 100} km and

PF = {0.77; 0.04; 0.04; 0.03; 0.03; 0.01; 0.01; 0.02; 0.05} (28)

for distances {1.3; 4.5; 9.5; 16.5; 25.5; 36.5; 49.5; 64.4; 81.5} km.

6 These values are the means for each interval from Stauder’s data [26] according to the calculation of mobility by
Ammerman and Cavalli-Sforza [29]. The distances correspond to d = 2.4 km and i = {1; 6; 15; 25} in the kernel
expression (5).
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Figure 3. Front speeds for three real human dispersal kernels. The speeds for the
cohabitation equation (4) and the non-cohabitation equation (2) are computed
using kernel (25) (results for each population are labeled). The results for
equation (1) are calculated from the value of D for each population obtained
from kernels (25) (see table 1). The hatched area corresponds to the observed
ranges for a and c.

Table 2. Front speeds for the Dirac deltas model. The front speeds have been
computed for the six human populations with the cohabitation equation (4)
and the non-cohabitation one (2), using the dispersion kernels from the text
(section 5.2) and the extreme values of the range a = 0.028 ± 0.005 yr−1 (vmin

and vmax).

Population

vmin Cohab

(km yr−1)

vmax Cohab

(km yr−1)

vmin NCohab

(km yr−1)

vmax NCohab

(km yr−1)

A Gilishi15 [26] 0.908 1.101 0.712 0.810
B Gilishi25 [26] 0.957 1.150 0.746 0.840
C Shiri15 [26] 1.196 1.397 0.920 1.011
D Yanomamo [27] 1.179 1.435 0.927 1.062
E Issocongos [28] 0.737 0.940 0.608 0.737
F Parma [28] 0.800 1.008 0.651 0.774

Comparing results from tables 1 and 2 we see that, in all cases, the front speed is faster

when using the full kernel. The jump distance d used in the previous section will always be

lower than the longer possible distance of the kernel, and when individuals have a certain

probability of moving further, the front speed increases. Thus, the correction introduced

by using the full kernel will be more important for those populations with a certain
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probability of migrating to distances much higher than the value of d calculated from
〈∆2〉. For example, for populations D and E, the corrections introduced by applying the
full kernel are of approximately 30% and 48% respectively for the cohabitation equation
(34% and 59% for the non-cohabitation equation). For both populations, individuals can
move to large distances (110 and 100 km respectively), while for the simplified model the
dispersion distance d is about 41 km for population D and about 26 km for population E
(see footnote 2).

On the other hand, we can see that the values of the front speed for population C
in tables 1 and 2 are approximately the same. This can be explained mathematically
because for these populations, the characteristic dispersal distance for the simplified
model, d ≃ 51 km (see footnote 2), is similar to the maximum dispersed distance, 60 km.
But it can also be explained qualitatively from the dispersion kernel (25), as for this
population over 50% of individuals move to a single, long-range distance. Thus, this
kernel behaves approximately as if the whole population could either not move or migrate
just to a single distance (as in the simplified model studied in the previous section).
This is also why in figure 3 there is a good agreement between the results from the non-
cohabitation equation (2) and the HRD equation (1) for population C (figure 2 shows
that equation (1) is a good approximation to the non-cohabitation model in this case7),
while for A and B the difference is up to 20%.

Here we have shown that, if a population has a strong long-range dispersal component,
then (i) its predicted speeds are faster, and (ii) the HRD equation (1) is a good
approximation to the exact non-cohabitation model (2).

Referring to the speed values obtained, except for populations C and D for
equation (4) and large values of the growth rate a, they are all within the range of
observed speed for the Neolithic transition (0.6–1.3 km yr−1 [30]). But even the speeds
for populations C and D are marginally consistent with the observed range. Therefore, we
conclude that the application of realistic human kernels to reaction–dispersion equations
yields front speeds which are consistent with the values obtained from archaeological data.
It is important to note that the whole kernel is necessary, because the single-distance model
yielded speeds slower than the observed range for populations E and F (table 1).

5.3. Several-distance continuous model

Now we apply Laplace and Gauss probability distributions. For the sake of brevity, we
consider the populations A, B and C from previous subsections. We calculate the value
of the parameter α for both distributions from the mobility 〈∆2〉 of each population
(α2 = 〈∆2〉 for the 2D Gauss distribution, and α2 = 〈∆2〉/6 for the 2D Laplace
distribution).

Comparing the results obtained from the Gauss and Laplace distributions, in figure 4
we can see that the speed for Laplace distribution is always faster. This is due to the fact
that, for the same value of 〈∆2〉, the Laplace distribution has higher values of probability
at large distances than the Gauss distribution.

In figure 4 we also see that, whereas the difference between speeds from the Laplace
distribution and kernel (25) for populations A and B is lower than 12%, for population C

7 HRD equation (1) was deduced [14] from an equation analogous to equation (2), and thus it is an approximation
to it.
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Figure 4. Front speeds from continuous probability distributions. Speeds
obtained from the Gauss and Laplace cohabitation equations (20) and (23), using
the mobility values for each population obtained from kernels (25) (see table 1).
Dirac deltas correspond to the speeds from CSRW and the cohabitation equation
in figure 3. The hatched area corresponds to the observed ranges for a and c.

results from the Laplace distribution are about 30% faster. For the Gauss distribution,
we see that the difference from the speeds obtained with the Dirac deltas kernel (25) is
also larger for population C. This is due to the fact that for population C the distribution
maximum is displaced to larger distances than for the other two populations and thus,
there is a larger probability tail for population8 C.

Here we have shown that, in the absence of a long-range dispersal component, discrete
and continuous kernels lead to similar speeds (figure 4, populations A and B). However,
long-range dispersal can make continuous kernels grossly overestimate the front speed
(figure 4, population C).

6. Stochastic model

In the previous sections, all the results for the front speed have been obtained from
deterministic models. Even the numerical simulations correspond to the deterministic
equations, and differ from the results for the CSRW (section 3.1) due to the discretization
of space.

However, population dynamics is a stochastic process that could introduce corrections
to the deterministic front propagation [31]. In this section we describe a stochastic model

8 For population C, the tail probability for distances beyond the range considered in equation (25) is about 40%
(twice higher than for populations A and B).
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Figure 5. Front speeds for the stochastic model. Front speeds for (a) p0 = 0.0
and (b) p0 = 0.5 are represented for different values of N (maximum number
of individuals per cell), and compared with the deterministic model (solid and
dashed lines). (c) shows a front profile for N = 75 individuals (a = 0.028 yr−1).

that we apply to the simplified model studied in section 5.1. We perform the numerical
simulations repeating the following steps for each time interval (T ):

(i) For the dispersion process, we first assign to each individual a random value n

in the interval [0, 1), so if n < p0 the individual stays, and otherwise it migrates. Here,
as in the simplified model (section 5.1) individuals can only migrate to the eight nearest
neighbors on a square with equal probability. So each individual who can migrate is
assigned randomly an integer value between 0 and 7 (each corresponding to one of the
eight possible final positions). Finally, the position of each individual is changed according
to this random value.

(ii) The reaction process is computed as in section 3.2, but since here we are dealing
with individuals (instead of population densities) the final value is converted to an integer
(by simply truncating the computed number).

In figure 5 we show the stochastic results obtained for different values of the number
of individuals per cell N (and a = 0.028 yr−1). The error bars give the standard deviation
of 16 simulations. In order to compare the results from the stochastic model with the
deterministic simulations, we have used that the value of the carrying capacity for the
Neolithic is pmax = 1.28 hab km−2 following reference [32]. This value of pmax corresponds
to N = 1306 individuals per cell when d = 31.95 km (p0 = 0.0) (see footnote 3), or to
N = 2613 individuals per cell when d = 45.19 km (p0 = 0.5) (see footnote 3). When
the number of individuals per cell reaches the carrying capacity for the Neolithic the
results for front speed from the stochastic model are very close to the deterministic ones
(full horizontal lines in figure 5); they are about 3% slower than the deterministic speed
when p0 = 0.0 and about 5% slower when p0 = 0.5̇. Nevertheless, this difference is
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due not only to the randomness of the process, but also to the effect of using a discrete
number of individuals (instead of a continuous population density). As shown in the figure,
when performing simulations with the deterministic model but with a discrete number of
individuals (dashed horizontal lines) the front speed obtained is slower than when using
population densities; and we see that for large N the results from the stochastic model
lie between the results from the two deterministic simulations.

7. Concluding remarks

In this paper we have developed discrete and continuous models for reaction–dispersion
systems with dispersion kernels. We have applied these models to the Neolithic transition
using dispersion data sets from real human populations. Other authors [8, 33] have
previously studied the Neolithic transition using data from real populations assuming
that each individual is either a non-disperser or a disperser, with the same distance for
all dispersers. However, here we have used full kernel expressions and, for the first time,
we have applied them to a cohabitation evolution equation, equation (4).

This cohabitation equation, equation (4), is more realistic for human populations since
they do not leave their children behind when migrating as happens with equation (2)
(figure 1). Since equation (4) implies that more population migrates per generation
time, the front speeds are faster than those from equation (2). For real populations,
this difference is very important: up to 38% faster for the populations studied (table 2).
However, the front speeds are still consistent with the observed range for the Neolithic
transition (0.6–1.3 km yr−1 [30]). In the simplified model ignoring the kernel shape
(table 1) this is no longer true for some populations (E and F). Thus, the whole kernel is
essential when modeling human dispersals.

We also have provided new explicit equations for the front speed for the Gauss and
Laplace 2D distributions and the cohabitation model (4) (section 4).
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[16] Fort J, Pérez-Losada J, Suñol J J, Escoda L and Massaneda J M, 2008 New J. Phys. 10 43045
[17] Murray J D, 2002 Mathematical Biology 3rd edn, vol 1 (Berlin: Springer)
[18] Méndez V, Campos D and Fort J, 2004 Europhys. Lett. 66 902
[19] Weseloh R M, 2003 Environ. Entomol. 32 111
[20] Kot M, Mark A, Lewis P and van der Driessche P, 1996 Ecology 77 2027
[21] Clark J S, 1998 Am. Nat. 152 204
[22] Birdsell J P, 1957 Cold Spring Harbor Symp. Quant. Biol. 22 47
[23] Roberts D F, 1968 Nature 220 1084
[24] Lotka A J, 1956 Elements of Mathematical Biology (New York: Dover) pp 64–9
[25] Fix A G, 1999 Migration and Colonization in Human Microevolution

(Cambridge: Cambridge University Press)
[26] Stauder J, 1971 The Majangir. Ecology and Society of a Southwest Ethiopian People

(Cambridge: Cambridge University Press) chapter 10
[27] MacDonald D H and Hewlett B S, 1999 Curr. Anthropol. 40 501
[28] Cavalli-Sforza L L and Bormed W F, 1999 The Genetics of Human Populations (New York: Dover)

Data for Parma populations is obtained from table 8.7, and for the Issocongos from figure 8.16.B
[29] Ammerman A J and Cavalli-Sforza L L, 1984 The Neolithic Transition and the Genetics of Population in

Europe (Princeton, NJ: Princeton University Press) chapter 5
[30] Pinhasi R, Fort J and Ammerman A J, 2005 PLoS Biol. 3 2220
[31] Brunet E and Derrida B, 1997 Phys. Rev. E 56 2597
[32] Currat M and Excofier L, 2005 Proc. R. Soc. B 272 679
[33] Harris S, 2003 Phys. Rev. E 68 031912

doi:10.1088/1742-5468/2008/10/P10012 17

96



Time-delayed reaction-diffusion fronts

Neus Isern and Joaquim Fort
Departament de Física, Universitat de Girona, 17071 Girona, Catalonia, Spain

sReceived 22 July 2009; published 20 November 2009d

A time-delayed second-order approximation for the front speed in reaction-dispersion systems was obtained

by Fort and Méndez fPhys. Rev. Lett. 82, 867 s1999dg. Here we show that taking proper care of the effect of

the time delay on the reactive process yields a different evolution equation and, therefore, an alternate equation

for the front speed. We apply the new equation to the Neolithic transition. For this application the new equation

yields speeds about 10% slower than the previous one.

DOI: 10.1103/PhysRevE.80.057103 PACS numberssd: 89.65.Ef, 87.23.Cc, 89.20.2a

I. INTRODUCTION

Reaction-diffusion systems have been applied to many

complex biological and physical systems such as population

dispersals f1g, viral infections f2g, chemical reaction pro-

cesses f3g, combustion flames f4g, etc. In Ref. f5g a time-

delayed model for the front speed was presented including

terms up to second order. However, here we will show that

there was an error in the mathematical derivation, and we

will derive and analyze the behavior of the correct time-

delayed equation for the front speed.

In biological systems, variations in the population number

density, p, are due to two processes: population growth sre-
production minus deathsd and migration sdispersiond. The

variation due to population growth can be expressed as a

Taylor series,

fpsx,y,t + Td − psx,y,tdgg = TU ]p

]t
U

g

+
T2

2
U ]

2p

]t2
U

g

+ ¯

= TF +
T2

2
U ]F

]t
U

g

+ ¯ , s1d

where the subindex g denotes growth, we have introduced

the growth function as Fspd= ]p

]t
ug, and T is the time delay

sone generation in most applications f5gd. As usual, we as-

sume that Fspd.0.

On the other hand, for the migration sdispersiond we will

define the dispersion kernel fsDx ,Dyd which gives the prob-

ability per unit area that an individual initially placed at sx
+Dx ,y+Dyd has moved to sx ,yd after a time interval T. Thus,

the variation in population number density due to migration

can be expressed as f5g

fpsx,y,t + Td − psx,y,tdgm =E E psx + Dx,y

+ Dy,tdfsDx,DyddDxdDy

− psx,y,td . s2d

In a system involving the two processes spopulation
growth and migrationd, the total variation in population den-

sity during a time interval T can be expressed as the sum of

both contributions,

psx,y,t + Td − psx,y,td =E E psx + Dx,y

+ Dy,tdfsDx,DyddDxdDy − psx,y,td

+ TF +
T2

2
U ]F

]t
U

g

+ ¯ . s3d

We assume that the kernel is isotropic, i.e., fsDx ,Dyd
=fsDd, with D=ÎDx

2+Dy
2, and we Taylor expand Eq. s3d up

to second order in time and space, thus, obtaining the follow-

ing reaction-diffusion equation:

]p

]t
+

T

2

]
2p

]t2
= DS ]

2p

]x2
+

]
2p

]y2D + F +
T

2
U ]F

]t
U

g

, s4d

where D is the diffusion coefficient D=
kD2l
4T

=
kDx

2l
2T

=
kDy

2l
2T

.

Since Fspd depends only on the population density p, then

the last term in Eq. s4d can be written as

T

2
U ]F

]t
U

g

=
T

2

dF

dp
U ]p

]t
U

g

=
T

2
F8F . s5d

In addition, as the density at the leading edge of the front is

low, p<0, we have that Fspd<pF8s0d and F8spd<F8s0d.
Therefore, for p<0 Eq. s4d may be rewritten as

]p

]t
+

T

2

]
2p

]t2
= DS ]

2p

]x2
+

]
2p

]y2D + pF8s0d +
T

2
pF8s0dFs0d .

s6d

We now assume that for t→` and r→` the front can be

considered locally planar. Thus, choosing the x axis parallel

to the local speed of the front, c;ucxu, we can look for

constant-shape solutions with the form p= p̄ expflsx−ctdg.
Applying this ansatz to Eq. s6d we see that the value of l can

be obtained from

l =

− c 6Îc2 − 4SD −
T

2
c2DF8s0dF1 +

T

2
F8s0dG

2SD −
T

2
c2D . s7d

As l has to be real, we obtain a lower bound for the front

speed
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c $

2ÎDF8s0dF1 + T

2
F8s0dG

1 + TF8s0d
. s8d

However, the result obtained in Ref. f5g was the so-called
HRD speed, namely,

cHRD $
2ÎDF8s0d

1 +
T

2
F8s0d

, s9d

which is different from Eq. s8d.
The reason for this difference is the following. Here we

have used Eq. s5d, which allows us to rewrite Eq. s4d as

]p

]t
+

T

2

]
2p

]t2
= DS ]

2p

]x2
+

]
2p

]y2
D + Fspd +

T

2

dF

dp
F . s10d

In contrast, in Ref. f5g the following equation was used:

]p

]t
+

T

2

]
2p

]t2
= DS ]

2p

]x2
+

]
2p

]y2
D + Fspd +

T

2

dF

dp

]p

]t
. s11d

We can see that the last term is different. The reason is

that in Ref. f5g the subindex g was omitted in the last term in

Eq. s4d. Therefore, in Ref. f5g, the last term in Eq. s4d was
not written as in Eq. s5d but as follows:

T

2

]F

]t
=

T

2

dF

dp

]p

]t
=

T

2
F8

]p

]t
, s12d

and thus leading to Eq. s11d instead of Eq. s10d. This is why
in Ref. f5g, speed s9d was obtained instead of Eq. s8d. How-
ever, the derivation above clearly shows that Eq. s8d is the
right result. In this Brief Report, we will apply variational

analysis and show that Eq. s8d is not only a lower bound but
the exact speed sSec. IId. We will also analyze the difference

between the new Eq. s8d and the HRD speed s9d by applying
both equations to the Neolithic transition sSec. IIId. In Sec.

IV we present our conclusions.

II. VARIATIONAL ANALYSIS: UPPER BOUND

Equation s8d is just a lower bound for the speed of front

solutions to the new differential equation s4d for Eq. s10dg. In
order to find an upper bound, we apply variational analysis

f6g to Eq. s10d. As mentioned above, we assume that the

fronts have a profile pszd=psx−ctd traveling with a speed

c.0, so all of the derivatives in Eq. s10d can be expressed in
terms of z. We also assume that the population number den-

sity p.0 cannot attain values above some value pmax, the

so-called saturation density. Then, defining nspd=−pz and as-

suming that ns0d=nspmaxd=0 and n.0 in s0,pmaxd, differen-
tial equation s10d can be rewritten as

SD − c2
T

2
Dn

]n

]p
− cn + FS1 + T

2
F8D = 0. s13d

Now, introducing an arbitrary function gspd such that

gspd.0 and hspd=−g8spd.0, we multiply Eq. s13d by

gspd /nspd. Integrating the resulting expression by parts, we

obtain

cE
0

pmax

gdp = E
0

pmax FSD −
T

2
c2Dhn +

g

n
FS1 + T

2
F8DGdp .

s14d

Now, we can eliminate nspd from Eq. s14d applying that for
any positive numbers r and s, it follows from sr−sd2$0 that

sr+sd$2Îrs. Let us assume that the condition

1 +
T

2
F8spd . 0 s15d

holds for all pP s0,pmaxd. As gspd, hspd, nspd, Fspd, and
sD−

T

2
c2d are positive f7g, we may choose r;sD−

T

2
c2dhn and

s; g

n
Fs1+ T

2
F8d into sr+sd$2Îrs and use Eq. s14d to get the

following restriction:

c

ÎSD −
T

2
c2D $

2e0
pmaxÎhgFS1 + T

2
F8Ddp

E
0

pmax

gdp

. s16d

Following the method in Ref. f8g, Sec. 3.3, it is easy to

show that there is a function g for which the equality holds.

Then,

c

ÎSD −
T

2
c2D = maxg 1 2e0

pmaxÎhgFS1 + T

2
F8Ddp

E
0

pmax

gdp 2 .
s17d

In order to obtain the upper bound for the front speed we

will use Jensen’s inequality f9g

e0
pmaxmspdÎaspddp

e0
pmaxmspddp

#Îe0
pmaxmspdaspddp

e0
pmaxmspddp

, s18d

where mspd.0 and aspd$0. We define mspd;gspd and

aspd;hhspdFspdf1+ T

2
F8spdgj /gspd. Using these functions

into Jensen’s inequality s18d, and applying the result to Eq.

s17d, we obtain that

c

ÎSD −
T

2
c2D # 2max

g Îe0
pmaxhFS1 + T

2
F8Ddp

E
0

pmax

gdp

.

s19d

We want an upper bound independent of gspd, so we will
first find an expression in which hspd=−g8spd no longer ap-
pears by integrating by parts the numerator in the right-hand

side of Eq. s19d,
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E
0

pmax

hFS1 + T

2
F8Ddp = E

0

pmax

gFF8S1 + T

2
F8D + T

2
FF9Gdp ,

s20d

where we have assumed that Fs0d=Fspmaxd=0 sthis holds,
for example, for the logistic growth considered in Sec. IIId.

Moreover, from Eq. s20d we obviously have

E
0

pmax

hFS1 + T

2
F8Ddp # sup

pPs0,pmaxd
FF8S1 + T

2
F8D

+
T

2
FF9GE

0

pmax

gdp , s21d

so now the upper bound in Eq. s19d is independent of gspd,

c

ÎSD −
T

2
c2D

# 2Î sup
pPs0,pmaxd

FF8S1 + T

2
F8D + T

2
FF9G .

s22d

Let us assume that the population growth function Fspd is
a continuous function with F9spd#0 and Fs0d=0 sagain
these assumptions are true for the logistic growth considered

in Sec. IIId. Then F8spd is a decreasing function for increas-
ing values of p. Its maximum value is reached for p=0.

Thus, using the value p=0 in Eq. s22d we obtain that the

upper bound for the front speed is

c #

2ÎDF8s0dF1 + T

2
F8s0dG

1 + TF8s0d
. s23d

As the lower bound given by Eq. s8d is the same as upper
bound s23d, we can predict the speed of front solutions to Eq.
s10d without any uncertainty,

c =

2ÎDF8s0dF1 + T

2
F8s0dG

1 + TF8s0d
. s24d

In contrast, for the HRD Eq. s11d, the exact speed was

previously shown to be f5g

cHRD =
2ÎDF8s0d

1 +
T

2
F8s0d

. s25d

III. APPLICATION TO THE NEOLITHIC TRANSITION

In order to compare the predictions from Eqs. s24d and
s25d, we will apply them to the spread of the Neolithic tran-

sition in Europe, because this is the case to which Eq. s25d
was initially applied f5g. The Neolithic transition is the

change from hunter-gatherer to farming economics. In Eu-

rope, it took place as an invasion of agricultural populations

from the Southeast, which spread across Europe from 13 000

to 5000 years before present f10g.

In order to make quantitative predictions we will use the

logistic growth function, which has been widely applied to

human populations f5,11g:

Fspd = apS1 − p

pmax
D , s26d

where a is called the initial growth rate and pmax is the satu-

ration density.

Using logistic function s26d, Eq. s24d can be rewritten as

c =

2ÎaDS1 + aT

2
D

1 + aT
, s27d

whereas the HRD speed s25d, used in Ref. f5g, is

cHRD =
2ÎaD

1 +
aT

2

. s28d

Both equations for the front speed depend on three param-

eters: the initial growth rate, a, the diffusion coefficient, D

=
kD2l
4T
, and the generation time, T. We will use the ranges a

=0.02860.005 yr−1 f12g, kD2l=900–2200 km2 f10g, and
the characteristic value T=32 yr f13g, which have been mea-
sured for preindustrial farming populations. For these ranges,

condition s15d is fulfilled, so Eq. s27d gives the speed of

fronts.

Figure 1 shows the front speeds obtained from Eqs. s27d
and s28d for a characteristic mobility value kD2l
=1531 km2. We can see that, for the range of values for the

initial growth rate a appropriate to this application, the new

Eq. s27d yields slower speeds than Eq. s28d sabout 8%

slowerd. However, this is not the case for all values of a, as

can be seen from the inset graph in Fig. 1.

In order to check the validity of Eq. s27d, we have also
numerically integrated Eq. s10d, with Fspd given by Eq. s26d,
and initially p=pmax in a finite region and p=0 elsewhere.

FIG. 1. Comparative plot between the front speed for Eq. s27d
ssolid lined and Eq. s28d sdashed lined. The symbols correspond to

the speed obtained from numerically integrating Eq. s10d, with Fspd
given by Eq. s26d. All results have been calculated for a character-
istic mobility value kD2l=1531 km2.

BRIEF REPORTS PHYSICAL REVIEW E 80, 057103 s2009d

057103-3

99



The speed obtained from the numerical integrations corre-

sponds to the circles in Fig. 1. They agree with the new Eq.

s27d within less than 0.8%.

The range of speeds for the Neolithic transition front ob-

tained from archeological data is 0.6–1.3 km/yr f10g. We can

see in Fig. 1 that the results from Eq. s27d lie within this

range.

To what extent does our result depend on the uncertainty

in the value of the mobility? In Fig. 2, we consider the front

speed values 0.6, 0.95, and 1.3 km/yr, corresponding to the

range obtained from archeological data, for Eq. s27d sfull
linesd and Eq. s28d sdashed linesd f14g. It is seen that the

predictions of the new model sfull linesd are consistent with

the observed front speed for most of the values of the mo-

bility appropriate to this system.

IV. CONCLUDING REMARKS

In this Brief Report we have improved the derivation of

the HRD speed in Ref. f5g. We have obtained the correct

evolution Eq. s10d and the new Eq. s24d for the front speed.

We have applied the new Eq. s24d to the Neolithic transi-

tion. Using realistic parameters the front speeds are consis-

tent with the observed range for the Neolithic transition in

Europe s0.6–1.3 km/yr f10gd. Comparing these results with

those from the HRD speed, we see that for the Neolithic

transition our new equation leads to slower speeds.

In this case, the correction obtained is only about 10%,

but it could be higher in other systems where generalizations

of Eq. s24d can be useful. For example, our framework could

be applied in order to improve the predicted speeds of viral

infection fronts f2g.

ACKNOWLEDGMENTS

This work was funded by the European Commission

sGrant No. NEST-28192-FEPREd, the MICINN-FEDER

sGrant No. FIS2009-13050d, and the Generalitat de Catalu-

nya sGrant No. SGR-2009-374d. N.I. was supported by the

MEC under the FPU program.

f1g K. Davison, P. Dolukhanov, G. R. Sarson, and A. Shukurov, J.

Archaeol. Sci. 33, 641 s2006d.

f2g J. Fort and V. Méndez, Phys. Rev. Lett. 89, 178101 s2002d.

f3g L. Gálfi and Z. Rácz, Phys. Rev. A 38, 3151 s1988d.

f4g J. Merikoski, J. Maunuksela, M. Myllys, J. Timonen, and M. J.

Alava, Phys. Rev. Lett. 90, 024501 s2003d.

f5g J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 s1999d.

f6g R. D. Benguria and M. C. Depassier, Phys. Rev. E 57, 6493

s1998d.

f7g The condition sD−Tc2 /2d.0 follows from l,0 and Eq. s7d.

f8g J. Fort and V. Méndez, Rep. Prog. Phys. 65, 895 s2002d.

f9g S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and

Products sAcademic, San Diego, 1994d; see p. 1133 formula

HL151. The inequality is given for convex functions f. If f is

a convex function, then −f is concave and the inequality for

−f holds with the sign reversed. Take the function −f to be

the square root.

f10g R. Pinhasi, J. Fort, and A. J. Ammerman, PLoS Biol. 3, e410

s2005d; for the estimation of mobility data see supporting text

3.

f11g J. D. Murray, Mathematical Biology, 3rd ed. sSpringer-Verlag,

Berlin, 2002d, Vol. 1.

f12g N. Isern, J. Fort, and J. Pérez-Losada, J. Stat. Mech.: Theory

Exp. s2008d P10012.

f13g J. Fort, D. Jana, and J. Humet, Phys. Rev. E 70, 031913

s2004d; for the estimation of the generation time T=32 yr, see

note f24g in this reference.

f14g The dashed lines in Fig. 2 are not exactly the same as the lines

in Fig. 3 in Ref. f5g because some parameter values have been

estimated in a more precise way more recently especially the

generation time T f13g.

FIG. 2. Predictions for the speed of the wave of advance in the

Neolithic transition. The labeled curves correspond to the maxi-

mum, minimum, and mean speeds from Neolithic data s0.6–1.3

km/yrd. The hatched regions correspond to realistic ranges of the

initial growth rate and mobility for the Neolithic transition.

BRIEF REPORTS PHYSICAL REVIEW E 80, 057103 s2009d

057103-4

100



T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Anisotropic dispersion, space competition and the

slowdown of the Neolithic transition

Neus Isern1 and Joaquim Fort1

Complex Systems Lab, Departament de Física, Universitat de Girona,

17071 Girona, Catalonia, Spain

E-mail: neus.isern@udg.edu and joaquim.fort@udg.edu

New Journal of Physics 12 (2010) 123002 (9pp)

Received 15 September 2010

Published 3 December 2010

Online at http://www.njp.org/

doi:10.1088/1367-2630/12/12/123002

Abstract. The front speed of the Neolithic (farmer) spread in Europe

decreased as it reached Northern latitudes, where the Mesolithic (hunter-

gatherer) population density was higher. Here, we describe a reaction–diffusion

model with (i) an anisotropic dispersion kernel depending on the Mesolithic

population density gradient and (ii) a modified population growth equation.

Both effects are related to the space available for the Neolithic population. The

model is able to explain the slowdown of the Neolithic front as observed from

archaeological data.
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2

1. Introduction

The spread of the Neolithic, one of the most important socioeconomic changes in human

history, has been widely studied using physical models in recent years (for a review, see [1]).

The Neolithic expansion has been tackled from different approaches such as age-structured

population models [2], population spread along rivers [3] and settlement formation [4].

Here, we will focus on the fact that the spread of the Neolithic in Europe was not

homogeneous from the macroscopic point of view. Archaeological observations show that, as

the front propagated from the Near East across Europe, its speed slowed down as higher latitudes

were reached [5].

This decrease of the front speed can be intuitively seen from figure 1, which shows the

arrival time of the Neolithic across Europe. The arrow on the map represents the average

direction along which the expansion from the Near East to the Baltic Sea took place (within

the rectangle). In figure 1, it can be seen that the distance advanced during 500 years is lower on

reaching northern latitudes (a quantitative analysis will be presented in section 5).

Although it would seem that the more intuitive reason for the decrease in speed is the

time needed by crops to adapt to temperate climates, evidence exists that this effect was, in fact,

minimal [6]. Indeed, when establishing their settlements in colder regions, Neolithic populations

just cultivated the more adaptable crops and dropped the rest.

From archaeological studies, one of the most accepted reasons for the presence of

a gradient in the front speed when spreading to the North of Europe is the presence of

Mesolithic hunter-gatherer populations [7], which had higher densities at Northern latitudes.

Thus, motivated by the observational data, in this paper we extend a homogeneous model [8] to

study how the presence of indigenous Mesolithic populations affects the speed of the Neolithic

invasion front.

We describe a reaction–diffusion model for Neolithic population density with a direction-

dependent dispersion kernel determined by the space dependence of the Mesolithic population

density. We also introduce in this model the effect of the presence of Mesolithic populations

on the Neolithic population growth process. We compare the results from the model with

archaeological data [9].

2. Anisotropic dispersion kernel

In the case we assumed that the spread of the Neolithic front took place in a homogeneous

space, it would be reasonable to consider that the probability φ to jump would be the same in

all directions; thus, mathematically we would have [8, 10]

φ(x, y; θ,1)=
1

2π
ψ(1), (1)

that is, the jump probability could be expressed as a function ψ that depends only on the jump

distance, 1, and is independent of the jump direction θ or the position in space (x, y). We have

assumed that
∫

∞

0
1ψ(1)d1= 1.

However, Neolithic individuals do not move in a homogeneous space, since the density of

Mesolithic individuals they encounter depends on the position and direction they move. Then,

for a given position (x, y), the Neolithic individuals will preferably move in the direction along

which they encounter a lower Mesolithic population density, i.e. along the direction where more

free space is available.

New Journal of Physics 12 (2010) 123002 (http://www.njp.org/)

102



3

y

years Before
Present (BP)

< 5 500

5 500 - 6 000

6 000 - 6 500

6 500 - 7 000

7 000 - 7 500

7 500 - 8 000

8 000 - 8 500

8 500 - 9 000

9 000 - 9 500

> 9 500

Figure 1. Chronology of the Neolithic wave of advance in Europe. Map obtained

by interpolation of 765 early Neolithic data published by Pinhasi [9]. The arrow

corresponds to the y-direction in our model.

Thus, we can assume that, in this situation, the jump distance probability distribution (1)

will be modulated by the available space, s, at the final jump point (x +1x , y +1y), in each

direction θ = tan−1(1y/1x) and for every jump distance 1=
√

12
x +12

x . Thus, the dispersion

kernel is now of the form

φ(x, y; θ,1)= αs(x +1x , y +1y)ψ(1), (2)

where α is a normalization constant.

We now need a mathematical expression for the available space s(x +1x , y +1y). If Mmax

is the carrying capacity for Mesolithic populations and M(x, y) the actual density of Mesolithic

individuals at the position (x, y), then the fraction of occupied space at this point can be

expressed as

m(x, y)=
M(x, y)

Mmax

. (3)

Thus, the fraction of space available for Neolithic settlements is

s(x +1x , y +1y)= 1−m(x +1x , y +1y) (4)

and the space-dependent jump distance probability (2) can be written as

φ(x, y; θ,1)= α[1−m(x +1x , y +1y)]ψ(1). (5)
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For simplicity, we assume that the variation in Mesolithic population density takes place mainly

in one direction, y, in figure 1, whereas it remains approximately constant along the x-direction,

i.e.

φ(x, y; θ,1)= α[1−m(y +1y)]ψ(1). (6)

Now, Taylor-expanding the term within square brackets in equation (6), we obtain that the space-

dependent jump distance probability is approximately

φ(x, y; θ,1)= α

[

1−m(y)−
∂m

∂y
1 sin θ

]

ψ(1). (7)

Normalizing equation (7), we obtain that the normalization constant α is

α =
1

2π

1

1−m(y)
, (8)

and the jump distance probability becomes

φ(x, y; θ,1)=
1

2π

[

1−
∂m/∂y

1−m(y)
1 sin θ

]

ψ(1). (9)

We can see from equation (9) that if the Mesolithic (indigenous) population density M increases

along the direction y, then the probability of Neolithic invaders to jump forward (θ = π/2) is

minimum and the probability to jump backwards (θ = 3π/2) is maximum.

3. Population growth

In population dynamics, a commonly used expression to describe the first-order variation in

population density due to population growth (reproduction minus deaths) is the logistic growth

equation [8, 11, 12],

F(N )=
∂N

∂t

∣

∣

∣

∣

g

= aN

(

1−
N

Nmax

)

, (10)

where a is the initial growth rate, Nmax the carrying capacity and N the density of the Neolithic

population. The subindex g stands for population growth, i.e. for variations in population density

N due to births and deaths (but not to dispersal).

The logistic equation (10) describes an exponential growth for low values of population

density, whereas it is self-limiting for large densities, saturating at Nmax. Note that the limiting

term (within brackets) in equation (10) is similar to expression (4) for the available space that

we have used in the previous section. Therefore, one can say that population growth, according

to equation (10), is limited by the fraction of available space [12].

Now, equation (10) corresponds to a single population reproducing without external

competition. But when we have a second population using the same space and resources,

the presence of this additional population must also contribute to limiting the growth process.

Thus, we can modify equation (10) so that the growth function of the Neolithic population, N ,

also includes the effect of the fraction of space occupied by Mesolithic populations, M [12].

A population density M occupies a fraction M/Mmax of the space available, in addition to
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that occupied by N . Therefore, N within parentheses in equation (10) should be replaced by

(N + (M/Mmax)Nmax). Then,

F(N )= aN

(

1−
N

Nmax

−
M

Mmax

)

. (11)

Growth functions similar to (11) have been applied to competing micro-organisms [12].

4. Evolution equation

We can describe the variation in the Neolithic population density N , during a generation time T ,

as the sum of the variations due to the dispersion process and due to population growth (see [8]

for details),

N (x, y, t + T )− N (x, y, t)

=

∫ ∫

N (x −1x , y−1y, t)φ(x, y; θ, 1)d1x d1y − N (x, y, t)

+[N (x, y, t + T )− N (x, y, t)]g, (12)

where, as in equation (10), the subindex g stands for population growth (as opposed to dispersal,

which corresponds to the first two terms on the right-hand side).

Now, if we Taylor-expand equation (12) up to first order in time and to second order in

space, we find that

∂ N

∂t
=−Ux

∂ N

∂x
−Uy

∂ N

∂y
+ Uxy

∂2 N

∂x∂y
+ Dx

∂2 N

∂x2
+ Dy

∂2 N

∂y2
+ F(N ). (13)

We could also have Taylor-expanded equation (12) up to second order in time [8], finding in

this case slightly lower speeds; however, the conclusions we find here would not change.

The direction-dependent diffusion coefficients Dx and Dy , for our kernel (9), are

Dx =

〈

12
x

〉

2T
=

〈

12
〉

4T
≡ D, (14)

Dy =

〈

12
y

〉

2T
=

〈

12
〉

4T
≡ D, (15)

where T is the generation time, and the mean value of a variable, for example 〈12
x〉, is defined

as
〈

12
x

〉

=

∫ ∞

−∞

∫ ∞

−∞

12
xφ(1x , 1y)d1x d1y. (16)

The advection terms Ux , Uy and Uxy , using the kernel (9), are

Ux =
〈1x〉

T
= 0, (17)

Uy =

〈

1y

〉

T
=−2D

∂m/∂y

1−m(y)
, (18)
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Uxy =
〈
1x1y

〉

T
= 0. (19)

As could be expected from the fact that the jump probability distribution (9) depends only on

1y =1sin θ but not on 1x , we have obtained advection only in the y-direction, equation (18).

5. Front speed

As usual, we apply that for t →∞ the front can be considered locally planar; thus for y →∞
we can consider the variation in the x-direction negligible [13], and the evolution equation (13)

for y →∞ becomes

∂ N

∂t
= 2D

∂m/∂y

1−m(y)

∂ N

∂y
+ D

∂2 N

∂y2
+ F(N ), (20)

where we will use equation (11) for the growth function F(N ).

As usual [13], we look for constant-shaped solutions to equation (20) with the form

N = N0 exp[− λ(y− ct)] for N ≃ 0. As the Neolithic population density N at the leading edge

of the front is low, F(N ) in equation (11) can be linearized, and we obtain from equation (20)

λ=
(c−Uy)±

√
(c−Uy)2− 4aD(1−m)

2D
. (21)

In order for λ to be real, the term within the square-root must be non-negative, so the front speed

c is

c = 2
√

aD
√

1−m(y)− 2D
∂m/∂y

1−m(y)
. (22)

Equation (22) can be also obtained, without the need for equation (21), by noting that

equation (20) is simply Fisher’s equation with (i) a modified growth term (11), which after

linearization leads to a modified initial growth rate ã = a(1−m(y)), and (ii) an advection

velocity v = 2D
∂m/∂y

1−m(y)
. Thus, the speed of front solutions to equation (20) must be Fisher’s,

namely 2
√

ãD, minus the advection velocity, in agreement with equation (22). Moreover,

the front speed obtained from the linear analysis described above is a lower bound to the front

speed c. However, it is easy to apply variational analysis [14] and derive an upper bound with

the same result, so equation (22) is the exact front speed for equation (20).

From equation (22), we see that if the Mesolithic population density increases with y,

then the front speed decreases because of two effects: (i) the higher the gradient of the reduced

Mesolithic density m, the higher the correction on the front speed; (ii) the speed also changes if

there is less available space for the Neolithic population, i.e. for lower values of s = (1−m(y))

(if s = 1, this second effect disappears).

To see the actual behavior of the front speed, equation (22), we need an expression for the

variation of the Mesolithic population density M with y. However, the precise function M(y)

is unknown because published data on Mesolithic settlements are scarce and restricted to very

specific local areas, and also because the estimation of population densities from archaeological

data relies on assumptions that are difficult to test and cause important methodological

problems [15]. However, as explained in the introduction, we do know that the Mesolithic
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Figure 2. Test functions used for the increase of the reduced Mesolithic

population density (m = M/Mmax) along the y-direction. A1 = 0.999/1300,

B1 = 0; A2 =−0.1=−B2 = A3 = B3, τ2 =−ln(10.99)/1300=−τ3; A4 =
0.99, B4 = 42, τ4 = 1/0.007.

density did increase at northern latitudes [7]. Thus, we apply equation (22) to four different

test functions for the reduced Mesolithic density m(y)= M(y)/Mmax (see figure 2),

m1 = A1 y + B1,

m2 = A2 + B2 exp(y/τ2),

m3 = A3− B3 exp(−y/τ3),

m4 =
A4

1 + B4 exp(−y/τ4)
.

(23)

To estimate the anthropological parameters a and D appearing in equation (22), we apply that

the initial growth rate for preindustrial populations has a mean value of a = 0.028 year−1 [10],

the mean-squared jump distance is 〈12〉 = 1531 km2 [8] and the mean generation time is

T = 32 years [16]2

As we expected from equation (22), we see in figure 3 that each of the four test functions

leads to a decrease in the front speed along the y-direction. To better compare the results

with archaeological data, in figure 3 we have plotted c/cmax, where the maximum speed from

equation (22) is given by Fisher’s value [11],

cmax = 2
√

aD. (24)

In fact, this should be corrected due to a time-delay effect [8]. This would further complicate

our equations, so we will not include this effect because, rather than comparing to the absolute

2 For the estimation of the generation time T = 32 years, see note [24] in this reference.
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Figure 3. Curves: relative Neolithic front speed predicted by a model with

the dispersion and growth processes dependent on the presence of Mesolithic

populations, equation (25). Symbols: observed front speeds calculated from

archaeological data [9].

value of the maximum front speed (which we already analyzed in [8]), here we are interested in

focusing our attention on the slowdown effect. This is simpler by considering the relative speed

from equation (22),

c

cmax

=

√

1−m(y)−

√

D

a

∂m/∂y

1−m(y)
. (25)

In figure 3 we compare the results obtained from equation (25) (curves) with Neolithic front

speed data (symbols). The latter was obtained by computing the areas within isochrones

separated 250 years inside the rectangle in figure 1 (such isochrones are shown in figure 1 every

500 years for clarity)3.

Comparing the results from equation (25) to those from archaeological data in figure 3,

we see that, even though none of the four test functions reproduce exactly the behavior of the

archaeological data (which is not surprising for such a complex phenomenon), they do give a

good approximation to the general behavior (especially m4). Thus, a simple physical model can

explain qualitatively the decrease in the front speed during the Neolithic expansion range in

Europe. Therefore, physical models are useful to explain not only the average Neolithic front

speed [8], but also its gradual slowdown in space.

The reaction–diffusion model presented in this paper could be applied to many examples of

invasion fronts in which the indigenous population and the invasive one compete for space in a

single biological niche, both in natural habitats [17, 18] and in microbiological assays [12, 19].

3 In figure 3, we compare only the speed data calculated for latitudes above 45◦, since for lower latitudes there is

an important effect due to sea travel. The sites and dates used in our interpolations are those in [9].
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