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Abstract

Physical and mathematical models are extremely useful to understand key processes
in population and evolutionary dynamics. Such models allow the study of many diverse
features in spatial systems such as front propagation, the evolution of the population
number density, interactions between species (or individuals), the evolution of strategies,
etc. This thesis is devoted to several physical models describing spatial systems.
The �rst model in this thesis (chapter 4) focuses on the e¤ects of the population

structure in two-dimensional invasive fronts. An expression for the front speed is de-
rived from the equations for structured populations. When comparing its results with
the front speed of non-structured populations, the structured-population model displays
more reasonable results. Moreover, the model is applied to postglacial tree recoloniza-
tion fronts, for which the importance of the overlapping-generation e¤ect is analyzed.
Reaction-di¤usion equations are used in chapter 5 to describe Vesicular Stomatitis

Virus infections. A several-species model is developed which describes the interactions
between uninfected cells, infected cells and virus populations. Moreover, the delay time
that the virus needs to reproduce inside the host cell is considered by the model. Such a
delay time is shown critically important in order to predict infection speeds that agree
with experimental data.
Chapter 6 derives an approximate front speed from the equations of several bio-

physical systems presenting lag (delay) times. Remarkably, if high reproduction rates
are considered, the same approximate expression is attained for both non-structured
and structured populations. The approximate speed is extremely simple, and it agrees
with an approximate expression presented in chapter 5 for virus infections speeds. The
approximate speed is able to explain observed spread rates of several virus species, tree
species as well as the Neolithic transition.
The Prisoner�s Dilemma game is used in chapter 7 to study the evolution of co-

operation and defection strategies. Punishment is introduced in virtual populations as
an action which follows, with a certain probability, the Prisoner�s Dilemma game in-
teractions. Furthermore, the model considers that agents undergo continuous motion,
instead of jumping on the nodes of a grid. Simulations show that low doses of mobility
and social punishment (i.e., the possibility for cooperators to punish those who free
ride) are specially e¤ective to enhance cooperation.





Resum

Els models físics i matemàtics són de gran utilitat a l�hora d�entendre processos clau
en la dinàmica poblacional i evolutiva. Aquests models permeten l�estudi de caracterís-
tiques molt diverses dels sistemes espacials, com són la propagació de fronts, l�evolu-
ció de la densitat de població, les interaccions entre espècies (o individus), l�evolució
d�estratègies, etc. Aquesta tesi presenta diversos models físics que descriuen sistemes
espacials.
El primer model d�aquesta tesi (capítol 4) estudia els efectes de l�estructura de la

població en fronts invasius bidimensionals. Una expressió per la velocitat del front
és derivada de les equacions per a poblacions estructurades. Quan es comparen els
seus resultats amb la velocitat de fronts de poblacions no estructurades, el model de
poblacions estructurades presenta resultats més raonables. A més, el model s�aplica
a fronts arboris de recolonitzacions postglacials, en el marc dels quals s�analitza la
importància de les generacions solapades d�arbres.
Al capítol 5 s�utilitzen equacions de reacció-difusió per descriure infeccions del Vesic-

ular Stomatitis Virus. A aquest efecte, es desenvolupa un model per a múltiples espècies
que descriu les interaccions entre les poblacions de cèl�lules no infectades, cèl�lules in-
fectades i virus. A més, el temps de retard que el virus requereix per reproduir-se a
dins de la cèl�lula hoste és considerat pel model. S�observa que aquest temps de retard
té una importància crítica per tal de predir velocitats d�infecció que concordin amb les
dades experimentals.
Al capítol 6 es deriva una velocitat de front aproximada a partir de les equacions

per diversos sistemes biofísics que presenten temps de demora (retard). Notablement,
si es consideren taxes de reproducció elevades, s�obté la mateixa expressió tant a partir
de l�assumpció de poblacions no estructurades com la de poblacions estructurades. La
velocitat de front aproximada és extremadament simple, i coincideix amb una expressió
aproximada per velocitats d�infeccions víriques al capítol 5. L�expressió aproximada
és capaç d�explicar velocitats de propagació observades de diverses espècies de virus,
espècies d�arbres i la transició del Neolític.
El joc del Dilema del Presoner s�utilitza al capítol 7 per estudiar l�evolució d�estratè-

gies de cooperació i deserció. El càstig és introduït a poblacions virtuals com a una
acció que segueix, amb una certa probabilitat, les interaccions del joc del Dilema del
Presoner. Més encara, el model considera que els agents experimenten una mobilitat
continua, en comptes de moure�s sobre vèrtex d�una xarxa. Les simulacions mostren que
dosis reduïdes de mobilitat i càstig social (és a dir, la possibilitat que els cooperadors
castiguin als desertors) són especialment efectives per incentivar la cooperació.





Resumen

Los modelos físicos y matemáticos son de gran utilidad a la hora de entender procesos
clave en la dinámica poblacional y evolutiva. Estos modelos permiten el estudio de muy
diversas características de los sistemas espaciales, como son la propagación de frentes,
la evolución de la densidad de población, las interacciones entre especies (o individuos),
la evolución de estrategias, etc. Esta tesis presenta varios modelos físicos que describen
sistemas espaciales.
El primer modelo de esta tesis (capítulo 4) estudia los efectos de la estructura

de la población en frentes invasivos bidimensionales. Una expresión para la velocidad
del frente es derivada de las ecuaciones para poblaciones estructuradas. Cuando se
comparan sus resultados con la velocidad de frentes de poblaciones no estructuradas,
el modelo de poblaciones estructuradas presenta resultados más razonables. Además, el
modelo se aplica a frentes de recolonizaciones posglaciales, en el marco de los cuales se
analiza la importancia de las generaciones solapadas de árboles.
En el capítulo 5 se utilizan ecuaciones de reacción-difusión para describir infecciones

del Vesicular Stomatitis Virus. A este efecto, se desarrolla un modelo para múltiples
especies que describe las interacciones entre las poblaciones de células no infectadas,
células infectadas y virus. Además, el tiempo de retraso que el virus requiere para
reproducirse dentro de la célula huésped es considerado por el modelo. Se observa que
dicho tiempo de retraso tiene una importancia crítica a la hora de predecir velocidades
de infección que concuerden con los datos experimentales.
En el capítulo 6 se deriva una velocidad aproximada del frente a partir de las

ecuaciones para diversos sistemas biofísicos que presentan tiempo de demora (retra-
so). Notablemente, si se consideran tasas de reproducción elevadas, se obtiene la misma
expresión tanto a partir de la conjetura de poblaciones no estructuradas como de la
de poblaciones estructuradas. La velocidad aproximada del frente es extremadamente
simple, y coincide con una expresión aproximada para velocidades de infecciones víricas
en el capítulo 5. La expresión aproximada es capaz de explicar velocidades de propa-
gación observadas de diversas especies de virus, especies de árboles y la transición del
Neolítico.
El juego del Dilema del Prisionero se utiliza en el capítulo 7 para estudiar la evolu-

ción de estrategias de cooperación y deserción. El castigo es introducido en poblaciones
virtuales como una acción que sigue, con una cierta probabilidad, a las interacciones del
juego del Dilema del Prisionero. Adicionalmente, el modelo considera que los agentes
experimentan una movilidad continua, en lugar de moverse sobre los vértices de una
malla. Las simulaciones muestran que dosis reducidas de movilidad y castigo social (es
decir, la posibilidad de que los cooperadores castiguen a los desertores) son especial-
mente efectivas para incentivar la cooperación.
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With the Universe came Physics,

Physics led to Life,

then Life spread and brought Cooperation.

One day Cooperation shaped humans,

and ever since we try to solve this Puzzle.
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Chapter 1

Introduction

This thesis is devoted to a variety of population dynamics phenomena, including eco-
logical populations (chapter 4), microbiological ones (chapter 5), an approximate front
speed for populations displaying lag-driven migrations (chapter 6) and the evolution of
cooperation under dispersal (chapter 7). In all of these works, the dynamics of biolo-
gical populations is studied, �rst focusing on the evolution of the population density
(chapters 4-6) and then extending our scope to tackle the evolution of cooperation
(chapter 7). Although all chapters can be potentially applied to many di¤erent bio-
logical species, for the sake of de�niteness and clarity we consider speci�c examples,
namely trees in chapter 4, viruses in chapter 5, and humans in chapter 7. Moreover,
these three species are considered in the analysis of an approximate expression for the
spread rate in chapter 6.
The �rst section in this chapter aims to provide a brief overview on previous popula-

tion dynamics models, specially focusing on those works which particularly inspired the
models in chapters 4-6. A second section is devoted to an introduction to the exciting,
non-solved, interdisciplinary problem of cooperation, which has motivated the work in
chapter 7. Finally, the last section summarizes the population dynamics models in this
thesis.

1.1 Previous biological populations dynamics mod-
els

In the last century, reaction-di¤usion models were applied to model many biological and
cross-disciplinary complex systems [1]. One of the �rst remarkable works focusing on
biological fronts was performed by R. A. Fisher in 1937. With the aim of modelling the
wave front speed of advantageous genes, Fisher used the following simple, di¤erential
equation [2]:

@p

@t
= D

@2p

@x2
+mp(1� p) (1.1)

where p = p(x; t) is the frequency of the mutant gene at position x and time t, D
the di¤usion coe¢ cient of the gene in the considered linear habitat, and m the intensity

1



of selection in favour of the mutant with respect to the standard gene [which exhibits
the frequency (1 � p)]. From the above equation (1.1) Fisher derived the front speed
c = 2

p
Dm (which is presently known as Fisher�s speed).

Some years later, in 1951, J. G. Skellman applied the two-dimensional (2D) version of
Fisher�s equation to biological invasions in general [3], using p(x; y; t) for a population
density rather than a gene frequency. In the following decades, similar models were
applied to rather di¤erent spreading systems such as human population fronts [4], viral
infections [5], tumor growth [6], combustion fronts [7], superconductors [8], etc.
In 1999, Fort and Méndez published a seminal paper in which the critical importance

of a delay time elapsed between successive migrations was shown in the context of
front propagation [9]. With this purpose, Fort and Méndez presented the following
Hyperbolic Reaction-Di¤usion (HRD) equation:

@p

@t
+
T

2

@2p

@t2
= D

�
@2p

@x2
+
@2p

@y2

�
+ F +

T

2

@F

@t
; (1.2)

which contains second-order terms in order to account for the delay time T . In Eq.
(1.2), F corresponds to the population growth function, and the population density
is computed in two dimensions (i.e., p = p(x; y; t)). Note that, if no delay time is
considered (i.e., T = 0), then the 2D version of Fisher�s equation (1.1) is recovered (F
would correspond to the term mp(1� p) in the above case).
The original work in Ref. [9] applied the HRD equation (1.2) to the Neolithic popu-

lation front. However, in more recent works the HRD equation has been used to model
the spread of multiple systems, such as virus infections [10] or cancer spread [11].
The HRD equation is a di¤erential equation that receives special attention in this

thesis, since it is used to model the spread of several species in chapters 5 and 6. In
addition to this equation, in the next chapters several reaction-di¤usion and reaction-
dispersal equations are used to describe biological populations dynamics. The following
three subsections aim to introduce the biological systems (as well as the corresponding
theoretical framework) we study in this thesis.

1.1.1 Postglacial tree recolonizations

The transition from the Pleistocene to the warmer Holocene series took place about
12; 000 years ago. The end of the last Ice Age was followed by global-scale plant mi-
grations, and thus high-latitude territories were colonized by trees. However, classical
models cannot explain the tree rapid spread (102 � 103 m/yr) estimated from the pa-
leorecord [12]. This problem is known as the Reid�s Paradox [13] in honor of Clement
Reid�s, who in 1899 calculated the apparently unrealistic dispersal distances that were
required to predict observed postglacial recolonization speeds [14].
In 2007, J. Fort [15] developed a 2D model for tree populations based on the in-

tegrodi¤erence equation:

p(x; y; t+ T ) = R0
R +1
�1

R +1
�1 p(x+4x; y +4y; t)

�(4x;4y)d4x d4y;
; (1.3)
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where p(x; y; t) stands for the tree population density per unit area, and R0 is the net
reproductive rate of seeds per parent tree and year. The dispersal kernel �(4x;4y) is
the probability per unit area that a seed falling from a parent tree at (x+4x; y+4y; t)
reaches the ground at (x; y; t+T ), where T is the time interval between two subsequent
jumps. Fort�s model is remarkably simple because it assumes non-overlapping genera-
tions (i.e., every tree reproduces only once and then dies). Thus, the interval time T
considered in Eq. (1.3) corresponds to one generation (i.e., the mean maturation time)
of the tree species. In Ref. [15], Fort showed that long-distance dispersals (see below)
lead the nonoverlapping model to predict notably high spread rates.
Long-distance dispersals are the consequence of rare events (e.g., heavy storms,

tornados, transport by migratory animals [16]) which can disperse seeds to distances
in the range 103 � 104m, and even farther. Although long-distance dispersals are very
infrequent (they usually a¤ect less than 1% of the seeds), they embrace notably higher
distances than those considered by short dispersal kernels (i.e., the range 101 � 102m)
[16, 17]. In Ref. [15], Fort considered long-distance dispersal data (which had been
recently published by Nathan et al. [18]) a¤ecting the yellow poplar species. This led
to front speed solutions which could explain the rapid tree migration at the end of the
Pleistocene.
The question arises of how overlapping generations of individuals (or, more generally,

the population�s structure) can a¤ect the dynamics of the population. In the context
of biological invasions (such as postglacial recolonizations), it is sensible to think that
individuals taking part in multiple reproduction events can directly a¤ect the front
speed. In 2000, Neubert and Caswell [19] published the �rst attempt to derive an
expression for the invasion speed of structured populations. However, the authors
considered the speci�c and limiting case of 1D invasions [19]. Although 1D habitats
have classically been considered when studying structured populations, this case is
certainly not applicable to the majority of biological invasions.

1.1.2 Virus infection fronts

The interaction between a virus and its corresponding host cell is a very relevant issue
which goes beyond biological or medical interest. Indeed, from the physical perspective,
the understanding of the processes governing this multiple-species system becomes an
intriguing challenge. Rather surprisingly, few models have focused on the dynamics and
the spread of several generations of viruses infecting a population of cells.
Focal infection experiments permit an in-deep analysis of this system in the laborat-

ory. In focal infections, a certain concentration of virus is inoculated into a very small
region (r = 0) in a layer of immobilized host cells. Virions are able both to di¤use
in the extracellular medium and to infect the cells. When a cell is infected, the virus
reproduces inside it until the cell dies, thus releasing a new progeny that will bear
new infection cycles. As a result, an approximately circular region of dead cells (i.e., a
plaque) is observable in focal infection experiments. Moreover, the bound of the plaque
advances at an approximately constant speed which depends on speci�c features of the
virions, the host cells and the extracellular medium, as we shall see below.
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In a growing plaque, the interactions between uninfected cells, infected cells and
virions can be summarized by the reactions [10,20,21]:

V + C
k1! I

k2! Y V; (1.4)

where k1 is the adsorption rate of viruses V into uninfected cells C, k2 is the rate
constant for the death of infected cells I, and the yield Y is the number of new viruses
produced per infected cell.
In 1992, Yin and McCaskill [22] proposed a reaction-di¤usion model to describe the

dynamics of bacteriophages (viruses that infect bacteria). The evolution of the system
was governed by the reaction-di¤usion equations:

@[V ]

@t
= D

@2[V ]

@r2
� k1[C][V ] + Y k2I; (1.5)

@[C]

@t
= �k1[C][V ]; (1.6)

@[I]

@t
= k1[V ][C]� k2[I]; (1.7)

where the symbols [:::] denote concentration, andD is the di¤usivity of the virions in
the extracellular medium 1. Note that in Eq. (1.5) the limit r ! 0 has been considered,
so that the Laplacian is r2[V ] = @2[V ]

@x2
+ @2[V ]

@y2
= @2[V ]

@r2
+ 1

r
@[V ]
@r

' @2[V ]
@r2

, where we have
assumed that [V ] depends only on r but not on the polar angle.
In 2002, Fort andMéndez [10] developed a model that improved previous works (such

as the above model by Yin andMcCaskill [22]), as it took into account the actual delayed
di¤usion a¤ecting the virus population. Noticing that the virus spends some time into
the host cell before yielding the new progeny, Fort and Méndez used the HRD equation
(1.2) to describe virus spread. This leaded to predicted front speeds showing perfect
agreement with experimental results, in contrast with the spread rates obtained from
the non-delayed theory [Eqs. (1.5)-(1.7)]. Moreover, the authors introduced additional
important terms in their equations, thus modelling relevant features of the system such
as hindered di¤usion (due to the presence of cells in the medium) and a more realistic
logistic growth for infected cells.

1.1.3 The Neolithic transition

The �rst Eurasian agricultural civilizations appeared about 10; 000 years ago in the
Near East, and spread gradually across Europe. The resulting transition from hunter-
gathering (Mesolithic) to farmer (Neolithic) economics is known as the Neolithic trans-

1The original equations for the virus-host system in Ref. [22] contain an additional term for the
desorption of virions from their host. However, the desorption rate constant k�1 is generally not
signi�cant in comparison with k1. As a result, the desorption rate does not appear in more recent
models of the same authors [23]. Accordingly, the original terms containing k�1 have been omitted in
Eqs. (1.5)-(1.7).
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ition. The expansion process lasted about 5000 years until farming reached the western
European coasts.
The idea of an expansion of migratory farmers (called demic di¤usion) coming from

the Near East and colonizing Europe was �rst introduced by Childe in 1925 [24, 25].
However, the �rst population dynamics model for the Neolithic would not appear until
1973. Noticing that radiocarbon dates revealed an approximately steady rate of spread
[26], Ammerman and Cavalli-Sforza applied the wave of advance model (i.e., the same
model used by Fisher and also by Skellman some decades before, see Sec. 1.1) to the
Neolithic transition [27,28].
Following this �rst model by Ammerman and Cavalli Sforza, the Neolithic transition

has been widely studied using physical and mathematical models (for a recent review,
see [4]). Some of the di¤erent approaches used to describe the Neolithic expansion
include age-structured population models [29], realistic dispersal kernels [30] and set-
tlement formation [31]. In 2005, Pinhasi et al. [32] improved previous data analysis by
studying a database of 735 early Neolithic sites from Europe and the Near East. This
permitted the authors to derive a range for the spread of farming in Europe of 0:6�1:1
km/yr 2.
Recently, N. Isern devoted her PhD thesis [33] to model the Neolithic transition. Her

work not only shaded some light on fundamental questions of the Neolithic transition,
but also led to remarkable advances in front spreading. For example, Isern and her
collaborators explored the e¤ects on the Neolithic front speed when considering complex
dispersal kernels, took proper care of reactive terms in the HRD equation (1.2), and
developed models which could explain the slowdown of the Neolithic transition at high
latitudes.

1.2 Evolution of cooperation

Creatures of every persuasion and level of complexity cooperate to live.
Martin A. Nowak

The revolutionary masterpiece On the Origin of Species by Means of Natural Selec-
tion, or the preservation of Favoured Races in the Struggle for Life, published in 1859
by Charles Darwin, laid the foundations for the contemporary theoretical framework of
evolution. Though his book inspired uncountable powerful advances (and it still does),
Darwin himself thought that cooperation had escaped from his pioneering vision of the
struggle for existence. Apparently, only sel�sh individuals could live in a world ruled
by competition and natural selection.
From cellular cooperation (which permits multicellular life) to social establishment

(not necessarily human), cooperation in nature presents manifold faces. In 1902, Pyotr
A. Kropotkin proposed the �rst solid interpretation that suited cooperative behavior to
evolution [34]. Many leading-edge ideas on the subject were shaped in the 20th century,
such as inclusive �tness theory by W. D. Hamilton in 1964 [35]. In his seminal work,

2This observed range for the spread of the Neolithic population is discussed in section 3.1.3.
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Hamilton proposed that natural selection acts towards genes, rather than individuals.
This could lead individuals sharing speci�c genes to cooperate with each other. In
1973, J. Maynard Smith and G. R. Price tackled the question of cooperation from the
innovative perspective of evolutionary game theory [36]. This new vision remarkably
promoted the mathematical analysis of cooperation. A few years later, R. Axelrod
and W. D. Hamilton organized a computer tournament [37] in which several strategies
(proposed by many scientists around the world) were challenged in a repeated version
of the Prisoner�s Dilemma (PD) game (which will be introduced in chapter 7). In the
last four decades, a huge amount of seminal works have established evolutionary game
theory as the major tool for the study of cooperation (for a recent review, see Ref. [38]).

The main idea on evolutionary game theory lays in playing multiple rounds of a
game. In such game, individuals can reach di¤erent payo¤s (or �tness, in the case of
biological studies) depending on the strategy they play. One of the most commonly
used games is the Public Goods (PG) game. Let us present this game with a classical
one-shoot experiment. Initially, n players (let us consider, e.g., n = 6) are given $10
each. They will be asked to make a choice between whether investing their money in
a common pool or not. They know that the experimenter will triple the amount accu-
mulated in the common pool at the end of the round, then divide the resulting amount
between the six players (irrespective of wether they contributed or not). Provided all
the players contribute, the game ends with $30 in each player�s pocket. However, a
rational player is tempted to free ride, contributing nothing to the common pool but,
nevertheless, receiving the bene�ts produced by contributors. For example, if only one
player chooses to free-ride (defect), the common pool will accumulate $50 (i.e., $150
after the experimenter triples the investments). Hence the defector would end the game
with $35 (i.e., $25 plus the original $10), which is more than he/she can achieve by con-
tributing (cooperating). Indeed, a sel�sh player will always defect, independently of
the strategies his/her coplayers play. This leads rational players to engage in the worst
scenario in which no one contributes, producing no bene�ts at all. In the case of playing
multiple rounds, this outcome would last until the game was ended. This situation is
known as the tragedy of the commons3, and it is useful to describe relevant problems
such as global warming or recycling. In both cases, the contribution from cooperat-
ors (e.g., countries contributing to reduce the CO2 emissions) will bene�t the whole
population (including free-rider countries).

Fortunately, in human societies (and in biological populations in general) coopera-
tion is present, indicating cooperative behavior is worth at least in some special situ-
ations. In the last years, a large number of studies have focused on several key mechan-
isms for the evolution of cooperation, such as kin selection [35], spatial structure [39],
group selection [40], reciprocity [37, 41] or punishment [42]. The last one (as well as
the indirect kind of reciprocity [41]) is inherent to humans because it requires complex
cognitive abilities.

3This deplorable outcome of sel�sh motives is also known as social dilemma, free-rider problem or
market failure.
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1.3 Population dynamics models in this thesis

1.3.1 Overlapping-generations model

The previous nonstructured-populations model for postglacial recolonization fronts in-
troduced in section 1.1.1 naturally suggests a rigorous analysis beyond the nonoverlapping-
generations assumption. Chapter 4 presents a structured-population model in which
the e¤ects of overlapping-generations are studied. In contrast to previous 1D studies
on structured-populations (which consider linear habitats), an expression for the front
speed of 2D biological invasions is derived. For this purpose, the paper in chapter 4
improves the matrix notation by Neubert and Caswell [19] in order to describe both
reaction and dispersal processes a¤ecting populations in two dimensions. Analytical
results are obtained from both continuous-space and discrete-space random-walk theor-
ies and veri�ed with reactive random-walk simulations (see chapter 3). Chapter 4 also
compares the speed of 2D fronts with the results from the 1D theory.

Finally, the overlapping-generations model is applied to the yellow poplar species.
This allows a comparison with the nonoverlapping-generations model in the context of
postglacial recolonizations fronts. The discussion in chapter 4 reveals that theoretical
front speeds from both models could solve the Reid�s paradox if long-distance dispersal
events are considered. However, the overlapping-generations assumption is a more
realistic approach, since it better describes the population dynamics in a wide range of
situations (e.g., considering low reproduction rates).

1.3.2 Virus infection speeds

Chapter 5 presents a time-delayed model for the Vesicular Stomatitis Virus (VSV),
which infects mammalian cells. In this work, the model for virus infections in Ref. [10]
is improved in order to properly compute the time partial derivative of the growth func-
tion in the HRD equation, as it was recently proposed by Isern and Fort for single-species
systems [43]. The front speed of VSV infections is computed from reaction-di¤usion dif-
ferential equations (see chapter 3). Moreover, theoretical front speeds are conveniently
checked with results from numerical integration (see chapter 3), which additionally per-
mit to study the evolution of the concentration pro�les. Both theoretical results and
simulations yield front speeds which are in perfect agreement with observed data on
VSV infections. Remarkably, chapter 5 proposes an extremely simple, approximate
expression for the spread rate of viruses (see also the following subsection). The ap-
proximate front speed is extraordinarily helpful in order not only to simplify the exact
theoretical results from the complex equations of the system, but also to understand
the critical importance of the delay time in VSV infections.

Finally, the work in chapter 5 aims to avoid the use of adjusted parameters. Re-
markably, the only two nonmeasured parameters in the model are shown to be not
crucial for the main conclusions in that chapter.
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1.3.3 Lag-driven motion in front propagation

When considering the limit of high reproduction rates, the same approximate front
speed is obtained from several models of populations showing time-delayed migrations.
This approximate speed simply reads:

c =

r
2D

T
: (1.8)

In chapter 6, the above approximate front speed is derived from three reaction-
di¤usion models, namely, the HRD equation (1.2) for one species systems, the structured
populations model in chapter 4 and the multiple species model for virus infections in
chapter 5. Moreover, the approximate speed (1.8) is compared with both analytical
exact solutions and numerical simulations results for several biological population fronts
described by the three models. Observed spread rates on speci�c biological populations
(namely, the Neolithic transition, postglacial recolonization fronts and several virus
infections) are compared to theoretical solutions for the front speed. For all the cases
analyzed, the approximate front speed (1.8) lies within the corresponding observed
range.

1.3.4 Probabilistic punishment in mobile populations of Pris-
oner�s Dilemma players

Chapter 7 focuses on the spread and success of cooperative strategies when mobile
players are able to punish their partners. Among the wide list of recent studies on
cooperation, two recent papers specially inspired the paper in chapter 7. On the one
hand, Meloni et al. noticed that continuous motion of players is a seldom studied
scenario [44]. In fact, player�s mobility has been traditionally restricted to the vertexes
of grids (or networks). On the other hand, an innovative experiment by Herrmann
et al. [45] showed that human players punish not only defector partners with notable
frequency, but also cooperators.
The model in chapter 7 considers players engaging continuous motion within a 2D

square. The usual scenario where sel�sh motives are favoured is evidenced through the
Prisoner�s Dilemma (PD) game (which can be seen as the two-persons version of the
PG game explained in section 1.2). The model presents an innovative way to introduce
punishment by means of a probability to punish the coplayer that is directly assigned
to interactions. More speci�cally, two types of punishment are considered. While the
social punishment probability determines the frequency of cooperator against defector
punishments, the nonsocial punishment probability rules for the rest of the interactions.
Extensive simulations in chapter 7 analyze the e¤ects of all the relevant parameters

(namely, the temptation to defect, the mobility and the probabilities of both social and
nonsocial punishment) of the model. Modest doses of mobility or punishment are shown
to enhance the fraction of cooperators in the system. Noticeably, these results resist a
moderate practice of non-social punishment (which directly acts towards cooperation)
in the system.
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Chapter 2

Objectives

The main aim of this thesis is to study several spatial systems from a biophysical
perspective. The work that has yielded the papers in the next chapters has been
motivated by the following main objectives:

� Studying the e¤ects of the overlapping-generations in 2D population fronts. The
front speed from the 2D structured populations theory will be compared to ob-
served spread rates of postglacial forest recolonizations, and to previous nonover-
lapping 2D and overlapping 1D models.

� Developing a model for VSV focal infections using realistic time-delayed reaction-
di¤usion equations. Assessing the role that the delay (or lag) time has in VSV
infections. This aim will be accomplished by comparing the front speed from
the time-delayed model with observed front speeds and the results from previous
non-delayed models.

� Analyzing the validity of a new approximate front speed, namely c = (2D=T )1=2,
in the context of several time-delayed, biological population fronts. Checking
its results by comparing to exact theoretical results and observed spread rates
of three di¤erent biological systems (namely, virus focal infections, the Neolithic
transition, and postglacial forest recolonizations).

� Studying the evolution of cooperation in spatial systems where agents can both
move continuously and punish. Considering both social and nonsocial practices
of punishment with the aim to check their e¤ects in virtual populations playing
the PD game.
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Chapter 3

Materials and Methods

This chapter provides an in-deep discussion on some empirical data for the biological
populations considered in this thesis, as well as an assembled description of the ana-
lytical and numerical methods which were necessary to develop the models. Since
this thesis has been prepared as a collection of papers, some of the information in the
sections below may be summarized in the following chapters. In order to study the dy-
namics of biological populations, the models in next chapters make use of two kinds of
equations which require rather di¤erent techniques to compute the front speed. Thus,
the analytical and numerical methods have been classi�ed according to which kind of
equation they are appropriate to solve. The last section in this chapter presents some
experimental evidences which support the use of punishment in models for the evolu-
tion of cooperation, as well as a concise explanation regarding how periodic boundary
conditions are applied in chapter 7.

3.1 Empirical data

3.1.1 Postglacial recolonizations

� Age at �rst reproduction T . This parameter determines the age at which
trees reproduce for the �rst time. Observed values of the maturation age of many
tree species have been previously published in several US agriculture department
handbooks (see, e.g., Refs. [46,47]). In this work we shall use values of T for the
following two species. The range 15 � 20 yr for the age at �rst reproduction of
the yellow poplar was observed in the review of the silvical characteristics of this
species by Donald E. Beck in Ref. [46]. For the case of the black alder, the value
T = 6 yr lays within the observed range published in the study by Harrington et
al. [47].

� Characteristic dispersal distance � (or �0) . The seed dispersal distances
considered in this thesis correspond to long-distance dispersal (see Sec. 1.1.1),
because short-distance dispersal has a negligible e¤ect on front spread rates [15].
In a previous work by Nathan et al. [18], a mechanistic model for the long-distance
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dispersal of seeds by wind was tested against seed data collected along a 45mwalk-
up tower. 102 seed traps placed at 12 levels along the tower collected thousands
of seeds of �ve wind-dispersed tree species (including the yellow poplar species)
during 35 summer days. This led the authors to predict with their mechanistic
model long-distance dispersal in the range 103 � 104 m. In chapters 4 and 6,
realistic dispersal distances which lay within this range are considered (namely
� = 6 � 103 m and � = 6:5 � 103 m for the yellow poplar and the black alder,
respectively). The probability of long-distance dispersal is discussed below (in the
persistence paragraph).

� Net reproductive rate per tree and year R0. The net reproductive rate is
computed as the product of the per capita seed production f and the seed survival
rate s. Yellow poplar per capita seed production is of the order of 104 seeds per
year, according to �eld observations in Ref. [46]. Concerning postdispersal seed-
to-survival, D. De Steven performed an experimental study in which seeds of
several trees were sown in di¤erent treated sites. For the yellow poplar species,
a survival rate of 0:06% was observed in weeded �elds, but seeds were unable to
succeed in herbaceous covers. In agreement with these results, the seed survival
of the species lays in the range 0:00� 0:06%. In this thesis we consider the mean
value of this range, i.e., s = 0:03. Thus, the range for R0 = fs applied in next
chapters corresponds to 3� 30 seeds / tree yr for the yellow poplar.
Previously published data on the black alder silviculture [47] establishes a per
capita seed production of the order of 104 seeds per year. On the other hand, no
available data has been found on the seed survival rate of this species (indeed,
quantifying the survival of seeds travelling long distances is a major challenge for
any tree species, since tracking long-distance dispersal events is a very di¢ cult
task [48]). For this reason, in this thesis the survival rate of black alder seeds has
been approximated as s = 0:03 (i.e., the same survival rate considered above for
the yellow poplar species). Hence, the estimated range for the net reproductive
rate of black alder is 3� 30 seeds / tree yr.

� Lifespan l. The lifespan determines the order of the matrices in the equations of
the overlapping-generations model (chapter 4). According to �eld observations in
Ref. [46], the fertile age of yellow poplar trees lasts to a maximum of 200 years.
In chapters 4 and 6, the considered lifespan value is below this maximum, namely
l = 130 yr 1.

� Persistence pe. The model by Nathan et al. [18] was able not only to pre-
dict long-dispersal distances, but also uplifting probabilities for several species.
Seed uplifting (i.e., elevation above the top of the canopy) is necessary for wind-
mediated long-distance transport of seeds. In Ref. [18] the uplifting and nonuplift-
ing probabilities of yellow poplar seeds were represented as a function of the

1As it will be mentioned in chapter 4, considering larger values of l (e.g., l = 200) does not apreciably
change the front speed predicted by the overlapping generations model.
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dispersal distance (see Fig. 2 in Ref. [18]). J. Fort used this information to com-
pute a mean probability of 0:202% for wind associated long-distance dispersals.
The persistence parameter pe accounts for the probability that a seed falls at a
distance much smaller to those corresponding to long-range dispersal. Because
short-range dispersal has a negligible e¤ect on front speed [15], the models in
following chapters assume that seeds are either dispersed to long distances (with
probability 0:202%, see above) or not dispersed at all. Accordingly, the value of
the persistence corresponds to pe = 1� 2:02 � 10�3 = 0:99798.

� Postglacial tree spread rate. Tree spread rates at the end of the Pleistocene
have been estimated mainly from the fossil record. 14C-dated pollen sequence
analysis from temperate lakes has established postglacial spread rates in the range
102 � 103 m yr�1 for multiple tree species [49�53]. In Ref. [49] H. J. B. Birks
performed a detailed isochrone mapping of the British Isles from 135 radiocarbon
pollen diagrams. For the special case of the black alder, such isochrones (which are
compared to theoretical results in chapter 6) revealed a spread rate of 500�600 m
yr�1, which is reduced to 50� 150 m yr�1 when reaching northern latitudes [49].
Recolonization speeds in the range 102 � 103 m yr�1 have been compared in
previous works [12, 15] to theoretical predictions for the yellow poplar, as it is
done in this thesis (chapters 4 and 6).

3.1.2 Focal infections

� Di¤usion coe¢ cient D. In focal infections, this parameter refers to the di¤us-
ivity of the virus species in the extracellular medium (i.e. agar). To the best of
our knowledge, neither the VSV (studied in chapters 5 and 6) nor the T7 (chapter
6) di¤usion coe¢ cient in agar has been measured. As it has been previously done
in Ref. [10], the di¤usivity of T7 is approximated to the observed value for a virus
species which is similar in size and shape [54]: the P22 virus. For the case of
the VSV, two approximate values are used in the following chapters. On the one
hand, the di¤usivity of the VSV in water (which was measured in Ref. [55]) is
applied. On the other hand, the di¤usivity of the P22 in agar is also used to
describe the di¤usion of the VSV.

The di¤usion coe¢ cient of the p22 through agar was measured by Stollar and
Levine in Ref. [54]. The authors used the technique of double di¤usion in agar
in two dimensions, which allows both a virus and its corresponding antibody to
di¤use toward each other from two separate depots. At the point where the virus
and the antibody meet, an observable precipitate is formed2. Stollar and Levine
initially stored the p22 virus and its antigen in troughs (which had previously
been moulded into the agar layer) at right angles to each other, as shown in Fig.
3.1. As a result of the di¤usion of both the virus and the antibody, a precipitin
straight band (represented by the arrow in Fig. 3.1) appeared in the agar. The

2The observability of the precipitate depends on the transparency of the agar gel and the concen-
trations of both the virus and the antigen, see Ref. [54].
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Figure 3.1: Scheme of the experimental setup for the measure of the di¤usion coe¢ cient
of the p22 virus, as described by Stollar and Levine [54]. As expected intuituvely, the
precipitin band �rst appears at the point where the reactants are closest, then it extends
outwards (as indicated by the arrow).

angle � between this band and the virus trough is such that tan � = (Dv=Da)
1=2,

where Dv and Da are the di¤usion coe¢ cients of the virus and the antibody,
respectively. From the value of Da (namely, 1:37 � 10�3 cm2/hr for the rabbit
antibody considered in Ref. [54]) and the measure of �, the authors derived the
value of D = 1:44 � 10�4 cm2/hr for the di¤usivity of the p22, which is applied in
chapters 5 and 6.

The di¤usivity of the VSV in water was measured byWare et al. [55] by quasielastic
light scattering. This technique is based on the Doppler broadening of scattered
laser light caused by Brownian motion of macromolecules. Assuming spherical
macromolecules, a Lorentzian scattered light spectrum is expected. The half-
width of such spectrum is theoretically equal toDK2, whereK = (4�n=�0) sin(�=2)
(n is the index of refraction of the solution, �0 is the incident wavelength and �
the scattering angle). Ware et al. used this relation to derive the di¤usivity
D = 8:37 � 10�5 cm2/hr of VSV particles in a speci�c water solution [55].

� Initial concentration of non-infected cells C0. The initial cell concentration
is used to convert the equations of the focal infection models to their dimensionless
form. Moreover, this parameter is applied in numerical simulations to set the
initial conditions (see section 3.3.2). However, the value of C0 does not a¤ect the
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virus infection speed (unless hindered di¤usion is considered, see section 1.1.2).
In this thesis, free di¤usion is considered when modeling VSV infections (because
hindered di¤usion is important only in speci�c situations where C0 is close to its
maximum possible value [10]). For VSV infections, the initial cell concentration
C0 = 3:8 � 107=ml (which was estimated in Ref. [23]) is applied. Concerning T7
mutants, the initial cell concentration C0 = 3 � 106 /ml from the experiments in
Ref. [56] is used. Since this value of C0 is close to the maximum possible value
(namely 107 /ml) in the experiments [56], hindered di¤usion is considered for the
case of T7 infections.

� Rate constant for virus adsorption k1. The adsorption rate for the T7 into
E. coli bacteria was derived by Fort and Méndez in Ref. [10]. The authors used
available data on an homogeneous, nonreproductive adsorption experiment in Ref.
[57]. In such experiment the T7 virus reproduction is inhibited by the presence
of KCN, and thus the dynamics of the system is governed by:

@[C]

@t
=
@[V ]

@t
= �k1[C][V ] = �

@[I]

@t
: (3.1)

From equation (3.1), it follows that [C] = [V ] + �, where the constant � is easily
derived from the initial concentrations of [V ] and [C]. Furthermore, the solution
for [V ] satis�es the relation lnf([V ] + �)=[V ]g � lnf([V ]t=0 + �)=[V ]t=0g = �k1t.
This allowed Fort and Méndez [10] to determine the slope �k1 from the observed
concentrations of [V ] in the nonreproductive experiment [57]. In this way, they
obtained the range k1 = (1:29 � 0:59) � 10�9 ml/min for T7 infecting E. coli. In
chapter 6, the mean value of this range (i.e., k1 = 1:29 � 10�9 ml/min) is used to
compute the exact theoretical speed of T7 focal infections [and the exact speed is
compared to the approximation (1.8)].

In chapters 5 and 6, the value k1 = 1:4 � 10�10 cm3/h is applied in theoretical
analysis of VSV infecting Baby Hamster Kidney (BHK) cells. This value was
originally adjusted to the extracellular model by Haseltine et al. in Ref. [23].
Since no data on nonreproductive VSV experiments is available, it has not been
possible to provide an empirical range of k1 for VSV, but the results will be shown
not to change appreciably for values of k1 over four orders of magnitude.

� Rate constant for the death of infected cells k2. The value of this parameter
can be easily derived from one-step growth experimental data. In one-step growth
experiments, the time evolution of the virus concentration in a homogeneous me-
dium without adsorption is studied. Initially, the system is composed of infected
cells (with a density close to saturation, [I]0 ' IMAX) and a few free viruses. The
growth of the virus population in such systems can be described by the solution
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of the logistic equation3, which reads:

[V ](t) =
Y IMAX

c1 exp[�k2t] + 1
; (3.2)

where c1 is an integration constant that depends on the arbitrary de�nition of the
moment t = 0.

The symbols in Fig. 3.2 show observed concentrations of the p005 strain of the T7
virus after one-step growth experiments in Ref. [56] (the data points in the inset
of Fig. 3.2 refer to VSV experiments in Ref. [58]). Least-square �t of the data to
Eq. (3.2) (solid line in Fig. 3.2) yields the observed rate k2 = 44:5 hr�1 for the
p005 mutant of the T7 infecting E. coli. The same procedure leads to k2 = 2:47
hr�1 for the VSV infecting BHK cells (inset of Fig. 3.2). In this thesis, we also
make use of the value k2 = 83:4 hr�1 for the wild strain of the T7 infecting E.
coli, which was derived by Fort and Méndez in Ref. [10] using the same method
described above.

� Yield Y . The yield can be estimated as the ratio of the �nal virus concentration
to its initial value in one-step growth experiments 4. Thus, from the data in Fig.
3.2 we obtain Y = [V ]f=[V ]0 = 63:6 for the p005 strain of the T7. This same
method was used in Ref. [10] to compute the yield Y = 34:5 for the wild strain
of the T7. Moreover, applying this same ratio to the experimental data in the
inset of Fig. 3.2 leads to Y = 2:77 � 105 for the VSV (which is used in chapter
5). However, virus concentrations in Ref. [58] (which have been reproduced in
the inset of Fig. 3.2) are expressed in PFU=cell instead of PFU=ml. This makes
unnecessary to compute the ratio between the initial and the �nal concentration,
and the yield can be estimated as the �nal virus concentration in the experiment,
which leads to Y = 4389. This latter value is applied to VSV infections in both
chapters 5 and 6.

� Observed lag time � . This is the time elapsed since the adsorption of a virus
by a cell, and the release of its progeny (Y virus). For T7 infecting E. Coli, the
range 15� 25 min is obtained from the interval time in which virus concentration
rises in one-step growth experiments (see hatched area in Fig. 3.2). For VSV
infecting BHK cells, � is much larger, about 5� 10 hr (hatched area in the inset
of Fig. 3.2).

� Observed infection speeds. The spread of VSV infections on BHK cells was
monitored by Lam et al. in Ref. [58]. The authors captured representative images
of focal infection experiments using indirect immuno�uorescence labeling of VSV-
glycoprotein. This technique involves the use of antibodies which �x to virus

3A detailed discussion on logistic equations to model one-step growth experiments is provided in
the appendix A in chapter 5.

4In fact, the experimental dots before the rise in [V ] (see Fig. 3.2) refer to infected cells concentration
[59].
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Figure 3.2: One-step growth of p005 (a strain of the T7 virus) on E. coli versus the
time elapsed after adsorption. The solid line depicts the least-square �t of experimental
data points [56] to Eq. (3.2). The interval time in which the rise in virus concentration
is produced corresponds to the observed range of the lag time � (hatched area). Inset:
one-step growth of N1 (a strain of the VSV) on BHK cells. The solid line stands for
the least-square �t of experimental data points [58] to Eq. (3.2). The hatched area
corresponds to the observed range of � for VSV infecting BHK cells.

proteins and can be visualized by �uorescence analysis. Thus, the �uorescence
intensity reveals the virus distribution in the cell monolayer. Lam et al. [58]
derived the VSV spread rate c = 7:3 � 10�2 cm=hr from linear regression of the
mean infection radius at several times after virus inoculation. Considering the
95% con�dence-level interval yields the range (6:6 � 8:0) � 10�2 cm/hr, which is
used in chapter 5. However, Haseltine et al. [23] presented �uorescence intensity
pro�les on the same images in Ref. [58]. Linear regression of the position of
maximum intensity peaks [23] at several times after inoculation leads to a spread
rate of 5:6�10�2 cm=hr. This latter infection speed is taken into account in chapter
6, in which the more realistic range (5:6� 8:0) � 10�2 cm/hr is considered for VSV
infections. It is worth to note that the above infection speed ranges refer to the N1
strain [58] of the VSV (i.e., the same strain considered in the above computation
of empirical values for k2 and Y ).

J. Yin performed focal infection experiments with several T7 strains infecting E.
coli in Ref. [56]. Yin measured the evolution of the plaque diameter in multiple
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experiments for each virus strain. Infection speeds in the ranges (1:6� 2:2) � 10�2
cm=hr, and (1:9�2:7)�10�2 cm=hr were observed for the wild and the p005 strains,
respectively. Since these two intervals are very close to each other, a unique range
for the spread of the T7 mutants (namely, (1:6� 2:7) � 10�2 cm=hr) is considered
in chapter 6. Note that this latter range embraces observed infection speeds for
either of the considered T7 strains (see above).

3.1.3 Neolithic human populations

This section summarizes the empirical data on the Neolithic transition which will be
used in chapter 6. A more detailed discussion on available data for the Neolithic trans-
ition can be found in a recent Ph.D. thesis by N. Isern [33].

� Initial growth rate a. This parameter indicates the rate of growth when the
population number N is low, and @N

@t
' aN . In Ref. [30], a was estimated from

data on the evolution of the population number in human �rst colonizations of
the Pitcairn Island, the islands of the Furneaux group in the Bass Strait, and
the Tristan da Cunha islands. Moreover, the evolution of the population num-
ber of the United States during the period 1790-1910 was also analyzed. For the
mentioned islands, each data set was �tted to an exponential curve for the cor-
responding early colonization period. This allowed to derive the corresponding
ranges for a. Instead, for the case of the United States population the data was
�tted to a logistic growth function [i.e., @N

@t
' aN(1�N=NMAX)] which permitted

to evaluate a. From the corresponding ranges for the four colonizations above,
Isern et al. [30] computed the 80% con�dence level range for the growth rate,
obtaining a = (2:8� 0:5) � 10�2 yr�1, which is the range considered in chapter 6.

� Mean squared displacement per generation �2. In Ref. [30], the authors
proposed a range for the mobility of the Neolithic population. This range was es-
timated from available data on the mobility of the Majangir people [60], a popula-
tion of pre-industrial agriculturalists in Ethiopia. Mobility data per generation for
three speci�c Majangir groups were used to estimate the range �2 = (1531�598)
km2 [30].5 This range is applied in chapter 6.

� Lag time � . For the case of human populations, the lag time � corresponds to
a generation time, de�ned as the mean age di¤erence between parents and one of
their children (not necessarily the eldest). The mean lag time for the Neolithic
population has been estimated in Ref. [61] using data for the Majangir population
[60]. More recently, Isern derived the 80% con�dence level range � = (32 � 3)
yr [33] from the same data used in Ref. [61].

5In this thesis, �2 refers to the mean squared displacement per generation, which is expressed
in km2. This simpli�es the notation in chapter 6. Note that in Refs. [30, 33] the mean squared
displacement per generation is de�ned as < �2 > =T (where T is the mean time di¤erence between
the migration of parents and their children), and its corresponding units are km2/gen.
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� Spread rate for the Neolithic transition in Europe. In chapter 6 the
range 0:6 � 1:1 km/yr for the speed of the Neolithic spread is considered. This
range is based on the data in Ref. [32], where the authors used the dates of 765
early Neolithic sites in Europe to derive an observed range for the spread of the
Neolithic transition. Although such range corresponds to 0:6� 1:3 km/yr if both
calibrated and uncalibrated dates are taken into account, observed spread rates
lay within the interval 0:6�1:1 km/yr if only calibrated dates are considered. This
range includes the results using great-circle distances (0:6� 1:0 km=yr) and using
shortest-path distances (0:7� 1:1 km=yr). Great-circles do not take into account
geographic barriers such as seas. The short-distance approach in Ref. [32] takes
the Mediterranean sea into account but allows for short sea travels, as implied by
the arrival of the Neolithic to islands such as Cyprus.

3.2 Fronts from integrodi¤erence equations

Integrodi¤erence equations are integral recurrent relations (such as Eq. (1.3) in chapter
1) which are widely used in mathematical biology to model the evolution of the pop-
ulation density. Both the nonoverlapping generations and the overlapping generations
models for tree recolonizations discussed in this thesis are based on this kind of equa-
tions. This section presents three di¤erent techniques that will be used in subsequent
chapters to compute the front speed from integrodi¤erence equations.

3.2.1 Continuous-space random walks (CSRW)

The computation of the front speed from analytical methods is subject to four main
assumptions. First, the evolution equation of the system is linearized in terms of p.
Thus the speed is computed at the leading edge of the front, where low population
densities are expected. This typically a¤ects the growth process, and may neglect terms
accounting for saturation e¤ects in the growth function [also called the source function,
for example F in Eq. (1.2)]6. Admittedly, the models for tree recolonizations in the
following chapters are already linear in terms of p, hence this �rst assumption does
not modify their equations. As we deal with radially symmetric 2D fronts, the second
assumption considers that for t!1 the front is approximately planar at scales much
larger than those of individual dispersal events. Thus, choosing the x axis parallel to the
local velocity of the front, we can neglect the dependence of p along the perpendicular
direction (y). The third ansatz presumes the solution has the shape p = p0 exp(��z)
for large values of the coordinate z = (x� ct). Hence,

p(x; y; t+ T ) = p(x; y; t)e�cT (3.3)

p(x+�x; y +�y; t) = p(x; y; t)e
���x :

6A nonlinear growth function example can be found in chapter 5 (see specially appendix A there),
where quadratic saturation terms are taken into account for the infected cells population.
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When introducing the above relations into an integrodi¤erence equation (such as
the nonoverlapping equation (1.3)) we obtain a complex equation for the front speed
c which depends on the unknown parameter �. Then, marginal stability (or linear)
analysis [62] is applied in order to obtain the exact solution for the front speed. This
last step is equivalent to assume that the minimum possible speed is the one of the front.
However, for strongly non-linear source functions (such as those arising in combustion
fronts) this assumption is not valid [1]. Therefore, as we shall see below, some methods
have been used to check the speeds obtained using this assumption (and the other three
assumptions above) for all of the models in this thesis.
For example, applying the four assumptions explained above to the non-structured

tree population equation (1.3) leads us to:

c = min
�>0

ln[R0
RR
e���x�(4x;4y)d4x d4y]

�T
: (3.4)

This cannot be solved explicitly, so the function c(�) is plotted numerically and its
minimum is found. Considering an isotropic kernel (as it will be done in chapter 4)
slightly simpli�es the integral in the above equation. However, the resulting expression
is still complex and does not lead to an explicit solution. For this reason, the exact
analytical speeds for postglacial recolonizations in this thesis (Chapters 4 and 6) have
been computed numerically. The validity of equations such as (3.4) can be checked by
means of the methods in the two subsections below.

3.2.2 Discrete-space random walks (DSRW)

The method explained in the previous section considers continuous space. In other
words, individuals (or seeds) can be dispersed into any point in the 2D plane. However,
this scenario is signi�cantly di¤erent to that regarded by numerical simulations. In this
latter case, the population density is computed explicitly. However, this can be done
only at a �nite number of points (e.g., at the nodes of a 2D grid), thus considering
discrete space. Using discrete-space random walks (DSRW) provides analytical results
for the front speed that are directly comparable with those from numerical simulations.
In order to take into account discrete space, the integral in the evolution equation

for the population density has to be conveniently modi�ed. For example, if we perform
a DSRW analysis of the nonoverlapping generations Eq. (1.3), the integral:Z +1

�1

Z +1

�1
p(x+4x; y +4y; t)�(4x;4y)d4x d4y; (3.5)

must be discretized according to the assumptions used in the numerical simulation.
In chapters 4 and 6, numerical simulations for tree colonizations (see section 3.2.3)
consider seed dispersal to any of the four nearest neighbors with probability (1� pe)=4.
It follows that seeds remain at the same location of their parent tree with probability
pe (this corresponds to short-distance dispersal, i.e., to negligible distances). Thus, in
the DSRW approach Eq. (3.5) is replaced by:
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pe p(x; y; t) +
(1� pe)
4

[p(x��0; y; t) + p(x; y ��0; t)] ; (3.6)

Then, the same mathematical analysis applied to CSRW above is used to compute
the front speed from DSRW. That is, low population densities are assumed, as well
as planar fronts and p ' p0 exp(��z) (with z = (x � ct)), and marginal stability is
applied. Note that modi�cations in the dispersal kernel in order to consider discrete
spaces can lead to anisotropic front speeds. Fig. 3.3 graphically shows the horizontal
(or vertical) spread rate is necessarily faster than the diagonal one if only jumps to the
four nearest neighbors are taken into account. Because of this, in next chapters the
DSRW speed will be computed for both the horizontal and the diagonal directions of
propagation. The front speed will be obtained as the resulting average value, as it is
the most accurate speed that both DSRW and simulations can provide.
Finally, note that Fig. 3.3 might lead to the conclusion that the front speed along

the horizontal direction is simply r=T , and that along the diagonal direction
p
2r=T .

In fact, it has been shown that this happens only in the limit of very fast growth
functions [63], because the front speed depends in general not only on the dispersal
process (Fig. 3.3) but also on the reproductive one (e.g., Fig 3.2).

3.2.3 Reactive random-walk simulations

In this kind of numerical simulations, the evolution of the population density is com-
puted in time and space. For this purpose, a 2D grid must be de�ned in order to consider
the population number density in its vertices. Then, the initial conditions in the grid
are set (typically, p(x; y; 0) = pmax at (x; y) = (0; 0) and p(x; y; 0) = 0 elsewhere). At
each time step, both reaction (i.e., growth) and dispersal e¤ects are computed at every
node. As a consequence of dispersion processes, the population is redistributed accord-
ing to the dispersal kernel �(�x;�y), but approximated to a discrete grid. Below, the
main steps in an iteration of the numerical simulations are outlined for the speci�c case
of tree colonizations.
At each time step, seed production is determined. This is done by multiplying the

tree population density p(x; y; t) by the net reproduction rate R0 at each node of the
grid. Then, this seed population is distributed in accordance with the dispersal kernel,
which considers dispersion to the four nearest neighbors as it is shown in Fig. 3.3 (see
also Sec. 3.2.2). After dispersal has been computed at every node, the resulting seed
distribution becomes the new population density p(x; y; t+T ). Finally, the front speed
is obtained from linear regression of the position of successive fronts (de�ned, e.g., as
p = pmax=10) when the time is t >> T .
Above, the computer program for the non-overlapping generations model has been

described. In chapters 4 and 6, reactive random walks simulations for overlapping gen-
erations will be performed. Additional details regarding the structure of the population
in the numerical simulations will be presented in those chapters.
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Figure 3.3: Anisotropic spread resulting from seed dispersal (jumps) to the four nearest
neighbors in a square lattice. Initially, population density is concentrated in the center
of the lattice (black vertex). After one iteration, seeds are dispersed to each of the
nearest neighbors (grey vertices) with probability (1�pe)=4. With the same probability,
nearest empty vertices will be reached after two iterations (dashed grey vertices). At
this time, the population will have spread up to a distance 2r (where r is the distance
between two nearest vertices) along the horitzontal direction (solid arrow). In contrast,
the colonization along the diagonal direction (dashed arrow) will have only reached
those vertices located at distance

p
2r from the initial position.

3.3 Fronts from di¤erential equations

In this thesis, reaction-di¤usion di¤erential equations are used to model the evolution
of virus infection fronts (Chapter 5 and 6) and the Neolithic transition (Chapter 6).
Di¤erential equations [such as (1.2) in chapter 1] require di¤erent techniques than in-
tegrodi¤erence equations [such as (1.3) in chapter 1] in order to derive the front speed
from analytical methods, and specially from numerical simulations. For the sake of
clarity, such techniques are explained in this section by considering a speci�c example,
namely virus infection systems. In Ref. [10], Fort and Méndez used the following equa-
tions to describe the evolution of T7 infections:

@[V ]

@t
+
�

2

@2[V ]

@t2
= Deff

@2[V ]

@r2
+ F +

�

2

@F

@t
; (3.7)
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@[C]

@t
= �k1[C][V ] (3.8)

@[I]

@t
= k1[V ][C]� k2[I]

�
1� [I]

IMAX

�
; (3.9)

where � is the lag time, and F stands for the virus population growth function:

F = �k1[V ][C] + k2Y [I]
�
1� [I]

IMAX

�
: (3.10)

The system of equations (3.7)-(3.10) is an extension of (1.5)-(1.7) that takes care
of the lag time e¤ect, as reviewed in chapter 5. Such equations require the methods
to derive the front speed that are discussed below. Furthermore, analogous guidelines
are relevant when computing numerically the front speed of the Neolithic transition in
chapter 6.

3.3.1 Linear analysis

The derivation of the front speed from di¤erential equations is based on the same
assumptions as for the case with integrodi¤erence equations (see section 3.2.1). First,
low population densities of the invasive species are assumed at the leading front edge.
This allows to linearize the reaction-di¤usion equations in terms of the population
density. For example, in focal infections systems the linearization is made around
the unstable steady state ([V ]; [C]; [I]) = (0; C0; 0), taking into account ([V ]; [C]; [I]) =
(�V ; C0(1��C); �I) at the leading edge of the front. This leads the virus growth function
(3.10) to be rewritten as:

F = �k1C0�V (1� �C) + k2Y �I
�
1� �I

IMAX

�
; (3.11)

and after linearization, F becomes simply:

F = �k1C0�V + k2Y �I : (3.12)

In addition to the growth function F , the complete set of di¤erential equations
(3.7)-(3.9) has to be linearized using the same procedure above.
By means of the second assumption, the front can be considered approximately

planar for t ! 1 and r ! 1, so the concentrations depend only on r. In accordance
with the third assumption, constant shape solutions �!� = �!� 0 exp(��z) with z =
(x � ct) are sought. Considering again the example of focal infections, it follows that
�!� 0 = (�V ; �C ; �I), and this ansatz imposes the following relations regarding the partial
derivatives of the population densities:
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@[V ]

@t
= �c[V ];

@2[V ]

@t2
= �2c2[V ]; (3.13)

@[V ]

@r
= ��[V ]; @2[V ]

@r2
= (��)2[V ];

@[C]

@t
= ��cC0�Ce��z;

@[I]

@t
= ��[I]:

Applying these relations to the evolution equations describing the model (e.g., Eqs.

(3.7)-(3.9)) leads to a vectorial equation �!� �
�!�!
M(�) = (0; 0; 0) (where

�!�!
M(�) is the matrix

corresponding to the linearized evolution equations). For non-trivial solutions �!� 6= �!0
to exist, the determinant of

�!�!
M(�)must vanish. This gives a characteristic equation

which reveals the relation between the front speed and � (i.e., c(�) is obtained). As
when dealing with integrodi¤erence equations in section 3.2.1, the marginal stability
assumption [62] is applied, hence the minimum speed corresponds to the one of the
front7.

3.3.2 Numerical integrations: �nite-di¤erence method

This section is devoted to explain how di¤erential equations have been numerically
solved in this thesis. When performing numerical simulations, the use of dimensionless
variables is specially useful because it provide results that can be applied to systems
with any parameter values. Dimensionless expressions for both time and space variables
are obtained by applying the de�nitions:

t � kt; (3.14)

r � r
p
k=D;

where 1=k is the characteristic time of the reactive process [64]. For reaction-
di¤usion equations for virus infections such as the set (3.7)-(3.9), k corresponds to the
rate constant for the death of infected cells k2. Moreover, the dimensionless expressions
for the three population densities read:

C � [C]=C0; (3.15)

I � [I]=C0;
V � [V ]=C0;

7It is worth to note that, in a previous work, Isern and Fort computed the exact front speed from
the HRD equation without making use of the marginal stability assumption [43]. For the case of
one-species systems evolving according to a di¤erential equation, it is possible to apply variational
techniques. In this way they found the very same expression when deriving both the lower and the
upper bound for the front speed.
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where C0 is the initial cell concentration and, for simplicity, the symbols [ ] have
been omitted in the dimensionless population densities. The dimensionless parameters
� � k2� and � � k1C0=k2 are also necessary. Then, for example, the evolution equation
(3.8) for noninfected cells is rewritten as:

@C

@t
= ��C V : (3.16)

In order to numerically solve di¤erential equations, such as equation (3.16), the fully
implicit or backward time di¤erencing scheme [65]8 has been used. According to this
method, the time and space derivatives are �nite-di¤erenced as follows:

@P

@t
'
P
n+1

j � P nj
�t

;
@2P

@t
2 '

P
n+1

j � 2P nj + P
n�1
j

(�t)2
; (3.17)

@P

@r
'
P
n+1

j+1 � P
n+1

j

�r
;

@2P

@r2
'
P
n+1

j+1 � 2P
n+1

j + P
n+1

j�1

(�r)2
;

where P stands for the dimensionless population density, the superscripts denote
the time and the subscripts the space point at which P (C, I or V in the example of
virus infections) is evaluated. The fully implicit di¤erencing scheme has been used in
numerical integrations because it is unconditionally stable. Partial derivatives can also
be di¤erenced by means of the explicit scheme (which uses the time instant n instead
of n+ 1). Although both methods are �rst-order accurate in time, the explicit scheme
requires the use of very short time steps �t in order to be stable, thus largely increasing
the number of steps required to perform the numerical integration [65].
Applying the fully implicit scheme to a reaction-di¤usion equation yields a set of

linear equations for each time step n+1. For example, Eq. (3.7) for the virus population
density generates:

�jV
n+1

j�1 + �jV
n+1

j + 
jV
n+1

j+1 = �j; j = 1; 2:::J � 1; (3.18)

with �j, �j and 
j the coe¢ cients for V
n+1

j�1 , V
n+1

j and V
n+1

j+1 , respectively; and �j a

function of V
n

j and V
n�1
j . Furthermore, the coe¢ cients �j, �j, 
j and �j are necessarily

dependent on the population densities of the other species C
n+1

j , C
n

j , I
n+1

j and I
n

j . Note
that j is the discrete variable corresponding to coordinate r in Eq. (3.7).

In the above set (3.18), J corresponds to J = L=�r, with L = L
p
k2=D the dimen-

sionless system size9. The set of linear equations (3.18) conform a tridiagonal system
that is solved using the Tridag routine in Fortran [65]. In order to obtain a travelling
wavefront that is independent of the initial conditions [66], the initial concentrations

8See section 16.6 and chapter 19 in this reference for further details on �nite-di¤erence methods.
The fully implicit scheme is described in section 19.2 in this reference.

9In the numerical simulations for virus infections in next chapters, equations similar to (3.7)�(3.9)
are integrated in one dimension. Instead, the simulations for the Neolithic transition (which involve
less complex computations because they deal with only one species) consider a 2D square of side L.
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C
0

j , I
0

j and V
0

j must be implemented so that they have compact support. For example,
appropriate initial conditions are such that8>>><>>>:

V
0

j = V max, for j � jic
V
0

j = 0, for j � jic + 1
C
0

j = Cmax 8j
I
0

j = 0, 8j

: (3.19)

In focal infections, the range j � jic corresponds to the area where the virus is
initially inoculated.

3.4 Virtual interactions: considering punishment and
avoiding border e¤ects.

3.4.1 Evidences of extended human practice of punishment

Altruistic punishment means that a punisher voluntarily pays a cost to incur a loss on an
opponent. In the present day, there is a very challenging debate centered on the role that
punishment plays on human cooperation. This question has been targeted frommultiple
�eld perspectives (such as economy, evolutionary biology, physics, anthropology, etc.)
leading to a very large amount of foremost studies (for a recent review, see [42]).
A key problem with punishment is that it generates a social loss by reducing the

payo¤s of both players. Many experimental studies have shown that this drawback
makes punishment a powerless tool for communities to reach high average payo¤s. For
example, it has been argued that winner�s don�t punish [67], that reward (which incurs
a cost to the rewarder but a bene�t to the recipient) is as e¤ective as punishment for
maintaining public cooperation and leads to higher total earnings [68], and that costly
punishment may disfavor groups in repeated interactions with strangers [69].
In contrast, other behavioral experiments have provided evidences that altruistic

punishment is a key element in understanding widespread altruistic behaviors of hu-
man societies. In this sense, experiments based on several games (PG, PD, ultimatum
game, etc. [42]) have shown that punishment emerges in di¤erent patterned fashions
among populations from �ve continents [70], that cooperation �ourishes if punishment
is possible but breaks down if it is ruled out [71], and that punishment is an evolu-
tionary stable strategy under conditions plausibly characteristic of the early stages of
human evolution [72].
Notwithstanding the advantages and drawbacks of punishment, some general trends

can be induced from human experiments with punishment. When punishment is an
option in the game, human players are willing to make an extended use of it [42]. For
example, above 6% of the decisions were punishment in a modi�ed version of the PD
game in Ref. [67], but more than the 84% of players punished at least once. Moreover,
34% of players punished at least 5 times when playing the PG game in Ref. [71].
Furthermore, punishment is more frequently directed toward free riders, as it can be
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observed in Refs. [45, 69�71]. Therefore altruistic punishment is typically seen as a
deterrent for defection.
As it has been discussed in this subsection, punishment practice is frequent among

humans. Naturally, theoretical models have been specially useful to explore many of
the consequences that punishment produces in large societies (laboratory conditions
usually limit the number of participants to a few dozens at once). Chapter 7 in this
thesis studies the e¤ects of probabilistic punishment in virtual communities of 1000 in-
dividuals. Motivated by recent experimental evidence of frequent antisocial punishment
in societies around the world [45], the model in chapter 7 considers not only punishment
against defectors but also against cooperators.

3.4.2 Periodic boundary conditions

This section focuses on the periodic boundary conditions which have been applied in
the work in chapter 7. At any iteration t, the program considers that individuals play
the game with those neighbors laying within their radius of interaction. In Fig. 3.4,
the red circle in the center indicates the interaction radius of a defector player (red
spot located at the center of the circle). In a 2D square world such as that in Fig. 3.4,
players standing close to a border may have fewer opportunities to interact with others
(because their interaction area may cover some zones outside the frontiers). Periodic
boundary conditions avoid these border e¤ects in the following two ways:

1. Any fraction of an interaction area which extends over a square border is con-
sidered to cover an analogous space surrounding the opposite border. For example,
in Fig. 3.4 a defector (red spot in the center of the upper broken red circle) is
so close to the upper border than his area of interaction crosses the upper limit
of the square. The player then bene�ts from an interaction area near the lower
border (broken red circle) which balances the lack in the upper neighborhood. In
other words, the player interacts with any neighbor within both broken red circles
in Fig. 3.4. Moreover, four fractions of a green circle show the interaction area of
a cooperator (green spot) located very close to the lower right side corner.

2. A player whose movement leads him to cross a square border is immediately
placed in the corresponding opposite border (the relative position in the border
is maintained when switching the player�s location). Then, the player continues
his motion until he moves the total distance he was supposed to travel.

Indeed, the two considerations above (which are applied in simulations in chapter
7, following Ref. [44]) make the square surface equivalent to a torus.
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Figure 3.4: Snapshot of a simulation considering a mixed population of cooperators
(green spots) and defectors (red spots). The circle in the center indicates the interaction
radius of a defector player. The broken red (green) circle shows the interaction area of
a defector (cooperator) player which is located close to a border (corner), after periodic
boundary conditions have been applied.
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Chapter 4

Fronts from two-dimensional
dispersal kernels: beyond the
nonoverlapping-generations model

This chapter is an exact transcription of the contents of the following paper:

Amor, D. R. & Fort, J. 2009 Fronts from two-dimensional dispersal kernels: Beyond
the nonoverlapping-generations model. Phys. Rev. E 80, 051918.

Abstract Most integrodi¤erence models of biological invasions are based on the
nonoverlapping-generations approximation. However, the e¤ect of multiple reproduc-
tion events (overlapping generations) on the front speed can be very important (es-
pecially for species with a long lifespan). Only in one-dimensional space has this ap-
proximation been relaxed previously, although almost all biological invasions take place
in two dimensions. Here we present a model that takes into account the overlapping
generations e¤ect (or, more generally, the stage structure of the population), and we
analyze the main di¤erences with the corresponding nonoverlapping generations results.

PACS numbers: 87.23.Cc, 89.20.�a, 89.75.Fb

4.1 Introduction

Reaction-di¤usion and reaction-dispersal fronts have many applications in physical,
biological, and cross-disciplinary systems [1, 62, 73], e.g., virus infection fronts [10, 21],
combustion fronts [74, 75], human population fronts [9, 61], etc. Motivated by Reid�s
paradox of rapid tree range expansions, recently we have proposed a framework which
is useful in two-dimensional (2D) space under the assumption of nonoverlapping gen-
erations [15]. Modeling forest postglacial recolonization fronts by using single-kernel
reaction-dispersal assumptions results in the underestimates of the observed speeds
(this disagreement is known as Reid�s paradox). In order to better predict such speeds,
our recent work introduced several-component kernels (with characteristic distances
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di¤ering several orders of magnitude) [15]. In this way, long-distance dispersal (even if
occurring infrequently) makes it possible to predict speeds of the right order of mag-
nitude, as observed from postglacial tree recolonization fronts.
However, previous work in two dimensions did not take the age-structure of tree

populations into account. Indeed, trees reproduce every year and not only once in
their lifetime, so generations clearly overlap. Therefore, here we will extend the 2D
model [15] to overlapping generations. We shall show that the corrections (relative
to the nonoverlapping approximation) are relevant, which justi�es the importance of
our model. Previously, overlapping-generation models have been only developed in
one dimension [19, 76�82]. Our model is relevant not only to tree species, but can be
applied to compute front speeds also in other biophysical and physical systems in which
the reproductive (or reactive) process happens more than once for each individual (or
particle).

4.2 Evolution equation

4.2.1 Nonstructured populations in two dimensions (continu-
ous space random walk)

Integrodi¤erence equations have been widely used to model biophysical and cross-
disciplinary reaction-dispersion phenomena. For example, for the case of trees pop-
ulation dispersion (seed dispersal) takes place just after reproduction (seed produc-
tion). Thus the evolution of a nonstructured population in a 2D space is driven by the
well-known integrodi¤erence equation [12]

p(x; y; t+ T ) = R0

Z +1

�1

Z +1

�1
p(x+4x; y +4y; t)�(4x;4y)d4x d4y; (4.1)

where p(x; y; t + T ) is the population density at the location (x; y) and time t + T .
Recently we have argued that this evolution equation is also relevant to other biological
species besides trees, e.g., humans [83]. However, for the sake of de�niteness and clarity,
in this paper we will consider trees in our explanations. The time interval T is that
between two subsequent dispersal events or "jumps" (in the nonstructured model, T is
one generation, i.e., the mean age of trees when they begin to produce seeds). R0 is
the net reproductive rate (number of seeds per parent tree and year which survive into
an adult tree). Equation (4.1) is the nonoverlapping generations model. It is worth to
stress that in this model, the net reproductive rate per year is always used for R0 [12].
The dispersal kernel �(4x;4y) is the probability per unit area that a particle that a
seed falling from a parent tree located at (x + 4x; y + 4y; t) reaches the ground at
(x; y; t+ T ). Strictly, Eq. (4.1) is valid only at su¢ ciently low values of the population
density p, because there is a maximum saturation density above which net reproduction
vanishes (see Eq. (9) in Ref. [83]); however, this point does not a¤ect the computation
of front speeds because, as we shall see below, such computations can be performed at
low values of p.
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Equation (4.1) is a continuous space random walk (CSRW) equation in two dimen-
sions. It is just an integration over all possible jumps, which takes into account the
probability of each possible jump [dispersal kernel �(4x;4y)] as well as the productivity
of new individuals (net reproduction rate R0).
Let us �rst summarize some previous results, and we will then extend them to more

general situations. The speed of fronts evolving according to Eq. (4.1) can be obtained
under some general assumptions, as follows [15, 84]. We assume that R0 > 1, that the
initial population density has bounded support [i.e., that p(x; y; t) vanishes outside a
�nite region], and that for t ! 1 the front becomes approximately planar at scales
much larger than that of individual dispersal events. Then we can choose the x axis
parallel to the local velocity of the front (i.e., c � jcxj and cy = 0). Finally, we look for
constant-shape solutions with the form p = p0 exp[��(x� ct)] at x� ct!1 (leading
edge of the invasion front). Requiring that � > 0 yields the asymptotic (t!1) front
speed for 2D nonstructured populations [15,84],

c = min
�>0

ln [R0 b'(�)]
�T

; (4.2)

where

b'(�) � Z 1

0

d� '(�) I0(��); (4.3)

and

I0(��) �
1

2�

Z 2�

0

d� exp [��cos �] (4.4)

is the modi�ed Bessel function of the �rst kind and order zero. The dispersal probability
per unit area �(4) is related to that per unit length '(�) (i.e., into a 2D ring of area
2�� d�) according to [15]

'(�) = 2���(�): (4.5)

We have also assumed an isotropic dispersion kernel (i.e., that � depends only on
distance � �

p
42
x +42

y), and applied the normalization of probability, i.e.,Z 1

0

d�'(�) = 1: (4.6)

4.2.2 Structured populations in two dimensions

In the previous section we have summarized the nonstructured (or nonoverlapping)
model in two dimensions [15,84]. It is widely used because of its mathematical simplicity
(let us mention that it has been often formulated in one dimension [12,84], because then
it becomes even simpler). But obviously, assuming that individuals reproduce only once
in their lifetime is not a good approximation in general. Indeed, trees produce new
seeds during many years. Thus we should expect intuitively that multiple reproduction
events will lead to faster values of the front speed (and, in some cases, even prevent the
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extinction of the population). For these reasons, we have built a model that makes it
possible to predict front speeds for structured populations spreading across 2D space.

Introductory example

Let us use a simple example to introduce the main assumptions and equations of our 2D
overlapping model. Consider a species with a life span of three years. If one-year-old
individuals cannot produce seeds, in the nonstructured model T = 2 yr. Thus, the
limitation of the nonstructured model (4.1) is that it does not take into account the
reproduction of three-year-old individuals in this simple example.
Let us assume that reproduction events take place only once per year (this is valid

for most tree species, as seed production happens only during some period in fall). In
order to compute the production of new individuals, we have to take into account the
contribution of both the two-year-old and the three-year-old subpopulations. Therefore,

p1(x; y; t+ 1) = R02

Z
�2(�x;�y)p2(x+�x; y +�y; t)d�xd�y (4.7)

+R03

Z
�3(�x;�y)p3(x+�x; y +�y; t)d�xd�y;

where p1(x; y; t+1) is the population density of one-year-old individuals at location (x; y)
and time t + 1 (time is measured in years). The right-hand-side of Eq. (4.7) contains
two terms. The �rst one is the contribution of two-year-old individuals. One can easily
observe that this term is analogous to Eq. (4.1): R02 is the net reproductive rate of
two-year-old individuals, �2(�x;�y) is the dispersal kernel, and p2(x+�x; y+�y; t) is
the two-year-old population density at location (x+�x; y +�y) and time t. Similarly,
the last term describes the reproduction and dispersal of seeds produced by three-year-
old individuals. In order to predict the invasion speed, we need to know the population
densities of adult individuals in future times. These population densities are governed
by the following equations:

p2(x; y; t+ 1) = p1(x; y; t); (4.8)

p3(x; y; t+ 1) = p2(x; y; t); (4.9)

because in this model, for simplicity, we neglect the e¤ect of deaths in subpopulations 1
and 2 (i.e., all one-year-old individuals will be two years old after one year has elapsed,
etc.). Finally we have the following set of equations that describes our structured
population:

p1(x; y; t+ 1) =

Z
R0�(�x;�y)p2(x+�x; y +�y; t)d�xd�y

+

Z
R0�(�x;�y)p3(x+�x; y +�y; t)d�xd�y

p2(x; y; t+ 1) = p1(x; y; t)
p3(x; y; t+ 1) = p2(x; y; t):

(4.10)
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For simplicity, here we have assumed that the net reproductive rate and the dis-
persal kernel of two- and three-year-old individuals are the same. Similarly to the
nonstructured model, we look for constant-shape solutions, but now for each sub-
population, i.e., p1(x; y; t) = w1 exp[��(x � ct)], p2(x; y; t) = w2 exp[��(x � ct)],
p3(x; y; t) = w3 exp[��(x� ct)]. Then we can rewrite Eq. (4.10) as

w1 exp(�c) = R0w2

Z 1

0

'(�)I0(��)�d�+R0w3

Z 1

0

'(�)I0(��)�d�

w2 exp(�c) = w1
w3 exp(�c) = w2;

(4.11)

where I0(��) and '(�) are de�ned by Eqs. (4.4)-(4.5). If w1, w2, and w3 are thought

of as the entries of a array �!w =

0@w1w2
w3

1A, then the system (4.11) can be rewritten as

exp(�c)~w �
�!�!
H (�)~w; (4.12)

where
�!�!
H (�) is the matrix

�!�!
H (�) =

0BB@0 R0

Z 1

0

'(�)I0(��)�d� R0

Z 1

0

'(�)I0(��)�d�

1 0 0
0 1 0

1CCA . (4.13)

It is well known that the front speed c for systems with the form (4.12) can be
obtained from [19]

c = min
�>0

ln [�1(�)]

�
; (4.14)

where �1 is the largest of the eigenvalues of
�!�!
H (�):

Equation (4.14) is the result for the front speed of structured populations in two
dimensions. Some results exist in one dimension [19], but in that case the Bessel
function I0(��) does not appear at all and the solutions are rather di¤erent. Indeed, in
order to compare the one- and two-dimensional models, below we present the main one-
dimensional (1D) equations and we assign some hypothetical values to the parameters.

In one dimension, clearly the kernel per unit area �(4x;4y) has no physical mean-
ing. The 1D evolution equation [equivalent to Eq. (4.1)] is obviously:

p(x; t+ T ) = R0

Z +1

�1
p(x+4x; t)e'(4x)d4x ; (4.15)

where we have not used the notation '(�) for the kernel in order to avoid confusion with
the 2D model. Let us assume a very simple dispersal kernel so that seeds can be only

33



dispersed at a speci�c distance �0 (with probability 1
2
(1 � pe) along each direction of

propagation) or not dispersed at all (with probability pe; which is called the persistence),

e'(4x) = pe �(�x) +
1

2
(1� pe) �(�x ��0) +

1

2
(1� pe) �(�x +�0) (4.16)

where �(�x) is the 1D Dirac delta. It is easy to extend Eqs. (4.15) and (4.16) to
the overlapping case by performing the same steps as in the 2D example above (i.e.,
assuming a three-stage population, looking for constant-shape solutions pi(x; y; t) =
wi exp[��(x� ct)], etc.). This yields

h1Dij =

8>>>><>>>>:
R0

�
pe +

1
2
(1� pe) exp(���0)

+1
2
(1� pe) exp(��0)

�
if i = 1, j = 2; 3

1 if i = 2; j = 1
1 if i = 3; j = 2
0 elsewhere,

(4.17)

where h1Dij are the elements of the matrix
��!��!
H1D(�). Such a matrix is the analog to

Eq. (4.13), but now describing one-dimensional spread [76�82]. Instead of the 2D Eq.
(4.14), we obtain for the speed of the front in one dimension

c1D = min
�>0

ln [�1D(�)]

�
; (4.18)

where �1D is the largest of the eigenvalues of
��!��!
H1D(�):

In order to compare to this 1D invasion speed, in two dimensions we also consider
a kernel corresponding to isotropic jumps at a single distance � = �0,

'(4) = pe �(�) + (1� pe) �(���0); (4.19)

and the dispersal kernel (4.19) must be introduced in
�!�!
H (�) [see Eq. (4.13)] in order to

solve the 2D invasion speed.
In order to present some estimates of the 1D and 2D speeds, let us assign some

reasonable numerical values to the parameters [15]. We assume that the typical jump
distance of our hypothetical species is �0 = 100 m. We take the value of 0:98 for the
probability pe (i.e., the probability that a seed is dispersed 100 m away from its parent
tree is 2%). Then, Table 4.1 shows 1D and 2D front speeds [obtained by solving Eq.
(4.18) and (4.14), respectively] for several values of R0.
It is seen from Table 4.1 that the 1D model leads to an overestimation of the 2D

speeds, and the overestimation is more important for low values of R0. This justi�es the
need to tackle the 2D case for nonoverlapping generations, as �rst done in the present
paper. Still, Eq. (4.14) holds only for populations with a life span of 3 years. Below we
tackle the general case of an arbitrary number of years n, and apply it to an example.
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R0 c1D c Error (%)
4 30:8 24:4 20:7
10 39:6 32:5 17:9
40 48:4 40:7 15:9

Table 4.1: Front speeds in one and two dimensions (in m/yr) and the error of the 1D
speed (relative to the 2D speed c) for an example with n=3 stages and several values
of the net fecundity R0 [measured in seeds/(tree � yr)].

Spread of structured populations in two dimensions

In this section we generalize the introductory example (presented above) to deal with
a population structured into n subpopulations. Although we apply the method to tree
species, our model can be extended to other invasive species (like animals). Then one
should take into account some speci�c features (e.g., the fact that for trees dispersal is
simultaneous with reproduction) and make new assumptions (e.g., for birds dispersal
is more frequent in young individuals), but we plan to tackle such cases in future work.

The main point here is to note that building the reaction-dispersal matrix
�!�!
H (�) is an

important step in order to solve the front speed problem. In the following lines we

explain how to obtain the matrix
�!�!
H (�) by using two simpler matrices. At the end of

the section we will use the reaction-dispersal matrix to �nd a new, general equation for
the invasion speed of structured populations in two dimensions.
In order to introduce the notation, let us �rst return to our simple example (three-

stage system). If dispersal were not present, obviously

p1(x; y; t+ 1) = R0p2(x; y; t)
+R0p3(x; y; t)

p2(x; y; t+ 1) = p1(x; y; t)
p3(x; y; t+ 1) = p2(x; y; t);

(4.20)

and Eq. (4.20) would provide the population dynamics of the three stages, governed
only by reproduction. Using a simpler notation,

�!p (x; y; t+ 1) =
�!�!
A�!p (x; y; t); (4.21)

Where �!p (x; y; t) =

0@p1(x; y; t)p2(x; y; t)
p3(x; y; t)

1A. From Eq. (4.20),

�!�!
A =

0@0 R0 R0
1 0 0
0 1 0

1A : (4.22)

�!�!
A can be called the demographic matrix. Element aij of this matrix represents the rate
at which an individual in state j gives rise to individuals in state i per unit time (in

35



this case one year). For example, element a12 = R0 is the productivity of new (one-year
old) individuals from a two-year old individual. a32 = 1 means that all two-year-old
individuals will be three years old a year later (and similarly for a21 = 1). The zeros
of the matrix represent the transitions that are forbidden under our assumptions. For
example, a23 = 0 because a three-year old individual will never become neither produce
a two-year-old individual a year later.
Let us now add stage-speci�c dispersal into this description. Similarly to 1D studies

[19, 85], we introduce �ij(�x;�y) as the probability that an individual making the
transition from stage i to stage j moves from location (x + �x; y + �y) to location
(x; y). If there is no dispersal during a given transition, the associated kernel is the 2D
Dirac delta function.
Instead of Eq. (4.20), taking into account dispersal events we obtain the set

pi(x; y; t+ 1) =

Z +1

�1

3P
j=1

�ij(�x;�y)aijpj(x+�x; y +�y; t)d�xd�y; (4.23)

with i = 1; 2; 3: Again, the notation can be simpli�ed by creating a dispersal matrix�!�!
� . In our example,

�!�!
� =

0@�2D(�) �(�x;�y) �(�x;�y)
�2D(�) �2D(�) �2D(�)
�2D(�) �2D(�) �2D(�)

1A : (4.24)

We can now rewrite Eq. (4.23) in vector form,

�!p ((x; y; t+ 1) =
Z +1

�1

�!�!
� �

�!�!
A �!p (x+�x; y +�y; t)d�xd�y; (4.25)

where the symbol � stands for the Hadamard product [86], i.e.,
��!�!
� �

�!�!
A

�
ij

= �ij aij.

It is very important to note that Eq. (4.25) remains valid if we extend our study to a

population with a larger number of stages (say, n stages). In this case, the matrices
�!�!
�

and
�!�!
A are both square matrices of order n: This is the general case we will now deal

with.
For each subpopulation, we look for constant-shape solutions (e.g., pi(x; y; t) =

wi exp[��(x � ct)]; as in the example above). Whereas in the three-stage population
(considered above) using this into Eq. (4.25) leads to Eq. (4.11), in the general case of
n stages we obtain

exp(�c)�!w =

�Z +1

�1

�!�!
� �

�!�!
A exp [���cos �] d�d�

�
�!w : (4.26)

Assuming an isotropic dispersal kernel, Eq. (6.13) can be written as

exp(�c)�!w =

�
2�

Z +1

0

�!�!
� �

�!�!
A I0(��) d�

�
�!w ; (4.27)
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where I0(��) stands for the modi�ed Bessel function of the �rst kind and order zero
[Eq. (4.4)].
It is easy to see that the matrix inside the brackets in the right-hand side of Eq.

(6.13) becomes, for n = 3; the matrix
�!�!
H (�) given by Eq. (4.13). We de�ne generally�!�!

H (�) as
�!�!
H (�) � 2�

Z +1

0

�!�!
� �

�!�!
A I0(��) d�: (4.28)

Then we can rewrite Eq. (6.13) as

exp(�c)~w �
�!�!
H (�)~w; (4.29)

and, as mentioned above, the solution for the front speed c is [19]

c = min
�>0

ln [�1(�)]

�
; (4.30)

where �1 is the largest real of the eigenvalues of
�!�!
H (�), which is now given by Eq. (4.28).

This new result is the 2D equivalent to previous results in one dimension [19] for an
arbitrary number of stages n: However, we stress that 1D results can be applied only
in very special systems (e.g., a population spreading along a coast or a river), but most
population invasions on the Earth take place in two dimensions. Therefore, in most
cases 1D results cannot be applied. Indeed, the Bessel function I0(��) appears in Eq.
(4.28), whereas it does not appear at all for populations spreading in one dimension [19].
In Sec. 4.3.2 we present some numerical 1D and 2D overlapping results for a population
with a large number of stages.

4.3 Application

In previous sections we have developed a model to calculate front speed for a general
case of structured populations in two dimensions. As an example, in this section we will
use the matrices in Eq. (4.25) and parameter values appropriate to study a speci�c tree
species, namely, the yellow poplar (Liriodendron tulipifera). This species was already
considered in Ref. [15], but only by means of a nonoverlapping generation model. Below
we apply our overlapping-generations model, and compare to simulations of structured
populations. Furthermore, at the end of this paper we will tackle the question of how
important the e¤ect of overlapping generations is, by comparing our results with those
of the nonoverlapping-generations model [15].

4.3.1 Molecular dynamics simulations

We are not dealing with a di¤erential but with an integrodi¤erence set of equations in
two dimensions [Eq. (4.25)]. Therefore, numerical simulations in this paper will not be
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based on �nite-step approximations to partial derivatives but on molecular dynamics.
We have performed simulations on a 2D grid, with nearest neighbors separated by a
distance �0. Initially p(x; y; 0) = 1 at (x; y) = (0; 0) and p(x; y; 0) = 0 elsewhere. At
each time step, we compute the new number density of trees p(x; y; t+ 1) at all nodes
of the grid as follows.
First of all, because of the structure of the population, not all of the individuals

can produce seeds. We need to distinguish the adult population (i.e., individuals that
take a role in a reproduction event) from juvenile individuals (i.e., those that cannot yet
produce seeds). In order to do so, we introduce a second �eld j(x; y; t) that accounts for
the juvenile individuals. While the �rst �eld accounts for the total population density
[i.e., p(x; y; t) includes juveniles and adults], the second one contains only the juvenile
population density j(x; y; t). The number of individuals being available to reproduce
[namely a(x; y; t)] is simply the di¤erence between p(x; y; t) and j(x; y; t). In each time
step (or iteration), our computer program calculates the seed production R0 a(x; y; t) at
every node and then redistributes this value among all grid nodes by using the dispersal
kernel. Moreover, we also take into account when an individual is too old to be fertile
(i.e., when it reaches the typical life span l of the species considered). This is done by
removing such individuals from the calculations after each time step (i.e., after each
year).
We will focus our attention on the e¤ects of the population structure (in order

to solve the front speed problem), instead of studying complicated dispersal kernels.
Therefore, our simulations apply a simple kernel such that, when a seed is produced,
it either remains at the same node where it was generated (with a probability pe) or
it is dispersed to one of the four nearest-neighbor nodes located at distance �0 [with
probability (1� pe)=4].
We have performed our 2D simulations by using the typical values measured for

the yellow poplar, namely life span l = 130 yr., age at �rst reproduction T = 20 yr.,
persistence pe = 0:99798 and characteristic dispersal distance �0 = 6000 m �. The
results for the front speed are shown in Fig. 4.1, both along the horizontal and along
the diagonal direction of the 2D grid (upper and lower triangles in Fig. 4.1). We also
include the average speeds between both directions (circles in Fig. 4.1).

4.3.2 CSRW

In order to study an overlapping-generations front using a 2D CSRW, �rst we need
to determine the order of the matrices in Eq. (4.25). Recall that in our structured-
population model, every year of an individual�s life is thought of as a di¤erent stage.

�According to �eld observations in sites close to those where the dispersal kernel was measured,
we estimate the net reproductive rate R0 of the yellow poplar (Liriodendron Tulipifera) to be in the
range of 2-50 seeds/(tree yr.). The age at �rst reproduction (generation time in the nonstructured
model) of the same species is T = 20 yr. As shown in [15], the long-distance dispersal component of
the kernel has a much more important e¤ect on the front speed than the short-distance component
(even if long-distance dispersal happens seldom). Therefore, we use for the distance between cells that
from the long-distance component, �0 = 6000 m, both in the CSRW and in the DSRW models.
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Figure 4.1: Front speed in two dimensions versus net reproductive rate. There are
relevant di¤erences between the CSRW and the simulations (above 5%). Because of
this, we have also devellopped a DSRW model that agrees correctly with simulations
(di¤erences are always under 3%).

From the life span of the yellow poplar y, namely, 130 years, it follows that Eq. (4.25)
shall be a system of order 130 z. Yellow poplar trees begin to produce seeds when they

are 20 years old. Therefore, the demographic matrix
�!�!
A will be

aij =

8<:
R0 if i = 1 and j � 20
1 if i = j + 1
0 otherwise.

(4.31)

Note that the structure of this matrix is the same as that of Eq. (6.24), with the

ySee footnote *.
zAll of the results in this paper have been calculated with square matrices

�!�!
A and

�!�!
� of order 130.

However, we have observed that in many cases we can obtain accurate results using matrices of lower
order. That can be very useful in order to reduce computation times. For instance, omitting all of the
elements aij with i > 65 and/or j > 65; we obtain a demographic matrix of order 65. If we do the
same for the dispersal kernel matrix and we solve the equations of our overlapping-generations model,
we obtain the same invasion speeds (di¤erences are under the 1%) for values of R0>5. The reason is
that very old individuals do not appear near the leading edge of the invasion front, so for high values
of the fecundity R0 the front dynamics is driven by younger individuals and the contribution of older
ones is not relevant. However we do not give a general description of such an approximation because
it depends on the dispersal kernel and demographic characteristics of each species.
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di¤erence that the matrix (4.31) is of order 130. In order to obtain the dispersal kernel

matrix
�!�!
� , we recall that, as explained above, the dispersal kernel per unit length reads

'(�) =

8<:
(1� pe) if � = �0

pe if � = 0
0 otherwise,

(4.32)

where �0 and pe take the typical values of long-distance dispersal and persistence for
the yellow poplar, namely pe = 0:99798 and �0 = 6000m

x. On the other hand,

�ij =

�
'(�)
2��

if i = 1 and j > 20
�2D(�) otherwise,

(4.33)

where �2D(�) is the Dirac delta function in two dimensions, namely [see Eq. (4.5)]

�2D(�) =
�1D(�)

2��
; (4.34)

and its normalization condition reads

1R
0

2�R
0

�2D(�)�d�d� = 1: (4.35)

We have used these equations into Eqs. (4.28)-(4.30) to compute invasion speeds
for di¤erent values of the net reproductive rate R0. The results are shown in Fig. 4.1.
Both the simulations and the CSRW predictions are seen to increase with increasing
values of R0, as it was to be expected intuitively. However, there are some di¤erences
(larger than 5%) between the CSRW and the average simulations. This e¤ect is due to
the fact that, while the CSRW describes jumps into a ring of radius �0, the numerical
simulations describe jumps to four discrete points (i.e., the four nearest neighbors of the
grid). The consistency between the analytic and numeric results can be improved by
using a discrete-space random-walk model (DSRW). In such an analytical model, seeds
and trees can only lie on discrete points of the space (similarly to what happens in the
numerical simulations). Recently, a DSRW model for nonstructured (i.e., nonoverlap-
ping) populations of persistence pe has been proposed [83]. In the next section we will
extend that nonoverlapping DSRW model to our structured populations, and we will
apply it to the yellow poplar.
Before closing this section, a numerical comparison to the 1D overlapping model can

be useful. Whereas Sec 4.2.2 and Table 4.1 include such a comparison for three-stage
populations, here we present it for a yellow poplar population (because it has a large
number of stages). Similarly to Eq. (4.17), elements h1Dij of the corresponding yellow

poplar
��!��!
H1D(�) matrix take the form

h1Dij =

8>><>>:
R0

�
pe +

1
2
(1� pe) exp(���0)

+1
2
(1� pe) exp(��0)

�
if i = 1, j � T

1 if i = j + 1
0 elsewhere,

xSee footnote *.
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R0 c1D c Error (%)
4 164:1 139:8 14:8
10 193:7 165:8 14:4
40 236:8 204:5 13:6

Table 4.2: Front speeds in one and two dimensions (in m/yr) and the error of the 1D
speed (relative to the 2D speed c) for n=130 stages (yellow poplar) and several values
of the net fecundity R0 [measured in seeds/(tree � yr)].

and the front speed is given by Eq. (4.18). Using the values of the persistence and jump
distance above (i.e., pe = 0:99798 and �0 = 6000m) we have calculated the front speed
for several values of R0. The results are shown in Table 4.2. It follows that for a yellow
poplar population, the overestimation of the 1D model is still important, but a bit lower
than in the three-stage example (Table 4.1). In all cases, the overestimation is always
higher than 10% (and it increases for decreasing values of the net reproductive rate).
Thus we remark the convenience of using a 2D model, also in the case of populations
with large number of stages.

4.3.3 DSRW

Horizontal direction (0o)

Assuming nonoverlapping generations, the DSRW model corresponds to the following
evolution equation [83]

p(x; y; t+ T ) = R0

�
pe p(x; y; t) +

(1� pe)
4

[p(x��0; y; t) + p(x; y ��0; t)]

�
.

(4.36)
In contrast, the dynamics of a population with overlapping generations will be driven

by the set

p1(x; y; t+ 1) = R0
nP
i=T

8<:
pe pi(x; y; t)

+ (1�pe)
4

�
pi(x��0; y; t)
+ pi(x; y ��0; t)

� 9=;
p2(x; y; t+ 1) = p1(x; y; t)
p3(x; y; t+ 1) = p2(x; y; t)

:::
pn(x; y; t+ 1) = pn�1(x; y; t);

(4.37)

where, as in the previous sections, for simplicity we have assumed that all stages have
the same reproductive and dispersive behavior, that individuals in stage i will be in
stage i + 1 a year later, which trees cannot reproduce before the so-called generation
time T , etc.
As usual, we look for constant-shape solutions with the form pi(x; y; t) = wi exp[��(x�

ct)]. We remark that looking for such solutions implies that we will evaluate the speed
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of the front along the horizontal direction (i.e., the 0o direction relative to the x axis).
In this way, we obtain the following equations:

w1 exp(�c) = R0
nP
i=T

wi
�
pe+1
2
+ 1�pe

2
cosh(��0)

�
w2 exp(�c) = w1
w3 exp(�c) = w2

:::
wn exp(�c) = wn�1:

(4.38)

Finally, we use matrix notation to rewrite the system in more compact form,

exp(�c)~w �
�!�!
H (�)~w; (4.39)

where it is easy to see that the reaction-dispersal matrix of population takes the form

hij =

8<: R0
�
pe+1
2
+ 1�pe

2
cosh(��0)

�
if i = 1, j � T

1 if i = j + 1
0 elsewhere,

(4.40)

and the front speed will be found by means of Eq. (4.30).

Diagonal direction (45o)

We now introduce new coordinate axes (x0; y0) on the diagonal direction, i.e., X 0 and
Y 0 axes rotated 45o with respect to the X and Y axes. Then, for nonoverlapping
generations the population density evolves according to [83]

p(x0; y0; t+ 1) = R0

(
pe p(x

0; y0; t)

+ (1�pe)
4

h
p
�
x0 + �0p

2
; y0 � �0p

2
; t
�
+ p

�
x0 � �0p

2
; y0 � �0p

2
; t
�i )

:

(4.41)
However, for overlapping generations we have instead

p1(x
0; y0; t+ 1) = R0

nP
i=T

(
pe pi(x

0; y0; t)

+ (1�pe)
4

h
pi

�
x0 + �0p

2
; y0 � �0p

2
; t
�
+ pi

�
x0 � �0p

2
; y0 � �0p

2
; t
�i )

p2(x
0; y0; t+ 1) = p1(x

0; y0; t)
p3(x

0; y0; t+ 1) = p2(x
0; y0; t)

:::
pn(x

0; y0; t+ 1) = pn�1(x
0; y0; t):

(4.42)
Next, we look for constant-shape solutions, now with the form pi(x0; y0; t) = wi exp[��(x0�

ct)]. We obtain from the set (4.42),
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w1 exp(�c) =
nP
i=T

wiR0

h
pe + (1� pe) cosh

�
��0p

2

�i
w2 exp(�c) = w1
w3 exp(�c) = w2

:::
wn exp(�c) = wn�1;

(4.43)

the corresponding reaction-dispersal matrix takes the form

hij =

8>><>>:
nP
i=T

R0

h
pe + (1� pe) cosh

�
��0p

2

�i
if i = 1, j � T

1 if i = j + 1
0 elsewhere,

(4.44)

and the front speed shall be obtained with the usual procedure [Eq. (4.30)].
In Fig. 4.1, the DSRW calculations have been performed for both the horizontal and

the diagonal direction (dashed and dotted curves, respectively). We can see an almost
perfect agreement between DSRW and simulations (di¤erences are always under 2%
after averaging results along both directions). Thus the DSRW is the model that agrees
closer to the simulations, even when overlapping generations are considered. This shows
the validity of the simulation results in Fig. 4.1, as well as the origin of the discrepancies
between the CSRW and the simulations in Fig. 4.1.

4.4 Nonoverlapping versus overlapping generations
model

The nonoverlapping approximation has an obvious advantage, namely, that computa-
tion times are much shorter ��. Figure 4.2 shows invasion speeds of yellow poplar fronts
calculated with both the classical, nonoverlapping model and our overlapping model
(both in two dimensions). From Fig. 4.2 we see that the behavior of both nonoverlap-
ping (squares) and overlapping (circles) front speeds are similar. As it was expected,
the overlapping model yields faster invasion speeds. Actually, both models tend to the
same asymptotic speed for very high values of the net reproductive rate (R0 ! 1).
This happens because in the limit R0 ! 1; the contribution of the youngest indi-
viduals able to produce seeds on the front clearly becomes much more important than
that from older trees, and that is precisely the main assumption of the nonoverlapping
approximation. In contrast, multiple reproduction events have a very important e¤ect

on the front speed for lower, realistic values of the net reproductive rate R0. Figure

��Calculation of each overlapping-DSRW speed in Fig. 4.2 takes about 50 to 80 minutes. We used
an Intel Core 2 CPU, T7400 (2,16GHz and 2GB RAM). We remark that calculation times become

much longer as the order of the matrix
�!�!
H increases. In contrast, each overlapping-model simulation

takes about 10 minutes using the same computer. For nonoverlapping models, calculation times are
about ten times shorter than for overlapping models.
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Figure 4.2: Front speed in two dimensions versus net reproductive rate. Both nonover-
lapping (squares) and overlapping (circles) DSRW results correspond to the average
between the horitzontal and diagonal spread directions (Sec. 4.3.3). Each model agrees
perfectly with its corresponding simulations (continuous and dashed lines). The e¤ect
of considering overlapping generations becomes more important as lower values of R0
are considered.

4.2 shows substantial di¤erences between the nonoverlapping and the overlapping case
for 2 < R0 < 10, which is within a realistic range for the yellow poplar {. The speed
predicted by the classical, nonoverlapping model is less than 1

3
of that predicted by our

overlapping model.
From Fig. 4.2, it is also very interesting that the overlapping-generations e¤ect al-

lows the survival and spread of the population even for R0 < 1 (the precise threshold
will of course depend on the features of the species considered), whereas the nonover-
lapping model predicts extinction if R0 < 1 [84]. This e¤ect also shows that the
overlapping-generations model can be very important to perform realistic predictions
on the fate of biological populations. It can also be very useful in more detailed studies
involving, e.g., nonsteady or random values of R0 (simulating climate change, drought,
or epidemic episodes), di¤erent productivities R0i for each stage i, etc. In contrast, the
nonoverlapping model is not suitable to analyze such situations because it will break
down as soon as values R0 < 1 are considered.
Concerning Reid�s paradox of rapid tree migration, our previous work suggests that

it can be solved by taking into account bimodal dispersal kernels (at least, as far as the

{See footnote *.
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order of magnitude of the speed is concerned). The structure of the population, intro-
duced in this paper, makes the overlapping-generations model more realistic. Therefore,
we expect its results to be closer to real measurements of, for example, postglacial recol-
onization fronts (even though such direct comparisons are not yet feasible for a variety
of tree species, because of the uncertainties in the measurements of survival rates and
dispersal kernels).

4.5 Conclusions

In this paper we have presented a model that considers the e¤ect of overlapping gen-
erations (or, more generally, the stage-structure) of populations that spread on a two-
dimensional space. Describing such populations with a matrix notation is useful, and
notably simpler, in order to solve the equations that drive the reaction-dispersal dy-
namics. Actually, in Secs. 4.2.2, 4.3.2 and 4.3.3, writing down the reaction-dispersal

matrix
�!�!
H is one of the main steps in the resolution of the front speed problem. This

reaction-dispersal matrix contains all of the information concerning the population (i.e.,
parameters such as the persistence, stage-to-stage transitions, characteristic dispersal
distance, etc.) necessary to apply Eq. (4.30) to a speci�c species and, thus, to obtain
its front speed. Generally, the construction of two simpler matrices (namely the demo-
graphic matrix and the dispersal one) is quite useful to create the reaction-dispersal
matrix (as it is done for the CSRW in Sec. 4.3.2). However, in some cases it is easier

to develop the
�!�!
H matrix directly from the description of the population. That is the

case of the DSRW explained in Sec. 4.3.3.

Figure 4.1 shows remarkable di¤erences between the CSRW analytical results and
the corresponding molecular-dynamics simulations. The same problem was solved pre-
viously in the nonoverlapping case using the DSRW description [83]. Therefore, in Sec.
4.3.3 we have extended the DSRW to the overlapping case, obtaining an almost perfect
agreement with the simulations (see Fig. 4.1).

We have compared the nonoverlapping and the overlapping models (Fig. 4.2.)
Overlapping-generations fronts are always faster than nonoverlapping ones (except in
the limit R0 ! 1). The overlapping-generations approximation can seriously under-
estimate the speed. Indeed, for realistic parameter values, the speed predicted by the
classical, nonoverlapping model is less than 1

3
of that predicted by our overlapping

model. This shows the interest of the problem solved in the present paper. It is also
important that the nonoverlapping-generations approximation can wrongly predict ex-
tinction for low values of the net reproductive rate R0. Our 2D overlapping-generations
model can be easily extended to describe more complicated situations that cannot the
tackled within the nonoverlapping approximation (e.g., a net reproductive rate R0 that
decreases with increasing age of individuals), so future works could report a variety of
new applications of the results reported in the present paper.
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Chapter 5

Virus infection speeds: Theory
versus experiment

This chapter is an exact transcription of the contents of the following paper:

Amor, D. R. & Fort, J. 2010 Virus infection speeds: Theory versus experiment. Phys.
Rev. E 82, 061905.

Abstract In order to explain the speed of Vesicular Stomatitis Virus (VSV) infec-
tions, we develop a simple model that improves previous approaches to the propagation
of virus infections. For VSV infections, we �nd that the delay time elapsed between the
adsorption of a viral particle into a cell and the release of its progeny has a very import-
ant e¤ect. Moreover, this delay time makes the adsorption rate essentially irrelevant
in order to predict VSV infection speeds. Numerical simulations are in agreement with
the analytical results. Our model satisfactorily explains the experimentally-measured
speeds of VSV infections.

PACS numbers: 87.23.Cc, 89.20.�a, 89.75.Fb

5.1 Introduction

Mathematical models of infectious diseases are a �eld that has advanced substantially
during the last decades [5]. It makes use of many methods from Physics, e.g., reaction-
di¤usion equations and front speed computations. On the other hand, in the last century
vaccination has become one of the best tools against infection spreading, and some
models including vaccination strategies have been developed recently [87,88]. Moreover,
new computer technology advances have played an important role on infection spreading
research, since they have made it possible to introduce novel methods such as complex
networks [89�91]. However, in addition with macroscopic epidemiology studies [5, 87,
88,90], the e¤ects of infectious diseases at a cellular levels (as well as microscopic viral
infection front propagation) are also of scienti�c interest [22,92�96].
When a virus infects a cell, some time � elapses before the new generation of viruses

is released from the cell. Some years ago, it was shown that this delay time � has an
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important e¤ect and can satisfactory explain the infection front speeds of T7 viruses
infecting E. Coli bacteria [10, 20, 21]. In Ref. [21], we mentioned that it should be
possible to apply the same model to Vesicular Stomatitis Viruses (VSV), which replicate
on mammalian or insect cells (not on bacteria), because there is again a delay due to the
time elapsed between virus adsorption into a cell and the release of its progeny. Detailed
measurements of infection front speeds for VSV were not available when we developed
our models [10,92], but such measurements have been performed recently [23,58].
Some very recent models for the spread of VSV infections have been proposed by

Haseltine et al. [23]. Their models include the reaction-di¤usion process, as well as some
additional relevant biological phenomena, in order to explain the experimental images
of this phenomenon. In this paper we revisit the approach by Haseltine et al. [23]
to reduce the complexity of the models, and to better account for the experimental
speeds. We will present a simple model, using as few unknown parameters as possible,
and compare its predicted front speeds to VSV experimental data [58]. We will show
that it is necessary to take it into account the e¤ect of the delay time � in order to
explain properly the front speeds of VSV infections.
The plan of this paper is as follows. In Sec. 5.2 we present a time-delayed model

using as few free or adjustable parameters as possible. In Sec. 5.3 we derive some
approximate explicit equations for the front speed. In Sec. 5.4, we perform numerical
simulations to check the validity of our theoretical model. In Sec. 5.5 we compare
to experimental data. Section 5.6 is devoted to concluding remarks, especially the
importance of the delay time � for VSV infections. We will also �nd that this delay-
time e¤ect leads to the front speed being approximately independent of the adsorption
constant k1 over four orders of magnitude. This is very important in order to compare
predicted speeds to experimental ones, because the value of k1 is very uncertain.

5.2 Model

The infection and virus replication processes can be summarized by the reactions

V + C
k1! I

k2! Y V: (5.1)

In Eq. (5.1), k1 is the adsorption rate of viruses V into uninfected cells C, k2 is the
rate constant for the death of infected cells I, and the yield Y is the number of new
viruses produced per infected cell. In contrast to some previous papers [10, 20, 21, 92],
here we use the symbol C instead of B because VSV infections propagate on mammalian
or insect cells (not on bacteria, in contrast to T7 infections).
The experiments reported in Refs. [23, 58] were performed in agar, such that cells

are immobilized and only viruses di¤use. The extracellular model by Haseltine et
al. [see Eq. (5a) in Ref. [23]] uses the following reaction-di¤usion equations for the
concentrations at large infected distances, r ! 1 (where r = 0 corresponds to the
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initial inoculation point of viruses into a medium of uninfected cells)�;y,

@[V ](r; t)

@t
= D

@2[V ](r; t)

@r2
� k1[V ][C](r; t) + k2Y [I](r; t); (5.2)

@[C](r; t)

@t
= �k1[C](r; t)[V ](r; t); (5.3)

@[I](r; t)

@t
= k1[V ](r; t)[C](r; t)� k2[I](r; t); (5.4)

where D is the di¤usion coe¢ cient, [:::] denotes concentration and t is the time. The
set of Eqs. (5.2)�(5.4) can be further improved for two reasons, which we now discuss.
First, Eq. (5.4) implies a virus dynamics that does not agree with experimental data

in homogeneous media [see Eq. (5.37) and the text below it in Appendix Az]. In or-
der to improve this point, it has been proposed [10] that k2[I](r; t) in Eqs. (5.2) and (5.4)
should be replaced by a logistic-type growth function, namely, k2[I](r; t) f1� [I](r; t)=IMAXg ;
which leads to a virus dynamics that agrees very well with one-step growth experimental
data (see Appendix A). Such an improved model is therefore described, instead of by
Eqs. (5.2)�(5.4), by the following set:

@[V ](r; t)

@t
= D

@2[V ](r; t)

@r2
� k1[V ][C](r; t) + k2Y [I](r; t)

�
1� [I](r; t)

IMAX

�
; (5.5)

@[C](r; t)

@t
= �k1[C](r; t)[V ](r; t); (5.6)

@[I](r; t)

@t
= k1[V ](r; t)[C](r; t)� k2[I](r; t)

�
1� [I](r; t)

IMAX

�
: (5.7)

This set is more reasonable than Eqs. (5.2)�(5.4), because it agrees better with ex-
perimental data in homogeneous media (see Appendix A), but we would like to stress
that this point does not a¤ect the analytical results in the present paper, because the
infection speeds that we will derive would be the same if the last term in Eqs. (5.5)
and (5.7) were neglected (see Appendix A).
A second, much more important improvement can be made. The di¤usion dynamics

in both Eqs. (5.5) and (5.2) (left side and �rst term in the right side) is Fickian or
nondelayed. This means that it does not take into account the e¤ect of the time
interval � during which a virus does not move appreciably because it is inside a cell.

�The Laplacian is @2[V ](r;t)
@x2 + @2[V ](r;t)

@y2 = 1
r
@
@r

�
r @[V ](r;t)@r

�
= 1

r
@[V ](r;t)

@r + @2[V ](r;t)
@r2 ; but since we are

interested in the asymptotic front speed (r !1 and t!1) this simpli�es into @2[V ](r;t)
@r2 :

yWe try to avoid using unnecessary parameters to explain the experimental front speeds, so we
neglect the e¤ects of (i) the reproduction of uninfected cells [i.e., we use k3 = 0 in Eq. (5b) in Ref. [23],
as in the extracellular model with no growth in Table 3 in that reference], (ii) the decay of dead cells
[k4 = 0 in Eq. (5d) in [23]], (iii) age dependencies, etc.

zThe appendixes to which the published version of this work refers as appendixes A and B corres-
pond to the sections 5.7 and 5.8, respectively, in this chapter.
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The parameter � is the time interval elapsed from the adsorption of a virus into a
cell until the virus has reproduced inside it and the virus progeny have left the cell.
Obviously, this e¤ect will slow down the propagation of virus fronts. Indeed, it has
been previously shown that taking into account this delay time is essential to �nd good
agreement with the experimental observations in other kinds of virus infections [10].
For this reason, Eq. (5.5) must be replaced by a time-delayed di¤usion equation [97],
namely, (see Appendix B for a derivation)

@[V ](r; t)

@t
+
�

2

@2[V ](r; t)

@t2
= D

@2[V ](r; t)

@r2
+ F (r; t) +

�

2

@F (r; t)

@t

����
g

; (5.8)

where the virus growth function F (r; t) accounts for all growth processes a¤ecting the
virus population density [V ]; i.e.,

F (r; t) � @[V ](r; t)

@t

����
g

= �k1[V ](r; t)[C](r; t) + k2Y [I](r; t)
�
1� [I](r; t)

IMAX

�
: (5.9)

Note that Eq. (5.8) simpli�es to Eq. (5.5) if the e¤ect of the delay time is neglected
(� = 0).
The symbol :::jg indicates that the corresponding time derivatives in Eqs. (5.8) and

(5.9) take into account exclusively growth (i.e., reactive) but not di¤usive processes. In
a recent paper [43] it has been shown that taking this subindex properly into account
improves previous results [9] for the speed of fronts (albeit Refs. [9, 43] consider a
simpler system with a single species, whereas here we have three species). For this
very same reason, Eq. (5.8) here improves Eq. (6) in Ref. [10], and yields a di¤erent
infection speed that will be derived below. In order to do so, let us further develop the
last term in Eq. (5.8),

�

2

@F (r; t)

@t

����
g

= ��
2
k1
@ f[V ](r; t)[C](r; t)g

@t

����
g

+
�

2
k2Y

@

@t

�
[I](r; t)

�
1� [I](r; t)

IMAX

������
g

:

(5.10)
From Eqs. (5.6) and (5.7), we can see that there are no di¤usive processes a¤ecting
the time derivatives of neither uninfected C nor infected cells I (physically, this is due
to the fact that cells are immobilized in agar in these experiments). Thus, in fact the
symbol :::jg is not required for the last term in Eq. (5.10), and the �rst term on the
right can be written as � �

2
k1[V ] @[C]=@t � �

2
k1[C] @[V ]=@tjg. Making use of Eq. (5.9),

this allows us to rewrite Eq. (5.8) as

@[V ](r; t)

@t
+
�

2

@2[V ](r; t)

@t2
= D

@2[V ](r; t)

@r2
+ F (r; t) (5.11)

� �
2
k1[V ](r; t)

@[C](r; t)

@t
� �
2
k1[C](r; t)F (r; t)

+
�

2
k2Y

@

@t

�
[I](r; t)

�
1� [I](r; t)

IMAX

��
:
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This equation has three dependent variables, namely [V ](r; t); [C](r; t) and [I](r; t); so
in order to analyze its solutions we need two additional equations, namely, Eqs. (5.6)
and (5.7),

@[C](r; t)

@t
= �k1[C](r; t)[V ](r; t); (5.12)

@[I](r; t)

@t
= k1[V ](r; t)[C](r; t)� k2[I](r; t)

�
1� [I](r; t)

IMAX

�
: (5.13)

Our model will be based on the set of Eqs. (5.11)�(5.13). Before going ahead, however,
we can see better the importance of the symbol :::jg by noting that, if it had not been
included in Eq. (5.8), Eq. (5.10) would be the same but without the symbols :::jg ;
so its �rst term on the right would be � �

2
k1 ([V ]@[C]=@t+ [C]@[V ]=@t) and, since the

symbol :::jg does not appear, we would be unable to substitute Eq. (5.9). Therefore,
instead of Eq. (5.11) we would have obtained

@[V ](r; t)

@t
+
�

2

@2[V ](r; t)

@t2
= D

@2[V ](r; t)

@r2
+ F (r; t) (5.14)

� �
2
k1[V ](r; t)

@[C](r; t)

@t
� �
2
k1[C]

@[V ](r; t)

@t

+
�

2
k2Y

@

@t

�
[I](r; t)

�
1� [I](r; t)

IMAX

��
:

This corresponds to the model in Refs. [10, 20]. The fourth term in the right of Eq.
(5.14) is improved by that in Eq. (5.11). The di¤erence is that this term in Eq. (5.11)
corresponds to the variation of [V ](r; t) due to adsorption and replication, whereas in
Eq. (5.14) it also includes its variation due to di¤usion [i.e., Eq. (5.14) uses @[V ](r;t)

@t

instead of @[V ](r;t)
@t

���
g
= F (r; t)]. For details, see the derivation of Eq. (5.8) in Appendix

B in the present paper.
Our model will be based on the set of Eqs. (5.11)�(5.13). Their front speed will be

derived below, and they will be integrated numerically in Sec. 5.4.
Equations (5.11)�(5.13) can be written in terms of dimensionless variables C �

[C]=C0, V � [V ]=C0, I � [I]=C0, t � k2t, and r � r
p
k2=D and dimensionless para-

meters � � k2� , � � k1C0=k2, and IMAX = IMAX=C0, where C0 is the initial cell
concentration. Then Eqs. (5.11)�(5.13) become

�

2
V tt + V t = V rr + F �

�

2
�V Ct �

�

2
�F C +

�

2
Y

�
I

�
1� I

IMAX

��
t

(5.15)

Ct = ��V C (5.16)

I t = �V C � I
�
1� I

IMAX

�
, (5.17)

where F is the dimensionless growth function de�ned as
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F = ��V C + Y I
�
1� I

IMAX

�
. (5.18)

For simplicity, in Eqs. (5.15)�(5.18) we have used de notation V t, Ct, and I t to
indicate, respectively, the partial time derivatives of V , C, and I. Moreover, we have
omitted the dependences of the dimensionless population densities and growth function
[i.e., V (r; t); C(r; t), I(r; t), and F (r; t) appear as V , C, I and F ]. In Eq. (5.15) V tt
and V rr stand for the second partial time and second partial space derivatives of V ,
respectively.
We look for solutions depending only on the new variable z � r � ct; where c > 0

is the dimensionless wave front speed, which is related to dimensional speed c by c =
c=
p
k2D. As usual, we linearize our Eqs. (5.15)�(5.18) around the unstable steady state

([V ]; [C]; [I]) = (0; C0; 0), i.e., (V ;C; I) = (�V ; 1 � �C ; �I), where �!� = ( �V ; �C ; �I) =�!� 0 exp(��z): For nontrivial solutions (�V ; �C ; �I) 6= (0; 0; 0) to exist, the determinant of
the matrix corresponding to the linearized set of three evolution equations must vanish.
Therefore, the following characteristic equation must be satis�ed:

�3 +
�c2 (1 + �) + 1
c(1� �c2) �2 +

� (��� 1) + ��Y � 1
1� �c2 �+

(1� ��) (�Y � �)
c(1� �c2) = 0: (5.19)

For simplicity, we have introduced the parameter � = �=2. According to marginal
stability analysis [98], the wave front speed can be calculated numerically from

c = min
�>0
[c(�)]; (5.20)

where c(�) is given implicitly by Eq. (5.19).

5.3 Approximate explicit equations for the speed

In this section we derive explicit expressions for the dimensionless front speed c. Its
exact value is given by the implicit Eq. (5.20). Since an exact explicit equation for the
speed would be very complicated, some assumptions and approximations will be made.
In order to avoid nonpositive values for concentrations, we must impose that the

three solutions for � in Eq. (5.19) are real, so it must be satis�ed that

�4C31C3 + C21C22 + 18C1C2C3 � 4C32 � 27C23 � 0; (5.21)

where C1, C2, and C3 are the coe¢ cients of second, �rst, and zeroth powers of �,
respectively. We rewrite condition (5.21) in terms of � = c2 and then we get

a3�
3 + a2�

2 + a1� + a0 � 0; (5.22)

where the coe¢ cients ai are easily derived from condition (5.21). However, the exact
expressions for ai are rather long. Fortunately, they can be simpli�ed under some simple
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approximations that take into account typical values of the parameters in the present
paper, namely, a high value of the yield (e.g., Y = 2:77 � 105) and a small value of �
(e.g., � = 2:15� 10�3). In Sec. 5.5 we will give a detailed discussion of these and other
parameter values. Then the coe¢ cients ai can be written as

a3 ' 4�3Y 3�4 � 12�2Y 2�3 + (�2�2Y 2 � 18�!�2Y 2 � 27!2�2Y 2)�2

+ (�2�2�Y + 18�!�Y )� � 4�3!�Y; (5.23)

a2 ' �4�3Y 3�3 + (�2��2Y 2 + 18!�2Y 2 + 12�2Y 2)�2 + (18�!�2Y 2 + 54!2�2Y 2)�
+ 12�2!�Y � 18�!�Y; (5.24)

a1 ' �2Y 2�2 � 18!�2Y 2� � 27!2�2Y 2; (5.25)

a0 ' 4!�Y; (5.26)

where � = 1+�, ! = ��� 1, we have assumed the typical values mentioned above and
made the approximation (Y � 1) ' Y . Even at this point, an exact solution for the
front speed would be extremely cumbersome. Therefore, below we present two special
cases where a manageable expression for the front speed can be found. First, we deal
with the case � >> 1. Then, Eqs. (5.23)-(5.26) can be simpli�ed as

a3 ' 4�3Y 3�4; (5.27)

a2 ' �4�3Y 3�3; (5.28)

a1 ' �2Y 2�2; (5.29)

a0 ' 4!�Y; (5.30)

where we have just kept the highest-order power of � for every coe¢ cient ai. The
critical condition to obtain the propagation speed is given by Eq. (5.22) when the
equality holds. Then, substituting Eqs. (5.27)�(5.30) into Eq. (5.22), it is easy to see
that the only real, positive solution if � >> 1 is simply

c ' 1p
�
: (5.31)

Note the interesting fact that the velocity is seen to be independent of � (hence,
independent of k1) and Y in this limit. In Sec. 5.5 we will check this point by means
of numerical simulations and discuss it in more detail.
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On the other hand, we can easily obtain a solution for the nondelayed case (� = 0).
Then � = 0 and all of the terms containing � in Eqs. (5.23)�(5.26) vanish. We
substitute the resulting coe¢ cients ai in Eq. (5.22) and obtain

c�=0 =

0BBB@
� �2
3�3
� 21=3(��22+3�3�1�Y )

3�3

�
�2�32��33�1+9�3�2�1�Y+

h
�3(��22+3�3�1�Y )

3
+(�2�32��33�1+9�3�2�1�Y )

2
i1=2�1=3

+

�
�2�32��33�1+9�3�2�1�Y+

h
�3(��22+3�3�1�Y )

3
+(�2�32��33�1+9�3�2�1�Y )

2
i1=2�1=3

3�21=3�3

1CCCA
1=2

;

(5.32)
where �3 = 4, �2 = 6, and �1 = �27.

5.4 Numerical simulations

We have integrated numerically the set of Eqs. (5.15)�(5.17), in order to check the
exact speeds obtained from Eqs. (5.19) and (5.20) and the approximate speeds from
Eqs. (5.31) and (5.32). Numerical simulations are also interesting because they make
it possible to obtain not only the front speed, but also pro�les for the concentrations of
the three species, namely, [V ]; [C], and [I].
In the experiments that we want to explain, the virus concentration of the initial

inoculum is [23],

[V ]0 =

8<:
v0, r < 0:075cm,
(1� 20

cm
(r � 0:075cm))v0, 0:075cm � r � 0:125cm,

0, r > 0:125cm,
(5.33)

where [V ]0 is the concentration of viruses at t = 0 and v0 = 9:3� 108/ml.
The initial condition (5.33), together with [C] = C0 everywhere at t = 0 and [I] = 0

everywhere at t = 0, was used in all simulations.
We used �nite di¤erences to approximate the partial derivatives in Eqs. (5.15)�(5.17).

Typical values for the space and time steps used in our simulations [e.g., in Fig. 5.1
and most of the simulations in Fig. 5.2(b)] were 1:5 s and 1 � 10�5cm, respectively
[dimensionless values for these steps were computed in order to use Eqs.(5.15)�(5.17)].
However, in some cases a higher resolution was required in order to �nd good agreement
with the theoretical front speeds. When high values of the parameters (Y , k, or �) were
explored, the steps of space and time had to be reduced to 1� 10�6cm and below 0:3 s,
respectively. Moreover, the same high resolution was required when very low values of
the same parameters were used. Such step reductions lead to a substantial increase in
computing time. Such higher resolution was needed in some of the simulations in Figs.
5.2(a) and 5.3.
Figure 5.1 depicts an example of the concentration pro�les [V ]; [C], and [I] after 48

h of infection. In Fig. 5.1 we observe that the pro�le of the uninfected cells C has the
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Figure 5.1: Radial pro�les of the concentrations [V ]; [C] and [I] after 48 h of infection,
obtained from numerical simulations. The parameter values used are C0 = 3:8�107/ml,
Y = 2:77 � 105, k1 = 1:4 � 10�10cm3/h, k2 = 2:47/h, � = 8:1 h and D = 8:37 � 10�5
cm2/h (see Sec. V for a discussion on these values).

shape of a front (full curve), whereas that of the infected cells I has the shape of a pulse.
This was to be expected intuitively, because the infection [�rst reaction in Eq. (5.1)]
decreases the number of uninfected cells C, which transform into infected cells I and
eventually die. On the other hand, their death releases new viruses V [second reaction
in Eq. (5.1)] after some delay time � , which explains the fact that the virus pro�le
lags substantially behind that of infected cells I (in contrast to what is observed in
numerical simulations of nondelayed models [99]x). Finally, let us compute the distance
traveled by the infection front during 48 h. This should be 48 h times 0:053 cm/h [from
Fig. 5.2(a), rhombus with � ' 8 h], i.e., 0.25 cm. Adding 0.10 cm from the initial
condition (5.33) we obtain 0.35 cm for the front position, in agreement with Fig. 5.1.

5.5 Comparison to experiment

In this section we apply our model to the speci�c case of a VSV focal infection spreading
in Baby Hamster Kidney (BHK) cells. Experimental results of this biophysical system,
including the observed front speeds, have been published in Ref. [58]. Below we compare

xSee specially Fig. 2 in Ref. [99]
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the observed speed range to both simulations and analytical solutions of our model.
First, we brie�y discuss the parameter values used in our computations. Since

we have not found any value for IMAX in the VSV experiments [58], we assume that
IMAX ' C0 (in agreement with Fig. 5.1), i.e., that viruses are able to infect almost
all of the cells at large enough times after the infection. The value of IMAX is thus
IMAX ' C0 = 3:8� 107/ml [23].
The rate constant for the death of infected cells, k2; and the virus yield, Y; can

be easily derived from the one-step growth data of VSV on BHK cells [Fig. 3(a)
in [23]] by �tting the logistic function ]Eq. (5.44) in Appendix A]. This is the same
procedure we already used in Fig. 5.1 in Ref. [10] (that �gure gives details on the
same computation for the case of T7 viruses infecting E. Coli bacteria). This yields
k2 = 2:47/h and Y = 2:77�105 for VSV infecting BHK cells. The analytical results and
numerical simulations for the front speed are shown in Fig. 5.2(a) using these values.
For comparison, in Fig. 5.2(b) we have used the yield Y = 4389 proposed in Ref. [23].
All parameters except Y have the same values in Figs. 5.2(a) and 5.2(b). Let us now
discuss the values of the remaining parameters.
Since the di¤usion coe¢ cient D of VSV in agar solutions has not been measured,

we performed our analytical and numerical computations using two di¤erent values of
D, namely that in agar for other viruses [10, 100] [D = 1:44 � 10�4 cm2/h, full curves
in Figs. 5.2(a) and 5.2(b)] and the only value of D for VSV available, which refers to a
very speci�c water solution [55] [D = 8:37� 10�5 cm2/h, dashed curves in Figs. 5.2(a)
and 5.2(b)].
After VSV viruses infect BHK cells, their progeny leave the cells between � '2 h and

� '10 h after infection [see Fig. 3(a) in [23]]. Within this range, the predicted speeds
in our Fig. 5.2(a) are consistent (for 3 < � < 7 h) with the observed range, namely,
(6:6�8:0)�10�3 cm/h {, in spite of the fact that the value of the di¤usivity for the VSV
virus is rather uncertain because (as mentioned above) it has not been measured through
agark. Essentially the same agreement between theory and experiment is also obtained
for the value of Y proposed in Ref. [23] [Fig. 5.2(b)]. In contrast, the nondelayed model
[� = 0; as assumed in the model in Ref. [23] corresponding to Eq. (5.2) in the present
paper] yields a very large error, as it is clear from its mismatch with the experimental
data [compare the dotted horizontal lines to the shaded rectangle in Figs. 5.2(a) and
5.2(b)]. This comparison with the experiments clearly shows the need to take into
account the delay-time e¤ect in order to explain the infection speed. This conclusion
had not been reached before for VSV infections.
Our approximate solutions for the speed [Eqs. (5.31) and (5.32)] make it possible to

understand better the di¤erences between Figs. 5.2(a) and 5.2(b). If the delay time �

{The mean of this range was obtained from the slope of a linear �t to Fig. 2B in Ref. [58] (data
points labeled N1), and the error of the slope was estimated at the 95% con�dence-level interval by
multiplying the standard deviation of the slope by the t-distribution t( 0:0052 ; �) ' 3:2; with � = 5�2 = 3
because there are �ve data points in that �gure (see Ref. [101], specially p. 25 therein).

kThe value of the di¤usivity is rather uncertain also because the value of f � C0=Cmax necessary
to estimate the e¤ective di¤usion coe¢ cient (Deff in Ref. [9]) was not measured in Refs. [23, 58], so
we have had to approximate Deff ' D.
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Figure 5.2: Predicted front speed versus the delay time �; for (a) the value Y = 2:77�105
proposed in this paper and (b) the value Y = 4389 proposed in Ref. [23]. The dotted
horizontal lines correspond to the nondelayed model (� = 0) and the hatched rectangle
to the experimental range, namely (6:6�8:0)�10�3 cm/h . The curves are the analytical
results from Eqs. (5.19) and (5.20) and the full symbols are the numerical simulations.
The empty symbols indicate the approximate analytical speed results. The parameter
values used are C0 = 3:8� 107/ml, k1 = 1:4� 10�10cm3/h and k2 = 2:47/h.

is large enough, according to Eq. (5.31) the front speed does not depend on Y neither
�. Both simulations and exact analytical results agree with the non-dependence of the
speed on Y , since for � > 2 h the curves in Figs. 5.2(a) and 5.2(b) are approximately
the same. Note also that the approximate Eq. (5.31) has been derived assuming a high
value of Y . Because of this, for � < 2 h some di¤erences between the exact and the
approximate results arise [specially in Fig. 5.2(b), because the value of Y is two orders
of magnitude smaller than in Fig. 5.2(a)]. Similarly, the approximate speed for � = 0
[Eq. (5.32)] is much more accurate for high values of Y [Fig. 5.2(a)].

In Figs. 5.1 and 5.2 we have used the value k1 =1:4 � 10�10cm3/h proposed in
Ref. [23] for the adsorption rate, because the value of k1 has not been measured experi-
mentally for VSV infecting BHK cells. However, the former value k1 =1:4�10�10cm3/h
was obtained by �tting the observations to an extracellular model in Ref. [23]. Because
that model does not take into account the role of the delay time � [compare Eqs. (5.2)
to (5.11) above], this value of k1 should be regarded as highly uncertain. Therefore, we
analyzed the dependence of the front speed on k1. We found the very interesting result,
shown in Fig. 5.3, that the value of the front speed is approximately independent of k1
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over several orders of magnitude (provided that the delay time � is taken into account,
as �rst done in the present paper for VSV infections). Indeed, in Fig. 5.3, the speed
remains almost independent of the adsorption rate k1 for large enough values of the
delay time � , namely � > 2 h. In contrast, k1 becomes a relevant parameter for the
case � = 0. This is reasonable intuitively, because a long enough delay � in the release
of the new generation of viruses from the infected cells will substantially slow down
the infection process. Then we should expect the time needed for the parent virus to
cross the cell membrane (which is measured by k1) to become irrelevant. This is indeed
observed in Fig. 5.3 for � > 2 h. The approximate solution given by Eqs. (5.31) and
(5.32) also supports this conclusion, because for large enough values of � ( � >> 1)
according to Eq. (5.31) the speed does not depend on �, hence neither in k1 [whereas
for the nondelayed case (� = 0), Eq. (5.32) shows a nonlinear dependence on � and
therefore on k1]. This also illustrates that the conclusions obtained from delayed and
nondelayed models can be very di¤erent. Furthermore, this makes it possible to make
quantitative predictions of the front speed in spite of the uncertainty in the value of k1,
and strongly supports the validity of our Figs. 5.2(a) and 5.2(b), because it shows that
they would remain almost the same even if the value of k1 di¤ered several orders of
magnitude from the value used to obtain those �gures (namely, k1 = 1:4� 10�10cm3/h,
from Ref. [23]).
We can also see that there is good agreement between the analytical results from

Eqs. (5.19) and (5.20) (curves in Figs. 5.2 and 5.3) and the numerical simulations of
Eqs. (5.15)�(5.18) (full symbols).
Relative di¤erences between the speeds in Fig. 5.3 would not change if a di¤erent

value of the virus di¤usivity D were used. This is due to the fact that in the dimension-
less Eq. (5.19), the parameter D does not appear, thus it is used only when computing
the dimensional speed c from the dimensionless one c as c = c

p
k2D. Thus, using an-

other di¤usivity value eD would only change the speeds by the factorqeD=D. Hence, we
have shown that the only two parameters that have not been measured experimentally
(namely, D and k1) do not a¤ect our conclusion that the role of the delay time cannot
be neglected in order to understand VSV infection speeds.
In this section we have shown that the delay time � is a strongly signi�cant para-

meter in models of VSV infection spread. The authors of Ref. [23] �tted a large number
of parameters (up to 9). In some cases, this can lead to over�tting the observed phe-
nomena. We also think that it can sometimes lead to unjusti�ed conclusions (e.g., to
neglect the role of the delay time, which here we have found to be of utmost import-
ance). In this paper, we have only used two unknown parameters (D and k1) and shown
that they are not strongly relevant to our main conclusions.

5.6 Concluding remarks

We have built a simple time-delayed model of VSV infections. In order to do so, we
have improved a model previously applied to other kinds of viruses [10]. Our analytical
speeds agree well with those from numerical simulations. They are also in agreement
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Figure 5.3: Front speed versus adsorption rate k1 for several values of the delay time.
The hatched rectangle corresponds to the experimental range, namely, (6:6�8:0)�10�3
cm/h . The curves correspond to the analytical results from Eqs. (5.19) and (5.20)
and the full symbols to the numerical simulations. The empty symbols indicate the
approximate analytical speed results. The parameter values used are C0 = 3:8�107/ml,
D = 8:37� 10�5cm2/h, k2 = 2:47/h and Y = 2:77� 105.

with experimentally observed VSV infection speeds [Figs. 5.2(a) and 5.2(b)]. Moreover,
we have derived approximate front speeds that have lead us to additional understanding
on the results and made our conclusions more intuitive.

As expected intuitively, the front speed decreases with increasing values of the delay
time � [Figs. 5.2(a) and 5.2(b)]. We have obtained a strong decrease from � = 0 to
� ' 1 h, and a smoother decrease for larger values of � . We have shown that the
introduction of the delay time � is critically important to account for the front speeds
of VSV infections. Indeed, neglecting the delay-time e¤ect (i.e., � = 0) leads to an
infection front speed one order of magnitude faster than the observed range [Figs.
5.2(a), 5.2(b), and 5.3].

Moreover, we have shown that the infection speed is almost independent of the
adsorption rate k1 over four orders of magnitude for large enough values of the delay
time � (Fig. 5.3), a conclusion not previously reached for any kind of virus infections.
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5.7 Appendix A. Logistic growth in an homogen-
eous medium

As mentioned in Sec. 5.2, Eqs. (5.2)�(5.4) do not agree with the experimental data in
the so-called one-step growth experiments. To see this, consider the very simple case of
a homogeneous medium [so that @2[V ](r; t)=@r2 = 0], composed initially only of infected
cells [[C](t) ' 0 and [I](t = 0) = [I]0] and free viruses [[V ](t = 0) = [V ]0]. In such a
situation, Eq. (5.4) becomes simply

d[I](t)

dt
= �k2[I](t); (5.34)

so that
[I](t) = [I]0 exp(�k2t); (5.35)

and Eq. (5.2) simpli�es to

d[V ](t)

dt
= k2Y [I](t) = Y k2[I]0 exp(�k2t); (5.36)

thus
[V ](t) = [V ]0 + Y [I]0 (1� exp[�k2t]) : (5.37)

However, this exponential behavior does not agree with the experimental data in the so-
called one-step growth experiments, because in those experiments a logistic or S-shape
curve is always observed instead (see, e.g., Fig. 1 in Ref. [10]).
As a solution to avoid this inconsistency, it has been proposed [10] to replace Eqs.

(5.2)�(5.4) by Eqs. (5.5)�(5.7). In order to explain this point, let us derive the
virus dynamics predicted by the set [Eqs. (5.5)�(5.7)] in one-step growth experiments.
Taking into account again that those experiments are performed in an homogeneous
medium [so that the �rst term in the right-hand side of Eq. (5.5) is negligible] and in
the absence of uninfected cells [so that [C](r; t) ' 0], Eqs. (5.5)�(5.7) simplify to

d[V ](t)

dt
= �Y d[I](t)

dt
; (5.38)

d[I](t)

dt
= �k2[I](t)

�
1� [I](t)

IMAX

�
: (5.39)

Integration of Eq. (5.39) yields

[I](t) =
IMAX

1 +

�
IMAX

[I]0
� 1
�
exp[k2t]

; (5.40)

where [I]0 is the value of [I](t) at time t = 0: Note that this equation leads to [I](t)! 0
for t ! 1; as it should (because after a su¢ ciently long time, all infected cells will
have died due to the second of reactions [Eq. (5.1)]).
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On the other hand, integrating Eq. (5.38) from t = 0 to t!1 we come to

[V ]1 = [V ]0 + Y [I]0; (5.41)

so the increase in the concentration of viruses is limited by the initial concentration of
infected cells [I]0 and the yield Y; as it should (because Y viruses per infected cell are
produced, according to the second of reactions [Eq. (5.1)]).
If we integrate Eq. (5.38) from t = 0 to t we obtain, instead of Eq. (5.41),

[V ](t) = [V ]0 + Y [[I]0 � [I](t)] ; (5.42)

so, again, the increase in virus particles is equal to the decrease in infected cells multi-
plied by the yield. This is much more reasonable intuitively than Eq. (5.37).
Using Eq. (5.40) into (5.42) leads us to

[V ](t) = [V ]0 + Y [I]0 �
Y IMAX

1 +

�
IMAX

[I]0
� 1
�
exp[k2t]

: (5.43)

If only a few viruses are present initially ([V ]0 � Y [I]0 or [V ]0 � [V ]1) and the
initial concentration of infected cells is close to saturation ([I]0 ' IMAX), this simpli�es
to

[V ](t) =
Y IMAX

c1 exp[�k2t] + 1
; (5.44)

where c1 �
�
IMAX

[I]0
� 1
��1

: Equation (5.44) is the typical logistic or S-shaped curve

which (in contrast to the exponential curve [Eq. (5.37)] agrees very well with experi-
mental data of one-growth experiments [see Eq. (3) and Fig. 1 in Ref. [10], and Fig.
2 in Ref. [58]]. We conclude that, both intuitively [see the text below Eq. (5.42)] and
from the perspective of providing good �ts to experimental data, Eqs. (5.5)�(5.7) are
more reasonable than Eqs. (5.2)�(5.4).
Notwithstanding the former two strong arguments, the question arises if there is

some physical mechanism that can lead to a dynamics with a quadratic saturation
term [last term in Eq. (5.39)] or, equivalently, to its analytical solution [the logistic
expression (5.44)]. The answer is that there is at least one such mechanism, namely, to
consider that in practice not all viruses spend exactly the same time inside a cell before
releasing their progeny (i.e., that the value of the delay time � is not the same for all
virus particles). Then, if we choose the time origin t = 0 when the viruses enter the
cells, the number of viruses at time t will be

[V ](t) = [V ]0 + (Y � 1)[V ]0
tZ
0

d� '(�); (5.45)

where '(�) is the probability distribution of the delay time � . Note that in the special
case that all viruses have exactly the same value of �; say �0; '(�) is a Dirac delta
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centered at � = �0 and Eq. (5.45) yields [V ](t) = [V ]0 if t < �0 and [V ](t) = Y [V ]0 if
t > �0, as it should. If we consider the following delay-time distribution,

'(�) =
Y Imax

(Y � 1)[V ]0
c1 k2 exp[�k2� ]

(c1 exp[�k2� ] + 1)2
; (5.46)

which is bell-shaped (see the full curve in the inset to Fig. 1 in Ref. [21]), using it
into Eq. (5.45) and integrating yields the logistic Eq. (5.44), i.e., the solution to
the quadratic expression (5.39). This gives a possible physical reason for the logistic
solution [Eq. (5.44)], and thus for the quadratic evolution Eq. (5.39). However, we
stress that there are other reasons why such a quadratic evolution equation is more
reasonable than a linear one, both intuitively [see the text below Eq. (5.42)] and from
the perspective of providing better �ts to experimental data [see the text below Eq.
(5.44)]. In any case, the inclusion or not of a quadratic saturation term does not a¤ect
the analytical results in this paper, since the infection speeds derived would be the
same if the quadratic term [last term in Eqs. (5.5), (5.7), and (5.39)] were neglected
[because after linearization, the last term in Eqs. (5.15), (5.17), and (5.18) do not yield
any term in Eq. (5.19)]. However, let us emphasize an important practical advantage
of including this quadratic term, namely, that since Eq. (5.44) instead (5.37) gives a
much better �t to data, it leads to a more accurate estimate of the value of k2 (as we
have done in the Comparison to experiment section).
Finally, it is worth to note that Y appears multiplying k2 in all reaction-di¤usion

equations for [V ] discussed in this paper [i.e., Eqs. (5.2), (5.5), (5.9) and (5.11)].
Therefore, the question arises if it is possible to absorb Y into k2 and, in this way,
get rid of one parameter. The problem is that one-step growth experiments measure
[V ](t) but not [I](t) (see, e.g., p. 1736 in Ref. [23]). Thus in order to estimate the
parameter values, it is necessary to �t Eq. (5.44) to the experimental data. But in Eq.
(5.44) Y no longer multiplies k2. For this reason, Y cannot be absorbed into k2.

5.8 Appendix B. Time-delayed reaction-di¤usion equa-
tion

In order to make this paper as much self-contained as possible, in this appendix we
give a derivation of the time-delayed reaction-di¤usion Eq. (5.8). Variations in the
population number density of viruses are due to two processes: population growth
(replication minus adsorption) and dispersal. As usual [43], we Taylor-expand the
variation due to population growth,

j[V ] (x; y; t+ �)� [V ] (x; y; t)jg = �
@[V ](x; y; t)

@t

����
g

+
� 2

2

@2[V ](x; y; t)

@t2

����
g

+ � � �

= �F (r; t) +
� 2

2

@F (r; t)

@t

����
g

+ � � � (5.47)
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where (x; y) are Cartesian space coordinates, � is the generation time, the subindex g

means growth, and we have introduced the growth function as F (r; t) � @[V ]
@t

���
g
. On the

other hand, the variation due to dispersal is [9]

j[V ] (x; y; t+ �)� [V ] (x; y; t)jd

=

ZZ
[V ] (x+�x; y +�y; t)� (�x;�y) d�xd�y

� [V ] (x; y; t) ; (5.48)

where we have introduced the dispersal kernel � (�x;�y), de�ned as the probability per
unit area that a virus particle initially placed at (x+�x; y +�y) has moved to (x; y)
after a generation time � . In a system involving both dispersal and population growth,
the total variation is the sum of both contributions,

[V ] (x; y; t+ �)� [V ] (x; y; t) =ZZ
[V ] (x+�x; y +�y; t)� (�x;�y) d�xd�y

� [V ] (x; y; t) + �F (r; t) + �
2

2

@F (r; t)

@t

����
g

+ � � � (5.49)

Finally, we Taylor-expand Eq. (5.49) up to second order in time and space and
assume an isotropic kernel [i.e., � (�x;�y) = � (�), with � =

p
�2
x +�

2
y]. This yields

��

@[V ]

@t
+
�

2

@2[V ]

@t2
= D

�
@2[V ]

@x2
+
@2[V ]

@y2

�
+ F (r; t) +

�

2

@F (r; t)

@t

����
g

' D@
2[V ](r; t)

@r2
+ F (r; t) +

�

2

@F (r; t)

@t

����
g

; (5.50)

where D is the di¤usion coe¢ cient D =
h�2i
4�

=
h�2xi
2�

=
h�2yi
2�
. Equation (5.50) is the

time-delayed Eq. (5.8) in our model. Note that the last term reads @F (r;t)
@t

���
g
instead

of @F (r;t)
@t

: This corrects an error in a previous derivation [9] that was later applied to
T7 virus infection fronts infecting E. Coli bacteria [10,20]. That error was due to not
including the symbol :::jg in the last term in Eq. (5.47).
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Chapter 6

Lag-driven motion in front
propagation

This chapter is an exact transcription of the contents of the following manuscript
submitted for publication at the Journal of Statistical Mechanics: Theory and
Experiment and is being revised at the moment of writing this Ph. D. thesis:

Amor, D. R. & Fort, J. Lag-driven motion in front propagation. J Stat Mech - Theor
Exp Submitted.

Abstract Front propagation is an ubiquitous phenomenon. It arises in physical,
biological and cross-disciplinary systems as diverse as �ame propagation, superconduct-
ors, virus infections, cancer spread or transitions in human prehistory. Here we derive
a single, approximate front speed from three rather di¤erent time-delayed reaction-
di¤usion models, suggesting a general law. According to our approximate speed, fronts
are crucially driven by the lag times (periods during which individuals or particles do
not move). Rather surprisingly, the approximate speed is able to explain the observed
spread rates of completely di¤erent biophysical systems such as virus infections, the
Neolithic transition in Europe, and postglacial tree recolonizations.

6.1 Introduction

Fronts are widely used in physical models of �ame propagation [7], superconductors [8],
virus infections [10], cancer spread [11], transitions in human prehistory [9], etc. In
many systems, individuals or particles are at rest during some time intervals, and for
this reason the corresponding fronts become time-delayed [9]. For single-species systems,
the dynamics is governed by the hyperbolic reaction-di¤usion (HRD) equation [43]:

�p

�t
+
T

2

�2p

�t2
= D

�
�2p

�x2
+
�2p

�y2

�
+
�p

�t

����
g

+
T

2

�2p

�t2

����
g

; (6.1)
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where p = p(x; y; t) is the population (or particle) number density at point (x; y) and
time t, D is the di¤usion coe¢ cient, and the subindex :::jg indicates that the cor-
responding time derivatives take into account growth (i.e., net reproductive) but not
di¤usive processes [43]. In Eq. (6.1), terms proportional to T are second-order Taylor
expansion terms [43] and account for the e¤ects of the delay (or lag) time T which is
elapsed between two successive motions of particles or individuals. If no delay time is
considered (i.e., if T = 0), Fisher�s classical reaction-di¤usion equation [2] is recovered.
A set of coupled equations is required when extending the scope to multiple-species

systems. For example, focal infections provide a convenient experimental platform to
study the replication (reaction) and spread (di¤usion) of viruses in a cell monolayer
[10, 56, 58]. The interaction between viruses (V), non-infected cells (C) and infected
cells (I) give rise to the following evolution equations [10,20,102]:

@[C]

@t
= �k1[C][V ]; (6.2)

@[I]

@t
= k1[V ][C]� k2[I]

�
1� [I]

IMAX

�
; (6.3)

where k1 stands for the rate constant of adsorption of viruses V to non-infected cells
C and k2 is the death (or lysis) rate of infected cells I (each infected cell releases a
new generation of Y viruses after a delay time T ). If we replace p by the virus number
density [V ](r; t) (where r is the radial coordinate centered at the inoculation point of
the infection) in the above HRD equation (6.1), we obtain the evolution equation for
the virus population. In agreement with Eqs. (6.2)-(6.3), the virus population growth
reads:

�[V ]

�t

����
g

= �k1[V ][C] + k2Y [I]
�
1� [I]

IMAX

�
: (6.4)

Hence, in order to determine the dynamics of focal infections, the set of di¤erential
equations (6.1)-(6.4) must be solved. Whereas the exact speed of front solutions to
the Eqs. (6.1)-(6.4) is very complicated (see Appendix A), recently we derived an
approximate solution for the spread of virus infections which reads [102]y:

c =
p
2D=T : (6.5)

Note that dimensional analysis could also suggest that c is proportional to
p
D=T ; but

other dependencies are possible on this ground, e.g.
p
k2D for Eqs. (6.1)-(6.4),

p
aD

(Fisher�s speed [2]),
p
a2D=T for Eq. (6.1), etc. Moreover, dimensional analysis cannot

predict the factor
p
2; which was derived by marginal stability analysis in Ref. [102].

We would like to emphasize the following physical interpretation of Eq. (6.5). First,
the parameter T is de�ned as the mean time a virus needs to reproduce inside an infected
cell. If this lag T is substantially longer than the rest of the interval times involved in a

yIn Ref. [102] we presented an approximate infection front speed in dimensionless variables which
is equivalent to Eq. (6.5) in the present paper.
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virus life cycle (i.e., the death time of cells k�12 , the mean travel time in the extracellular
medium, and the time viruses need to cross the cell membrane k�11 C

�1
0 ), then T becomes

the only relevant time scale in our model. On the other hand, the parameterD is related
to how easily the virus di¤uses in the extracellular medium. It is thus reasonable that
the parameters T and D determine the front speed under these assumptions. But is
this framework valid in real situations? Before closing this introduction, we address
this question by applying Eq. (6.5) to several virus infections.
Figure 6.1 compares the results from the approximate speed (6.5), the exact theory,

and simulations for the front speed of focal infections for Vesicular Stomatitis Virus
(VSV) [102]. Moreover, for the �rst time Eq. (6.5) is applied to the T7 virus [10]:
in Fig. 6.1 we present results for two T7 strains, namely the wild type and the p005
mutant [56]. Both for T7 and VSV, perfect agreement between the exact result (which
is rather complicated, see Appendix A) and the approximate speed (6.5) is observed.
Hence Eq. (6.5) provides convenient results to predict virus infection speeds. Moreover,
both exact and approximate results in Fig. 6.1 show consistency with the corresponding
experimental data (shaded rectangles).
The main aims of the present paper are (i) to derive mathematically the same

approximate equation (6.5) for two other systems, which are driven by equations com-
pletely di¤erent to the virus reaction-di¤usion equations (6.1)-(6.4), and (ii) to show
that a fair agreement with observations can be attained also for those two additional
systems. Accordingly, in Sec. 6.2 we consider a single-population model (and apply it
to the Neolithic transition front in Europe) and in Sec. 6.3 we analyze a structured
populations model (and apply it to forest recolonization fronts).

6.2 Approximate front speed for nonstructured pop-
ulations

Two major processes drive the spatial population dynamics of biophysical systems:
population growth (reproduction minus deaths) on one hand, and migration (dispersal)
on the other. In many cases, these two processes can be considered independent of each
other. Typically, such an assumption is implicit in the study of nonstructured popu-
lations [9, 43]. Within this framework, in this section we derive an approximate front
speed from reaction-di¤usion equations applied to nonstructured populations systems
involving a single species. For the sake of clarity, we �rst review brie�y the derivation
of the HRD speed [9,43].
The variation of the population number density due to population growth can be

generally expressed as a Taylor series,

[p(x; y; t+ T )� p(x; y; t)]g = T
�p

�t

����
g

+
T 2

2

�2p

�t2

����
g

+ ::: (6.6)

where the subindex :::jg indicates that the corresponding time derivatives take into
account growth (i.e., net reproductive) but not migration processes [43]. In most bio-
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Figure 6.1: Focal infections. Front speed versus lag time. Curves stand for the
approximate solution c =

p
2D=T . The solid curve corresponds to VSV (D = 1:44�10�4

cm2/hr) and the dashed curve to the two T7 mutants (D = 8:55 � 10�5 cm2/hr). Full
(empty) symbols correspond to the results of the exact theory (simulations). Triangles
represent the results for VSV (Y = 4983 [102]). Stars stand for the wild T7 strain
(Y = 34:5 [10]), and rhombs for the p005 T7 mutant (Y = 63:6). Circles represent an
hypothetical low-yield case Y = 5. The hatched (shaded) shaded area corresponds to
the observed ranges of T and c for VSV (T7) viruses. Details on the parameter values
and the simulations appear in appendix A.

logical applications the lag T corresponds to one generation [9] (see, e.g., the lag time
in focal infections above).
In order to account for migration (dispersal), it is useful to de�ne the dispersal

kernel �(�x;�y) as the probability per unit area that an individual initially placed
at (x +4x; y +4y) has reached the position (x; y) after a time T . This leads to the
following change for the population density due to the migration process [9,43],

[p(x; y; t+ T )� p(x; y; t)]m =
R +1
�1

R +1
�1 p(x+�x; y +�y; t)

�(�x;�y)d�x d�y � p(x; y; t):
(6.7)

Thus, the evolution of a system involving both processes (i.e., population growth
and migration) is driven by the sum of both contributions,
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p(x; y; t+ T ) =
R +1
�1

R +1
�1 p(x+�x; y +�y; t)

�(�x;�y)d�x d�y + T
�p
�t

��
g
+ T 2

2
�2p
�t2

���
g
+ :::

(6.8)

If isotropic migration is assumed (i.e., if �(�x;�y) = �(�), with � =
p
�2
x +�

2
y),

then Taylor-expanding the above equation (6.8) up to second order in time and space
yields the HRD equation (6.1). The di¤usivity of the population in the HRD equation is
de�ned as D = <�2>

4T
[9]. In order to solve the HRD equation, it is convenient to de�ne

F (p) as the population growth function F (p) = �p
�t

��
g
. Assuming (i) low population

densities at the leading edge of the front, (ii) that the front is locally planar for t!1
and r !1, and (iii) constant-shape solutions with the form p = p exp[�(x� ct)], then
the exact solution of Eq. (6.1) yields the HRD front speed, namely [43]

c =
2
q
DF 0(0)

�
1 + T

2
F 0(0)

�
1 + TF 0(0)

; (6.9)

where the growth rate at the front�s edge has been approximated as F 0(0) = dF
dp

���
p=0
.

Let us now consider the limiting case of a high reproduction rate, F 0(0)!1; into
the above equation (6.9). This leads to the very simple expression

c =
p
2D=T: (6.10)

Remarkably, this simple approach has led us to the very same approximate front
speed as for the case of focal infections above (see Eq. 6.5). It is worth to note that the
single-species systems analyzed in this section are very di¤erent (both mathematically
and physically) from the focal infections considered in the introduction (in which the
equations of the system must account for the interactions between three species, so a
set of coupled equations is involved instead of a single equation).
Let us now apply the HRD equation [43] to the invasion front of the Neolithic

transition, in order to check the results of the approximate speed c =
p
2D=T . Previous

HRD models for this single-species system [9,43] have shown good agreement with the
observed dates from hundreds of European Neolithic sites [32]. Applying the HRD exact
speed (6.9) involves the computation of the Neolithic population growth function. For
this purpose, we consider the logistic growth function, which agrees very well with many
human populations [9,66], namely

F (p) =
�p

�t

����
g

= ap

�
1� p

pmax

�
; (6.11)

where a is called the initial growth rate and pmax is the saturation density. Note that
considering logistic growth leads to F 0(0) = a.
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Figure 6.2: The Neolithic transition. a) Invasion front speed versus T (using <
�2 >= 1531 m2 [30]). The solid curve corresponds to the approximate c =

p
2D=T .

The dashed-dotted curve represents the exact theoretical speed (6.9) for the mean
observed value a = 2:8 � 10�2 yr�1 [30]. The dashed and dotted curves stand for the
maximum (a = 3:3�10�2 yr�1) and minimum (a = 2:3�10�2 yr�1) values of the observed
range, respectively. Symbols correspond to numerical simulations as indicated in the
legend (see the appendix B for details on the simulations). The hatched area indicates
the observed ranges of T [61] and c [32]. b) Invasion front speed versus the mean-squared
migration distance. The curves and the symbols stand for the same cases presented in
a), but for T = 32 yr. The hatched rectangle represents the observed ranges of < �2 >
and c [30,32].



Figure 6.2(a) plots the invasion speed of the Neolithic transition as a function of
T . In this case, T represents the generational lag during which children stay with
their parents until they reach adulthood and can migrate [61]. Figure 6.2(b) plots the
Neolithic front speed as a function of the mobility < �2 > [30]. In both Figs. 6.2(a)
and 6.2(b) we observe di¤erences (about 15%) between the approximate speed (6.5) and
the exact solution (6.9) if the mean observed growth rate a = 0:028 yr�1 [30,103�105] is
considered. Interestingly, both the approximate and the exact solutions are consistent
with the observed invasion speed of the Neolithic front, as estimated from archaeological
data [hatched area in Figs. 6.2(a) and 6.2(b] [32,61].

6.3 Approximate front speed for structured popu-
lations

In some biophysical systems, the age structure of the population plays a major role on
the evolution of the system [19,106,107]. In some cases (e.g., for tree species), the fertile
ages of several generations widely overlap. Thus it is necessary to introduce pi(x; y; t)
as the number density of the subpopulation which is i years old (i = 1; 2; :::; N). The
system dynamics is then controlled by the vector equation [106]

�!p (�x;�y; t+ 1) =
Z +1

�1

Z +1

�1

�!�!
� �

�!�!
A (6.12)

� �!p (x+�x; y +�y; t)d�xd�y;

where
��!�!
� �

�!�!
A

�
ij

= �ijAij. The elements Aij of the demographic matrix
�!�!
A describe

the rate at which an individual in state j gives rise to individuals in state i per unit

time. Similarly, the elements �ij of the dispersal matrix
�!�!
� indicate the probability

that an individual moves from (x+4x; y+4y) to (x; y) when its stage changes from j
to i. For example, any adult tree which is j years old will be j + 1 one year after (i.e.,
after t has increased to t+ 1). Thus Aij = 1 if i = j + 1. However, trees cannot move,
so �ij = �2D(�) if i = j + 1 (where �2D(�) is the 2-dimensional Dirac delta centered
at � = 0). Indeed, a single stage could be used to represent several years in the life
of an individual (as in some structured population models [19, 107]), but this would
not signi�cantly change the discussion below. In Eq. (6.12) growth and dispersal are
not necessarily independent processes, in contrast to the case in the previous section.
For example, note that for tree populations only seeds are dispersed, hence dispersal
immediately follows reproduction [15,106] (see also appendix C).
For clarity, let us brie�y recall that the exact solution for the front speed from the

evolution equation (6.12) is derived as follows by looking for constant-shape solutions
for each subpopulation, pi(x; y; t) = wi exp[��(x � ct)]. Using this into Eq. (6.12)
yields

exp(�c)�!w =

�Z +1

�1

Z +1

0

�!�!
� �

�!�!
A exp [��r cos �] drd�

�
�!w ; (6.13)
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and the exact theoretical front speed is given by [106]

c = min
�

ln [�1(�)]

�
; (6.14)

where �1 is the largest real of the eigenvalues of the matrix
R +1
0

�!�!
��
�!�!
A exp [��r cos �] drd�.

Given the substantial complexity of Eq. (6.13), an explicit expression for the exact
front speed cannot be derived. For instance, the high lifespan of trees can lead both�!�!
A and

�!�!
� to be of order above 100 when applying the model to tree recolonizations

[106]. For this reason, we need to make some simplifying assumptions in order to
derive an approximate expression for the front speed (later we will assess the validity
of our assumptions by comparing to the exact speed (6.14)). First, we assume that
the following nonstructured equation [15] provides an approximately valid description
of the evolution of the structured population at the leading edge of the front,

p(x; y; t+ T ) = R0g
R +1
�1

R +1
�1 p(x+4x; y +4y; t)

�(4x;4y)d4x d4y;
(6.15)

where R0g is the generational initial growth rate (i.e., the average reproductive rate per
individual and generation). Note that a major e¤ect of considering the structure of
the population (i.e., Eq. (6.12) instead of Eq. (6.15)) is that the reproduction of elder
individuals is taken into account. However, such contribution to the population growth
has been shown to play a minor role on the front speed when reproduction rates are
above a certain threshold [106], because then the reproduction at the leading edge of the
front is mainly produced by young individuals. Thus, if we assume a fast growth rate
it is reasonable to expect that Eq. (6.12) can be approximated by the nonstructured
Eq. (6.15). Next, we Taylor-expand Eq. (6.15) up to second order in time and space
and obtain

�p

�t
+
T

2

�2p

�t2
=
(R0g � 1)

T
p(x; y; t) +D

�
�2p

�x2
+
�2p

�y2

�
; (6.16)

where D = R0g < �2 > =4T . As usual, we look for solutions with the form p =
p0 exp[��(x� ct)] with � > 0. Using this into Eq. (6.16) yields

� =
Tc�

q
(Tc)2 � 4(R0g � 1)(DT � T 2c2

2
)

2(DT � T 2c2

2
)

; (6.17)

and, assuming as usual that the minimum speed is the one of the front [98], we obtain

c =

 
2D

T (1 + 1
2(R0g�1))

!1=2
: (6.18)

Since we are considering high values of the reproduction rate, we assume that the
condition 1 >> (2(R0g � 1))�1 is satis�ed in Eq. (6.18). Interestingly, this �nally
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simpli�es into the same approximate front speed as that in the previous two sections,
namely

c =
p
2D=T : (6.19)

It is worth to note that in Eq. (6.15) dispersal (of seeds) occurs immediately after
reproduction (this is a major feature of tree populations). This is why the di¤usivity D
in this section (see its de�nition below Eq. (6.16)) depends on the growth rate R0g. For
the applications to postglacial recolonizations below, we consider R0g = TR0 (where
R0 is the average reproduction rate per tree and year). In other words, we assume that
R0g corresponds to the sum of the seasonal fecundities of the T reproduction events
in which a parent tree is involved before individuals of the next generation become
adultsz. Details on the empirical data for the tree species considered below, as well as
the de�nition of the matrix elements Aij and �ij, are presented in Appendix C.
Figure 6.3(a) shows the exact speed for the overlapping-generations model (4.30)

and three values within the observed range of R0 for the yellow poplar (Lirioden-
dron tulipifera) species, which was previously used to study postglacial recolonization
fronts [15, 106]. Both the exact theory and the simulations in Fig. 6.3(a) are in good
agreement (the observed di¤erences, about 7%, are due to the discretization of the
space in the simulations [106]). In Fig. 6.3(a), within the observed range of T , the
di¤erences between approximate (6.5) and exact (4.30) theory are below 15% for the
case R0 = 30 yr�1 (the lower reproduction rates R0 = 10 yr�1 and R0 = 3 yr�1 present
higher di¤erences). However, if R0 � 10 yr�1 the approximate, exact and numerical
front speeds all lay within 102 � 103 m/yr (which is the observed range for postglacial
recolonizations [12]). On the other hand, long-distance dispersal events (due to atmo-
spheric turbulence) have been shown to spread seeds along distances � � 103 � 104 m
for this species [16,18]x. The front speed dependence on the seed dispersal distance �
is shown in Fig. 6.3(b). Remarkably, if the reactive process is fast enough (curve for
R0 = 30 yr�1) then the approximate solution derived above, Eq. (6.19), closely agrees
with the exact solution to Eq. (6.14), which is very complicated mathematically (see
the discussion above). Furthermore, for R0 = 30 yr�1 and � > 3000 m we observe
predicted speeds within the observed range for postglacial recolonizations (102 � 103
m/yr) [12]. Finally, in Fig. 6.3(c) we have applied our approximate Eq. (6.5) to model
the Holocene invasion of the black alder (Alnus glutinosa), across the British Isles [49].
Obviously, the invasion predicted by Eq. (6.5) gives a circular-shaped front, corres-
ponding to a constant speed. Although admittedly simple, this approximate front is
in remarkable agreement with the observed colonization dates of the black alder, spe-
cially for the isochrones � 6500 yr before present (BP). The slowdown of the observed
invasion front when reaching high latitudes (< 6500 yr BP) is not surprising, because
such a slowdown is observed in many tree species and could be due to adaptations to
the harsher northern climate [49].

zThis is a smoother approach than those in some previous non-overlapping generations models,
such as considering R0g = R0 [15,106], or assuming R0g is equal to R0 times a mean fertile age [108].

xThe values of � considered in this paper correspond to long-distance jumps, which produce a much
more important e¤ect on the front speed than short-distance jumps (see Ref. [15]).
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Figure 6.3: Postglacial recolonizations. a) Invasion front speed versus lag time for
the yellow poplar(� = 6000 m). The solid, dashed and dotted curves stand for the
approximate c =

p
2D=T , for the cases R0 = 30; 10 and 3 yr�1, respectively. The

probability (1� pe) for long-distance dispersals (with pe = 0:99798 [15]) has been taken
into account when computing < �2 >. Full (empty) squares, triangles and rhombus
correspond to the exact theoretical solutions (numerical simulations) for R0 = 30;
10 and 3 yr�1, respectively. The hatched rectangle is the observed range of T [46].
Additional information on simulations and empirical data is provided in appendix C.
b) Invasion front speed versus seed dispersal distance. Lines and symbols correspond to
the same cases in a), but for T = 18 yr [46]. c) Black alder post-glacial recolonization
of the British Isles (color online). Colored regions depict the predicted arrival times
for an invasion with the constant speed c = 462 m/yr, computed from Eq. (6.5) with
T = 6 yr [47], � = 6500 m *, pe = 0:99798 and R0 = 30. The black isochrone curves
correspond to those inferred from pollen data by H. Birks in Ref. [49]. The arrow
indicates the direction of arrival of black alder trees into the British Isles [49].
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6.4 Discussion

When studying the three systems presented above, we observe the following general
trend: the higher the reproduction rate [i.e., Y in Fig. 6.1, a in Fig. 6.2, and R0
in Figs. 6.3(a) and 6.3(b)], the closer our approximate speed c =

p
2D=T is to the

corresponding exact solution. For virus infections, both the VSV and the T7 display
high enough values of Y and Eq. (6.5) agrees well with observations. In contrast,
when introducing the hypothetical low-yield case where Y = 5 (circles in Fig. 6.1),
the approximate speed does not provide accurate results for T < 60 min. This is not
a problem at all (because such values of Y and T are far below the observations for
T7 [56]){.
The approximate speed (6.5), originally derived for a very special case (namely fo-

cal infection systems), has been shown here to be valid for a wide range of systems,
from nonstructured single-species systems (Sec. 6.2) to rather complicated structured
systems (Sec. 6.3). In all of those cases, we have also shown that observations agree
reasonable well with our approximate equation (6.5). Thus, we �nd many substan-
tially di¤erent systems with the same front speed (6.5) and, remarkably, this makes all
parameter values related to the reactive processes (a; Y; k1; k2; R0; etc.) irrelevant.
Obviously, this enormously simpli�es the task of comparing theory and experiment.
In this paper we have analyzed a wide variety of propagating fronts in biophysical

systems, where the lag time T plays an important role in the system dynamics. We have
shown that the approximate speed c =

p
2D=T provides convenient results to explain

the advance of rather di¤erent fronts such as several virus infections, the Neolithic
transition and postglacial tree recolonizations. We have noted that our approximate
speed c =

p
2D=T is valid if high values of the reproduction rate are assumed. This

suggests Eq. (6.5) could be a general trend in front propagation. Future work could
report further applications of our simple approximate speed to other systems in which
a lag time is important, e.g. crystallization fronts [109], combustion fronts (where the
ignition time plays the role of the lag T ) [110], etc.

6.5 Appendix A: Exact equations, numerical simu-
lations and empirical data for virus infections

In the main text, Eqs. (1)-(4) are used to model the invasion front of several focal infec-
tion systems (then [V ] replaces p in Eq. (1)). In such experiments cells are not able to
di¤use because they are immobilized by agar [56]. Hence, Eqs. (2) and (3) contain react-
ive but not di¤usive terms. Viruses are the only species able to di¤use in the system, see

�Seeds of Alnus glutinosa are typically water-dispersed [49]. However, long-distance dispersals are
rare events which produce long migrations independently of the usual dispersal agency of the seed [16].
Therefore, as in the case for Liriodendron tulipifera (Fig. 3a and 3b), migrations in the range 103�104
m are expected for the Alnus glutinosa.

{However, this was exactly the expected result, since high values of Y and T were assumed to derive
Eq. (6.5) [102].
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Eq. (1). In order to compute the invasion speed, we introduce a frame moving with the
front and look for solutions depending only on the new variable z � r�ct; where c > 0 is
the front speed. As usual, we linearize our equations (1)-(4) around the unstable steady
state ([V ]; [C]; [I]) = (0; C0; 0). Hence we consider ([V ]; [C]; [I]) = (�V ; 1 � �C ; �I)C0
at the front edge, where �!� = ( �V ; �C ; �I) =

�!� 0 exp(��z): For non-trivial solutions
(�V ; �C ; �I) 6= (0; 0; 0) to exist, the determinant of the matrix corresponding to the
linearized set of three evolution equations must vanish. Therefore, the following char-
acteristic equation must be satis�ed

�3 +
��2c2 (1� �) + 1
�c(1� �2�c2) �2 +

� (��� 1) + ��Y � 1
1� �2�c2 �+

(1� ��) (�Y � �)
�c(1� �2�c2) = 0; (6.20)

where � = (k2D)�1=2, � = T=2 and � � k1C0=k2.
According to marginal stability analysis [98], the wave front speed can be �nally

calculated numerically from

c = min
�>0
[c(�)]: (6.21)

This summarizes the computation of the exact infection front speed from Eqs. (1)-
(4) (full symbols in Fig. 6.1). Usually dimensionless variables are used, but the �nal
equations for the front speed are still rather complicated. Details, exact and approxim-
ate results can be found in our previous Ref. [102].
Besides the exact speed summarized above (full symbols in Fig. 6.1) and the ap-

proximate speed c =
p
2D=T (curves in Fig. 6.1), simulated speeds have been obtained

by integrating numerically the set of Eqs. (1)-(4) (empty symbols in Fig. 6.1). In order
to do so, we have used �nite di¤erences to approximate the partial derivatives in Eqs.
(1)-(4). Typical values for the space and time steps used in our simulations were below
1 �m and below 1 second, respectively. All simulations considered the initial conditions
[C] = C0 and [I] = 0 everywhere, and a viral concentration of [V ] = 9:3� 108/ml in a
small central region with a radius of 0:075 cm [111] (this region represents the initial
inoculum starting the focal infection).
In this paper we have studied infections of both VSV and T7 viruses (including

mutants for the latter). VSV infections infect mammalian cells, whereas T7 viruses
infect bacteria. We have used VSV and T7 infections because these are the only ones
for which front speeds have been measured experimentally [56, 58]. Table 1 contains
the parameter values used to compute the invasion speed.
For VSV, the parameter values in Table 1 are the same as in Ref. [102] (to the

best of our knowledge, no experimental data on the adsorption rate of the VSV are
available, but the front speed is independent of the value of k1 for several orders of
magnitude [102]). For the wild type of T7, we use the values of k1, k2 and Y derived
in Ref. [10] from experimental data. Using the same procedure as in Ref. [10], we have
computed k2 and Y for the T7 p005 mutant from the experimental data in Ref. [56]
(the other parameter values are the same as for the wild T7 strain). The last column
in Table 1 corresponds to a low-yield hypothetical case of the T7 wild strain, which
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VSV T7 (wild) T7 (p005) T7 (low-yield hypothesis)
D (cm2/hr) 1:44� 10�4 8:55 � 10�5 8:55 � 10�5 8:55 � 10�5
k1 (cm3/hr) 1:4� 10�10 7:74 � 10�8 7:74 � 10�8 7:74 � 10�8
k2 (hr�1) 2:47 83:4 44:5 83:4

Y 4389 34:5 63:6 5

Table 6.1: Parameter values applied to compute invasion speeds of VSV and T7 infec-
tions in the main text, using both analytical solutions and numerical integrations of
Eqs. (1)-(4).

appears in Fig. 6.1 in the main text and is considered only to understand better the
results there. The values of the di¤usivity D in Table 1 are based on the di¤usivity of
the P22 virus in agar, D = 1:44 �10�4 cm2/hr [10]. Since the P22 virus is similar in size
and shape to the VSV [102] and T7 viruses [10], it provides convenient approximations
for the di¤usivities of the viruses analyzed here. In Ref. [10] it was noticed that the
presence of host cells in the medium actually hinders virus di¤usion. To account for this
e¤ect, a convenient correction factor for the di¤usivity of the virus must be computed
(see Sec. V in [10]). In the present paper we consider the data from Ref. [56], so the
bacterial concentration is 3 �106 /ml, and the maximum possible bacterial concentration
is 107/ml. Thus, after taking into account the hindered-di¤usion correction factor in [10]
we obtain D = 8:55 � 10�5 cm2/hr for T7 viruses. In the case of VSV, experiments [58],
there are no data indicating any hindered di¤usion e¤ect, hence in Table 1 we have
considered free di¤usion for VSV (as in Refs. [102, 111]). According to the data from
Ref. [56], the speed range for the T7 is 0.016 - 0.027 cm/hr [from the minimum and
maximum values in �gs 4(b) and 4(c) in this reference]. Note that the range of speed of
the mutant p005 [Fig 4(b) in Ref. [56]] widely overlaps with the range for the wild type
[Fig 4(c) in Ref. [56]]. Thus, in our Fig. 6.1, we have used a single range for T7 viruses.
In our previous paper [102] we estimated the experimental speed of VSV infections from
the data in Fig. 2(b) in Ref. [58]. This led us to the experimental range of 0.066-0.08
cm/hr [102]. However, additional data on infection pro�les of the same experiments are
available in Fig. S3 in Ref. [111], so in Table 1 we take into account that a more realistic
minimum experimental speed is 0.056 cm/hr (from the evolution of the experimental
radial pro�les in Ref. [111]). The maximum value for the experimental speed is the
same we proposed in Ref. [102], namely 0.08 cm/hr.

6.6 Appendix B: Numerical simulations for the Neo-
lithic transition

For the numerical simulations in Fig. 6.2, we have used a very simple model proposed in
Ref. [30]. We consider a 2D square grid with the initial condition p(x; y; t = 0) = pmax
at the central node, and p(x; y; t = 0) = 0 everywhere else in the square grid. Each
time step in the simulations represents an interval time of T = 1 generation. At every
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time step, the population density is equally distributed into the 8 nearest neighbors, so
the mean-squared displacement is

< �2 >=
1

8

X1

j=0
4
�
d2 + (jd)2

�
; (6.22)

where d is the distance between two neighboring nodes. Also, we compute the e¤ect
of population growth at each node and each time step by applying the solution for the
logistic growth given by Eq. (6.11),

RT [p(x; y; t)] =
p(x; y; t)pmaxe

aT

pmax + p(x; y; t) (eaT � 1)
: (6.23)

Finally, the population density at each node for the next step p(x; y; t+1) is computed
as the sum of RT [p(x; y; t)] and the dispersive contribution described above.

6.7 Appendix C: Matrix elements, empirical data
and numerical simulations for postglacial tree
recolonizations

The following considerations have been applied to the matrices in the structured-

population model for tree recolonizations in Sec. 6.3. The demographic matrix
�!�!
A

describes reproduction and aging of the population as follows. The elements of
�!�!
A take

into account that (i) each adult tree produces yearly a surviving number of seeds R0
and (ii) individuals become one year older by switching its stage from j to j+1 at each

time increment t 99K t+ 1. Thus,
�!�!
A is written as [106]

Aij =

8<:
R0 if i = 1, j � T
1 if i = j + 1
0 otherwise

; (6.24)

where R0 is the mean fecundity (i.e., number of seeds that survive into an adult tree)
per parent tree and year.

The elements �ij of the dispersal matrix
�!�!
� describe the rate of every possible

conversion of pi(x +4x; y +4y; t) into pj(x; y; t + 1). Since
�!�!
� must restrict dispersal

to new individuals (trees do not move but only disperse seeds), the elements of
�!�!
�

are [106]:

�ij =

�
�(�x;�y) if i = 1; j � T

�2D(�) otherwise
; (6.25)

where �2D(�) is the 2-dimensional Dirac delta centered at � = 0. The dispersal kernel
�(4x;4y) is the probability per unit area that a seed falling from a parent tree located
at (x+4x; y +4y) reaches the ground at (x; y)) [106].
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For the computations in Figs. 6.3(a) and 6.3(b) in the present paper, we have
considered the same isotropic kernel as in Ref. [106], i.e. that new seeds of the yellow
poplar either grow in the same location as the parent tree (with probability pe = 0:99798
[15]) or they are dispersed to a distance r = � (with probability 1 � pe). Moreover,
the annual seed production f of the yellow poplar is of the order of 104 seeds dispersed
/ tree yr [18, 46]. According to �eld observations in sites close to those where the
dispersal kernel was measured, the yellow poplar postdispersal seed-to-adult survival is
in the range 0:00 � 0:06% [18, 112]. In the present work we have considered the mean
value of this survival rate, i.e., s = 0:03%. Thus, we estimate the net reproductive rate,
R0 = fs, to be in the range of 3� 30 seeds / tree yr for the yellow poplar.
To the best of our knowledge, there is no available data on the long-distance dispersal

kernel of the black alder. However, because of long-distance dispersals are usually
driven by extreme climatological conditions (and they are independent of the usual
dispersal agency of the seed) [16], we expect the persistence pe of the black alder to
be of the same order of magnitude than the one for the yellow poplar. Thus, we have
used pe = 0:99798 [15] in the isochrone map for the black alder in Fig. 6.3(c). The
observed annual seed production f of this species is of the order of the order of 104

seeds dispersed / tree yr [47]. For the case of the black alder, we consider the survival
probability s = 0:03% (i.e., the same considered for the seeds of the yellow poplar),
since we are not aware of any speci�c observed range for the black alder. This yields
an estimated net reproductive rate, R0 = fs, in the range of 3� 30 seeds / tree yr for
the black alder. Since our approximate speed c =

p
2D=T assumes high values of the

reproduction rate (see discussion above), in Fig. 6.3(c) we have considered the highest
value in this range, i.e., R0 = 30 seeds / tree yr.
Results from molecular dynamics simulations have been presented as empty symbols

in Figs. 6.3(a) and 6.3(b). Our computer program considers a 2D grid where an age-
structured population density is computed. Initially p(x; y; 0) = 1 at (x; y) = (0; 0) and
p(x; y; 0) = 0 elsewhere. At each time step, we compute the new number density of
trees p(x; y; t+1) at all nodes. The main features of this model (immature individuals
cannot reproduce, etc.) are properly taken into account (we refer the interested reader
to Ref. [106] for further details about these molecular dynamics simulations).
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Chapter 7

E¤ects of punishment in a mobile
population playing the prisoner�s
dilemma game.

This chapter is an exact transcription of the contents of the following paper:

Amor, D. R. & Fort, J. 2011 E¤ects of punishment in a mobile population playing the
prisoner�s dilemma game. Phys. Rev. E 84, 066115.

AbstractWe deal with a system of prisoner�s dilemma players undergoing continu-
ous motion in a two-dimensional plane. In contrast to previous work, we introduce
altruistic punishment after the game. We �nd punishing only a few of the cooperator-
defector interactions is enough to lead the system to a cooperative state in environments
where otherwise defection would take over the population. This happens even with soft
nonsocial punishment (where both cooperators and defectors punish other players, a
behavior observed in many human populations). For high enough mobilities or tempta-
tions to defect, low rates of social punishment can no longer avoid the breakdown of
cooperation.

PACS numbers: 89.75.Fb, 89.65.-s, 87.23.Kg

7.1 Introduction

The appearance and maintenance of cooperation is one of the most important enigmas
set out by evolutionary biology [113]. A problem of utmost importance is that while an
individual can bene�t frommutual cooperation, it can often do even better by exploiting
the cooperative e¤orts of others (and this, in turn, tends to destroy cooperation) [37].
Evolutionary game theory has proved to be a major formalization tool in this context,
so di¤erent games have been used in many theoretical and experimental works, and the
subject has rapidly jumped to other domains such as statistical physics and mathematics
[114�118]. In order to model biological systems and human behavior [37, 113], the
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prisoner�s dilemma (PD) game has become especially well known and studied because in
this game the best strategy for single players becomes the worst one for the community
(see below).
The PD is a game between two individuals, where each one can choose from whether

to cooperate (C) with or to defect (D) from his opponent. The corresponding payo¤
matrix of an interaction between two players is given by�

R S
T P

�
; (7.1)

whereR denotes the payo¤each player receives if both cooperate, S is what a cooperator
receives when he is exploited by a defector (who gains T in this particular interaction),
and P is the payo¤ for two defectors playing one against another. The payo¤s are
ordered as T > R > P � S, so rational players would always play defection (because
it pays more regardless of the opponent�s decision). But this rationality makes both
players receive only P instead of the reward R > P which both players would have
accumulated by cooperating, hence the dilemma. With two individuals destined never
to meet again, the only rational strategy is to defect [37].
The main idea of evolutionary game theory hinges on individuals playing multiple

rounds. This simulates real-world interactions better than one-shot games and in some
settings leads to the survival of cooperation. In 1981 the Axelrod computer tour-
naments [37] analyzed multiple strategies competing in the repeated PD game, with
individuals remembering their previous interactions. They found defection is not the
only stable strategy. In contrast, some strategies lead to higher average scores than
defection (the most successful strategy was tit for tat, i.e. simply cooperating on the
�rst move and then doing whatever the other player did in the preceding move). These
results stimulated a wealth of work that still continues today [67, 119, 120]. In 1992
Nowak and May [39] introduced the repeated PD game into a simulated population
with its individuals bound to lattice sites of a two-dimensional spatial array. They
found cooperators and defectors both persist inde�nitely (in shifting clusters), without
the need to assume the use of complicated strategies because neither individual remem-
bers previous interactions (each player was either C or D, and after each round each
lattice site was occupied by the player with the highest payo¤among the previous owner
and its neighbors). A huge amount of work has been undertaken ever since concerning
evolutionary games on graphs [114], exploring many diverse combinations of realistic
network topologies (link dynamics) and strategy update rules that lead to the survival
of cooperation [38,121�128].
In a recent paper, Meloni et al. explored the e¤ects of mobility in a population of

PD players [44]. Moreover, the authors introduced an innovative kind of migration.
In spite of the number of recent models that take into account migration processes in
networks [124,128�131], Meloni et al. noted that the continuous motion of individuals
(in contrast to the discontinuous jump of individuals bound to lattice sites of a grid)
was an unexplored situation of practical relevance. It could also be important in several
applications, e.g. in designing cooperation-based protocols for wireless devices such
as robots [132] and in modeling the dynamics of interacting human populations with
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di¤erent cultural traits, e.g. in prehistoric transitions [1]. Therefore, in this paper
we will deal with systems with continuous mobility, as proposed in Ref. [44]. Such
systems exhibit only two stable attractors: those in which the whole population either
cooperates or defects [44].
In addition to spatial structure, there exist other mechanisms that provide important

aids to cooperators in their �ght against free riders [121]. In this paper, we focus on the
e¤ects of punishing in a population with continuous motion. Punishment is a negative
incentive by which some players (punishers) impose �nes upon some of their coplayers.
Punishers usually pay a cost to punish [42]. Why do then individuals choose to punish
others [133, 134]? Although there is not an ultimate answer available, it is widely
accepted that emotions and moral sentiments play an important role in human decisions
that can go beyond the maximization of their income [45, 67, 71, 120, 133, 135�137].
Similarly, some humans also reward their cooperative partners [138]; thus several papers
have dealt with positive incentives. Some recent models have shown, for example, that
the appropriate dose of the carrot [139] or the convenient combination with the stick
when agents are opportunistic [140] can notably enhance the triumph of cooperation.
Punishment can be very costly in pairwise interactions; thus in real life punishment is

usually repressed by institutions holding law and order. But some pairwise interactions
with punishment obviously exist in real life, both in small-scale and large-scale societies
[42]. Still, in agreement with the relative rarity of pairwise punishment, traditionally,
the cooperation-enhancing e¤ects of punishment have been often analyzed within the
public goods game [67, 71, 141, 142]. Very recently, this n-person game has provided
the scenario where the following e¤ects have been studied: (i) the strategy D punishes
D (instead of the usual C punishes D) also helps to defeat free riders [116], (ii) small
mutation rates accelerate the spreading of costly punishment [143], and (iii) spatial
structure is responsible for several kinds of coexistence between cooperators, moralists
(cooperators who punish defectors), defectors, and immoralists (defectors who punish
other defectors) [144]. In this paper we have opted for a simpler setup and considered
pairwise interactions only. Although less commonly used, two-person games also have
been employed in punishment studies, especially in experimental work. One of the
most representative examples is the ultimatum game [135, 145], where the rejection
of an o¤er is indeed a kind of costly punishment. Rewarding and punishing human
behavior has also been tested by using sequential PD games (often called gift exchange
or trust games) [146]. In other cases, the payo¤ matrix of the PD game has been
modi�ed in order to include three types of players: cooperators, defectors, and punishers
[147]. Moreover, the use of pairwise interactions is also present in models with incentive
strategies [139].
Punishment is often considered a di¤erent strategy from pure cooperation or pure

defection [116,143,144]. In this paper, we do not consider punishers to have a di¤erent
strategy than other players. Players are either cooperators or defectors. After a given
interaction, we introduce a probability to punish the corresponding coplayer. This is a
simple way to model that a certain portion of the interactions is followed by negative
incentives, but players do not become obsessed in punishing every partner they are not
comfortable with (since it could be extremely costly for themselves). Besides social
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punishment (C punishes D) we will also analyze what we call non-social punishment
(C punishes C, D punishes C, or D punishes D), as suggested by recent experiments in
many human populations around the world [45].
To summarize, in this paper we introduce social and nonsocial punishment e¤ects

into a model where players can move continuously in a two-dimensional (2D) world.
Moreover, no punishment strategies are considered; instead, we deal with probabilities
that di¤erent interactions between agents are followed by punishment. In particular,
we �nd that social punishment helps to maintain cooperation in extreme environments,
even with such a high mobility or temptation to defect that the system would otherwise
be completely invaded by defectors. We shall also �nd that the bene�ts of social pun-
ishment are remarkable, even when some degree of non-social punishment is present in
the game.
This paper is organized as follows. In Sec. 7.2 we present the main features of the

model (including mobility rules, network of interactions, evolutionary dynamics, social
punishment, and nonsocial punishment). Section 7.3 is devoted to explaining the main
e¤ects of considering a nonmobile population in our model. In Sec. 7.4 we present
the general results of our simulations (phase diagrams showing the dependence on the
relevant parameters of the model). Finally, our concluding remarks are presented in
Sec. 7.5.

7.2 The model

In this section we explain the rules that drive the evolution of the system. We study
a population of N = 1000 individuals living in a square plane of size L. As in Ref.
[44], periodic boundary conditions are imposed at the ends of the square (this makes
the square equivalent to a toroidal surface, thus avoiding border e¤ects). Simulations
are governed by three groups of rules concerning the motion rules, the network of
interactions and the evolutionary dynamics. The �rst two groups of rules we use here
have the same properties of the original model [44], but the evolutionary dynamics
are notably di¤erent because we introduce a probability of punishing the opponent.
Simulations perform sequentially the three sets of rules at each time step t. In the
following three sections, we detail these three types of rules in the model.

7.2.1 Motion rules

At the beginning of each round, every player moves a �xed distance in a random direc-
tion. Hence, the position of a given individual i (i = 1; 2; :::N) is changed as

xi(t+ 1) = xi(t) + vi(t); (7.2)

where vi(t) = [v cos �i(t); v sin �i(t)] is the speed of the player i. The direction of the
speed is determined randomly as

�i(t+ 1) = �i; (7.3)
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where �i are N independent random variables chosen at each time with uniform prob-
ability in the interval [��; �].
As in Ref. [44], we consider that the module of the speed v is constant for all agents,

so v is one of the relevant parameters of the system. At t = 0, both a random position
in the square and a random initial direction of movement is assigned to every player.

7.2.2 Network of interactions

After movement, every player establishes its network of interactions. An agent i will
consider the player j as his or her neighbor if j is within a certain radius of interaction
r. First, the Euclidean distance dij between players is computed. Then, if dij < r, we
say that i and j are neighbors (and will interact following the rules in the next section).
Without loss of generality, in all the simulations presented here we have set r = 1. The
instant network of contacts can be de�ned by a graph that links its nodes (individuals)
with the current web of neighbors. Note that such a graph changes at every round t
due to the motion and neighborhood updating of the agents. The mean degree of the
graph is hki = ��r2 = ��, where � = N=L2 is the population density (see the work by
Meloni et al. [44] for this and other topological features of the graph). The dependence
of the system properties on the value of � was already analyzed in Ref. [44], Fig. 2 �.
Therefore, in this paper we have used the value � = 1:30 (as in Ref. [44], Figs. 1, 3 and
4) y.

7.2.3 Evolutionary dynamics

In this section we summarize the rules regarding the interaction between agents and
their strategy updates.
At each time step t, every individual plays once a PD game with each of his neigh-

bors. The payo¤ matrix of the game is presented in Eq. (7.1). As usually done in
recent studies (see, e.g., Ref. [44]), we choose R = 1, P = S = 0, and T = b > 1.
The payo¤s obtained from the multiple interactions are accumulated by each player
during the round. In the �rst round (t = 0), the two possible strategies (C or D) are
equally distributed among the population. Although in other works each individual
can play di¤erent strategies against his multiple opponents, following Ref. [44] here we
consider the simple case where agents can only choose to cooperate with or to defect
from all of his neighbors. This will make it easier to focus our attention on the e¤ect
of punishment.
In contrast to Ref. [44], after every PD interaction is performed, we consider that

each player has the opportunity to punish his opponent if he is not satis�ed with the
outcome of the game. In order to simulate this circumstance, in Sec. 7.2.4 we will allow
cooperators to punish defectors with probability ps, representing social punishment, i.e.,

�For too low values of �, cooperators cannot form clusters, and in the �nal state only defectors
survive. For too high values of � the agent�s neighborhoods resemble a well-mixed population in which
cooperation is again eventually destroyed. See Fig. 2 in Ref. [44].

ySee footnote *.
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the intention to promote a cooperative society where defectors have a bad reputation.
In Sec. 7.2.5, we will extend the model to allow a nonsocial type of punishment:
with probability pa, not only will defectors punish their coplayers (irrespective of their
strategy) but cooperators will also act against other cooperators (representing other
human motives like revenge or preventive strikes [45, 67]). When a punishment action
occurs (either in the social or in the nonsocial case), the punisher pays a cost of 1
unit of his accumulated payo¤ in order to reduce the payo¤ of the punished player
by 3 units (this rate has been used in previous human experiments, e.g., in Ref. [45],
although harder rates where the punished player loses 4 units instead of 3 have been
also studied [67]).
Finally, after all games have been played and the corresponding punishments have

been executed, it is time for the agents to update their strategies. As in Ref. [44], every
agent will compare his own payo¤ with that of a randomly chosen neighbor, and then
he will decide whether he keeps playing the same strategy in the next round or not,
as follows. If individual i and the chosen neighbor j use the same strategy, nothing
happens. In the opposite case, and provided that j has accumulated higher gains
in the current time step, individual i will adopt the strategy of j with the following
probability [44]:

�ij =
Pj � Pi

max fkj; kig b
; (7.4)

where Pj and Pi are the payo¤s accumulated by players j and i, respectively. In Eq.
(7.4) kj and ki stand for the instantaneous number of neighbors (i.e., number of players
within the circle of radius r) that players j and i have, respectively. This updating
process is done synchronously for all individuals in the system. Finally, the payo¤s of
all individuals are reset to zero, and the next round can start as explained above.
In our simulations, we have found that the system has only two stable states, as

in the original model without punishment [44]. These two attractors are reached when
either cooperation or defection is played by all agents. Moreover, high values of v or b
destroy cooperation when no punishment is considered, in agreement with Ref. [44].

7.2.4 Social punishment

In order to introduce social punishment into our model, we have allowed cooperators to
punish altruistically defectors as a separate action after the PD interaction. We do not
assume that cooperators always punish their opponents, just that there is a probability
of punishing socially after each cooperator-against-defector (C-D) interaction. With
probability ps the cooperator will incur a cost of 1 payo¤ unit to diminish the defector
payo¤ by 3 units.
Figure 7.1 sheds some light on the implications of such a behavior acting directly

against freeloaders. Figure 1(a) shows the evolution of the average level of cooperation<
c >, de�ned as the average fraction of cooperators, for v = 0:2 and b = 1:1. The dashed
line shows how a population where no punishment is allowed evolves to a completely
defector system. However, the population can be driven to the maximum cooperation
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Figure 7.1: (a) Average level of cooperation < c > (de�ned as the average fraction
of cooperators) as a function of time (or rounds of the game). Simulations have been
performed for a population of N = 1000 individuals, � = 1:30, b = 1:1; and v = 0:2.
The solid line depicts the evolution for a population where social punishment is allowed
(with ps = 0:1). The dash-dotted line shows the evolution of the same population in a
soft nonsocial environment, where ps = 0:1 and pa = 0:05. The dashed line stands for
the case where punishment is not allowed at all. Finally, the dotted line shows a non-
social system where ps = 0:1 and pa = 0:1. Results are averaged for 100 simulations.
(b) Average payo¤ per player as a function of time for the same cases presented in Fig.
7.1(a). The symbols depict the asymptotic theoretical value for the average payo¤. The
square is for the social case, the circle stands for the soft nonsocial system, the triangle
is for the case without punishment, and the rhombus is for the nonsocial system.



fraction if some degree of social punishment is present (solid line). Note that only
a 10% of the C-D interactions are followed by a punishing action (ps = 0:1) in this
case. Hence, we have seen that a relatively low dose of social punishment can introduce
critical advantages for cooperators.

7.2.5 Nonsocial punishment

Anger, revenge, and preventive strikes are only a few motives [45] that can inspire
humans to punish, even if this action plays against the bene�ts of the community and
the punisher himself. In this section, we will study the e¤ects of this kind of punishment
on the evolution of the population. We thus consider a type of punishment di¤erent
from that explained in Sec. 7.2.3. We will call it nonsocial punishment.
Analogously to the social punishing probability ps introduced above, we de�ne the

probability of punishing nonsocially as pa. While ps is the probability that a cooperator
punishes a defector after a C-D interaction, pa applies to any interaction di¤erent from a
C-D interaction (see Sec. 7.2.3). This agrees with the de�nition of antisocial punishment
in the paper of Herrmann et al. [45] that has especially inspired our work, but in other
papers antisocial punishment is strictly de�ned as the punishment of cooperators [141]��.
Because of this, we use the term nonsocial rather than antisocial. The dotted line in
Fig. 7.1(a) depicts the evolution of the population in a highly nonsocial environment
where ps = pa = 0:1: no matter which players are engaged, 10% of the interactions
are followed by a punishing action. We can see how in this case the system favors
defection, as this strategy is quickly adopted by the whole population. Therefore, non-
social punishment works directly against the bene�ts of social punishment, as it would
be expected intuitively [compare with the social case represented by the solid line in
Fig 7.1(a)].
Although both social and nonsocial punishment are found in human communities,

the �rst one is perceived to be more rational. Imposing a �ne on someone who con-
tributes less than you (social punishment) is easily justi�ed because you �nd her or
his behavior unfair. In contrast, punishing nonsocially means that you attack someone
that has conducted himself (at least) as properly as you in the game; hence you do
not tolerate your own behavior. As a result, human players are usually found to invest
higher amounts in social punishment z;z. To simulate this e¤ect, we have performed

��The de�nition of nonsocial punishment in this article coincides with the de�nition of antisocial
punishment in Ref. [45]. In the work of Herrmann et al. [45], punishing antisocially embraces penaliza-
tions against those who contributed equally or more than you in the game. The public goods game was
used in Ref. [45]. Note that when playing the PD game, this de�nition covers only three possibilities:
a cooperator who punishes another cooperator or a defector who punishes any coplayer (either another
defector or a cooperator). These are the only three possibilities that embrace the nonsocial punishment
de�ned in our paper.

zSee footnote **.
zSee, for example, Fig. 1 in Ref. [45]. Among the 16 comparable participant pools around the world

presented there, 13 of them showed notably higher mean expenditures in social punishment than in
nonsocial one. Indeed, 11 of those participant pools invested in social punishment more than twice
that invested in nonsocial punishment (compare the �rst 11 participant pools in Ref. [45], Fig. 1, with

88



simulations with ps 6= pa. Note that this does not mean the total number of social
punishing actions in the system exceeds the nonsocial one (because the �rst one is
strictly dependent on the number of C-D interactions). The dash-dotted line in Fig.
7.1(a) depicts the evolution for ps = 0:1 and pa = 0:05. In this case, we �nd another
victory of cooperation. As in the system containing only social punishers (solid line),
the evolution starts with a soft fall of cooperators and then (after approximately 100
rounds) the population starts a constant progression to the maximum cooperation de-
gree. The transient decline of cooperation is related to the defeat of those cooperators
who were initially placed in a neighborhood with plenty of defectors. However, aggreg-
ates (clusters) of cooperators are able to survive and �ourish in this notably changing
(v = 0:2) environment, provided that the bene�ts of social punishment exceed those
of nonsocial punishment. Indeed, the evolution of the nonsocial system [dotted line in
Fig. 7.1(a)] is an example where these bene�ts are insu¢ cient to lead the population
to cooperation. Although here we focus on systems with mobile players, an analog to
Fig. 7.1(a) for v = 0 is included in Sec. 7.3.
It could be sensible to think that the soft nonsocial case [dash-dotted line in Fig.

7.1(a)] models a system where social punishment dominates and, consequently, could be
analogously represented by a system containing only social punishment. However, this
case does not present the same features of the soft nonsocial system. Indeed, whereas
in both cases the �nal state is a population composed by cooperators exclusively, the
mean payo¤ per individual is notably lower in the nonsocial case. To see this, the mean
payo¤ per individual in the �nal state can be predicted as

w = k (fcR� pa � 3pa) ; (7.5)

where fc is the fraction of cooperators in the �nal stable state (in our system, either 0
or 1). The mean degree of the graph in all of our simulations is k = �� = 4:08. In Eq.
(7.5), the mean number of neighbors that an individual has k is multiplied by the reward
of an interaction R provided that the �nal state is all cooperators (i.e., fc = 1) minus
the mean costs of the punishments performed or received by the individual (�pa and
�3pa, respectively). Note that the social punishment probability ps does not appear
in Eq. (7.5) because C-D interactions are absent in the asymptotic state, in which all
players are either C or D.
Figure 7.1(b) shows the evolution of the mean payo¤ per individual [for the same

cases presented in Fig. 7.1(a)], and the symbols stand for the �nal-state values pre-
dicted by Eq. (7.5). The four curves tend asymptotically to the analytical value for the
�nal stable state. In all the cases, the mean payo¤ shows a rapid decay during the �rst
rounds of the game (every simulation ends or smooths this decay at a di¤erent moment
before 100 rounds). Again, this transient e¤ect corresponds to the defeat of those co-
operators who have been initially placed in a neighborhood with many defectors. After
this transient, the surviving cooperators are clustered and resist more e¢ ciently the ex-
ploitation of the defector population. In the no-punishers and nonsocial cases (dashed
and dotted lines, respectively), the environment is so extreme that even clusters of co-

the last 5 pools).
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operators cannot endure the exploitation and the population continues its fall toward
defection. When the �nal state is reached, the mean payo¤ is 0 in the no-punishers case,
as there is no one that contributes any amount in the game. The situation is even worse
in the nonsocial case, as nonsocial punishment makes the individuals accumulate neg-
ative payo¤s. In contrast, the negative e¤ect of social punishment on the mean payo¤
decreases as the number of C-D interactions decays. Hence the social punishers system
(solid line) reaches the maximum payo¤ level available when the system is composed
only of cooperators, namely, w = k = 4:08 (because pa = 0 for social punishment, and
we have chosen R = 1 as in, e.g., Ref. [44]). Therefore, social punishment is very e¤ect-
ive for promoting cooperation. Finally, the soft nonsocial scenario allows the survival
and maintenance of cooperation [as shown in Fig. 7.1(a)] but the average payo¤ is lower
[compare the dash-dotted line with the solid line in Fig. 7.1(b)]. Below, we will present
several �gures that analyze the relevant parameters of the model. Although it will not
be shown, the computational and the analytical results of Eq. (7.5) for the mean payo¤
agree as well as in Fig. 7.1(b) for all the simulations presented in this paper (when the
corresponding steady state is reached).
Some of the major evolutionary characteristics of the system, detailed above, can

be identi�ed by looking a time series of snapshots for a single simulation. Figure 7.2
captures the snapshots at four times for a simulation with v = 0:1, b = 1:1, and the soft
nonsocial environment used in Fig. 7.1 (i.e., ps = 0:1 and pa = 0:05). At t = 0 [Fig.
7.2(a)], both cooperator [green (light gray) dots] and defector [red (dark gray) dots]
players are randomly placed in the system, with the same fraction (< c >= 0:5). In the
left part of Fig. 7.2(a), we show a green (light gray) circle that represents the radius of
interaction of a speci�c cooperator player who has been initially surrounded by several
neighbors [during the �rst round, he will play the PD game with the eight coplayers
who lie within the green (light gray) circle, with half of them being cooperators in this
case]. In contrast, some other players may start the game completely isolated, as is the
case of the defector in the center of the red (dark gray) circle [right in Fig. 7.2(a)].
Because of mobility, the number of connections for each player will change in time.
Thus simulations with no mobility (i.e., v = 0) are essentially di¤erent from the ones
where v > 0. Indeed, isolated players [like the one in the center of the red (dark gray)
circle in Fig. 7.2(a)] will never play with other individuals in a simulation where v = 0,
and consequently, the system will not reach a �nal all-C or all-D state (see Sec. 7.3 for
further details of the case without mobility).
Figure 7.2(b) shows the state of the system after 100 iterations. At this time,

the cooperation fraction has decreased to < c >' 0:35 due to the defeat of those
cooperators initially placed in hostile neighborhoods. As in Fig. 7.2(a), red (dark
gray) dots correspond to defectors. In Fig. 7.2(b) we explicitly show those players who
have punished socially at least once in the last round; hence cooperators have been
divided in two types: green (light gray) dots show the players who have not punished
socially in the last round, and blue stars indicate cooperators who punished at least one
defector neighbor. We can see that the fraction of cooperators that punishes socially
in a given round [blue stars in Fig. 7.2(b)] is relatively small. Nevertheless, we will see
how the bene�ts provided by social punishment exceed the handicap due to nonsocial
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Figure 7.2: Spatiotemporal evolution of a soft nonsocial population where ps = 0:1 and
pa = 0:05. This speci�c simulation has been performed for a population of N = 1000
individuals, � = 1:30, b = 1:1 and v = 0:1. Green (light gray) dots correspond to
cooperator players, and red (dark gray) dots correspond to defectors. (a) Snapshot at
t = 0. The population has been randomly distributed in the two-dimensional square.
The two circles show the radius of interaction of a single cooperator [green (light gray)
circle], and a single defector [red (dark gray) circle]. (b) Snapshot at t = 100. Blue
stars correspond to cooperators that punished socially in the last round. (c) Snapshot
at t = 1000. Purple stars (dots) correspond to cooperators (defectors) that punished
nonsocially in the last round. (d) The stable all-C state is reached at t = 5693. Purple
stars show the cooperators that still punish their partners when the whole population
is cooperator.
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punishment in this system, and the all-C state will be �nally reached. In Fig. 7.2(c) we
can see the state of the system at t = 1000. Here we explicitly identify the players who
used nonsocial punishment in the last round: purple stars correspond to cooperators
who punished at least one other cooperator, and purple (darkest gray) dots correspond
to defectors who punished at least one coplayer. In this case, the fraction of cooperation
is < c >' 0:7, so clusters of cooperators have spread since t = 100 [compare to Fig.
7.2(b)]. Finally, Fig. 7.2(d) shows the �nal all-C state reached after 5693 iterations. In
order to explicitly show that nonsocial punishment still takes place in the game, purple
stars indicate those cooperators who still punish their cooperator partners. This has a
direct e¤ect on the mean payo¤ attained by players, as we have shown above [see the
discussion of Fig. 7.1(a)].

7.3 The key role of mobility

In the model we have analyzed, a certain mobility rate of the players is present in most
of the simulations. In the original model where punishment was not considered [44],
an extended study concerning all the relevant parameters (including the mobility rate)
of the corresponding model was presented. Roughly summarizing the conclusions by
Meloni et al. [44], the authors noticed cooperation could �ourish in their model when the
parameters b and v were not too high. Moreover, they pointed out that the mobility
led the system to only two stable states (i.e., all cooperators or all defectors). In
contrast, when v = 0 the graph corresponds to a random geometric graph [148], so the
stabilization of a population containing a mixture of the two strategies is expected.
The question of how punishment could a¤ect the system when v = 0 arises. Thus

in Fig. 7.3 we have rerun our simulations in Fig. 7.1(a) for a population that does
not move (v = 0). In this case, clusters of cooperators manage to stabilize and survive
in the system if no punishment is applied (the dashed line in Fig. 7.3 shows that the
average cooperation in the system is above 20%). However, social punishment strongly
supports cooperators in this immobile system, as shown by the solid line in Fig 7.3
(the cooperation fraction reaches 90% of the population in this case, where ps = 0:1
and pa = 0). Furthermore, the �nal outcome is much the same when the frequency of
nonsocial punishment is increased up to pa = 0:05 (the dash-dotted line depicts this soft
nonsocial scenario, where the stable cooperation fraction is also high). Nevertheless,
the stabilization of this latter case (dash-dotted line) comes later than in the social case
(solid line) and remains at lower cooperation levels at any time. These results are no
longer reached if we explore a nonsocial system where ps = pa = 0:1 (dotted line in
Fig. 7.3) since in this case defection is practically extended to the whole population
(the �nal cooperation fraction is above 3%).
If we compare the results of Fig. 7.1(a) (v = 0:2) with those presented in Fig.

7.3 (v = 0) we can draw similar conclusions regarding punishment. In both cases,
social punishment helps cooperation to �ourish. But this conclusion breaks down if
su¢ ciently strong non-social punishment is present [in both Figs. 7.1(a) and 7.3, the
soft nonsocial case with pa = 0:05 leads to generalized cooperation, but the nonsocial
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Figure 7.3: Average level of cooperation < c > as a function of time for a population
without mobility (v = 0) for N = 1000 individuals, � = 1:30, and b = 1:1. The solid
line depicts the evolution for a population where social punishment is allowed (with
ps = 0:1). The dash-dotted line shows the evolution of the same population in a soft
nonsocial environment, where ps = 0:1 and pa = 0:05. The dashed line stands for the
case where punishment is not allowed at all. Finally, the dotted line shows a nonsocial
system where ps = 0:1 and pa = 0:1. Results are averaged over 100 simulations.

case with pa = 0:1 does not]. Furthermore, the comparison of Figs. 7.1(a) and 7.3
suggests that the e¤ect of mobility can be very important in the case of nonsocial
punishment. In the case of nonmobile and nonpunishing populations (dashed line in
Fig. 7.3), the �nal stable state permits a coexistence of cooperators and defectors. The
�nal fraction of cooperators depends on the value of b. While cooperators are able to
survive in clusters for moderate values of b (as is the case represented by the dashed line
in Fig. 7.3), only a few isolated cooperators remain in an almost all-defector population
for high values of b (not shown). In contrast, in the case of mobile populations, the
value of v in�uences the �nal outcome for a given value of b. Here we have shown how
clusters of cooperators that survive in nonmobile populations (dashed line in Fig. 7.3)
are not able to resist in a population with v = 0:2 [dashed line in Fig. 7.1(a)]. In this
case the �nal population is composed exclusively by defectors. However, the system
would have turned into a full cooperation state if we had chosen a slower velocity of
v = 0:01 for the same value of b = 1:1 (see, for example, Fig. 1 in Ref. [44]).

In this paper, a huge number of con�gurations of the parameters v, b, ps, and pa has
been tested. Generally, we have focused our work on mobile environments with v > 0.
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However, the case v = 0 has been simulated and analyzed for all of the environments
presented above (even if not shown in the �gures). In every case, the conclusions from
the simulations with v = 0 were very close to the conclusions from those with low speeds
like v = 0:01 [and sometimes much higher values like v = 0:2, such as those presented
above by comparing Figs. 7.1(a) and 7.3]. In Figs. 7.4, 7.5, and 7.6 we have taken care
that the minimum speed presented does not sensibly di¤er from the results obtained
for v = 0.

7.4 General results

This section is devoted to exploring the limits of punishment-enhanced cooperation.
Hence, we will extend the results in order to analyze all of the relevant parameters of
the model.
In addition to N and � (see Sec. 7.2.2), the model in Ref. [44] has two relevant

parameters, namely, the mobility rate v and the temptation to defect b. Here we
have extended that model to include punishment, so we will analyze the role of the
parameters ps and pa in addition to v and b.
Figure 7.4 shows a phase diagram where the e¤ects of the mobility v and the tempta-

tion to defect b are explored (for the same sets of values for ps and pa as in Fig. 7.1). The
dashed line corresponds to the case where punishment is not present (i.e., ps = pa = 0).
The region where simulations end up with a population of all-cooperators falls below
the dashed line (whereas an all-D state is found above the dashed line). This limit
agrees well with the results presented in Ref. [44]. The solid line in Fig. 7.4 indicates
the frontier between cooperation and defection when social punishment is introduced
with probability ps = 0:1. Comparing the dashed line with the solid line, it follows that
social punishment clearly expands the parameter region where cooperation is reached.
When no punishment is allowed in the game (dashed line), the maximum temptation
to defect that cooperation can endure is slightly under the value b = 1:2. In contrast,
when social punishment is introduced (solid line), the transition from cooperation to
defection occurs at a maximum b value of 1:45. These values of b remain approximately
independent of the mobility rate when v < 0:05 (see Fig. 7.4). This indicates that
the clustering of cooperators is easily attainable below v ' 0:05. Nevertheless, Fig.
7.4 shows that at higher speeds (v > 0:05) the parameter region where cooperation is
available becomes smaller: both solid and dashed lines present a gradual decay (the
higher the value of v is, the lower the temptation to defect b that cooperation can res-
ist is). This is because agglomerations of cooperators are hard to maintain in highly
mobile systems. Without punishment (dashed line), the system cannot achieve the full
cooperation regime when v & 0:2 (independently of the value of b), whereas in the social
environment (solid line) full cooperation is possible up to v � 0:7.
Figure 7.4 also shows the transition from full cooperation to full defection for a soft

nonsocial environment (dash-dotted line, i.e., pa = 0:05 in addition to ps = 0:1). For
this parametrization, the cooperative region covers a higher area of v and b than in the
case without punishment (dashed line) but smaller than in the social environment (solid
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Figure 7.4: Phase diagrams for di¤erent versions of punishment as a function of v
and b. Results have been obtained for a population of N = 1000 individuals, with
� = 1:30. The solid line depicts the phase transition for a population where social
punishment is allowed (with ps = 0:1). The dash-dotted line corresponds to the case
of a soft nonsocial environment, where ps = 0:1 and pa = 0:05. The dashed line stands
for the phase transition where punishment is not allowed at all. Finally, the dotted
line corresponds to a nonsocial system where ps = 0:1 and pa = 0:1. In the inset, the
lines depict the transition phases for the following cases: the solid line corresponds to
ps = 0:3, the dash-dotted line corresponds to ps = 0:3 and pa = 0:1, and the dashed
line corresponds to the case ps = pa = 0 . No full cooperation phase was found for the
non-social case where ps = pa = 0:3.

line). The last curve shown in Fig. 7.4 corresponds to a nonsocial environment where
ps = pa = 0:1 (dotted line). In this case, nonsocial punishment plays an important
role against cooperators: the majority of the parameter range explored is dominated
by defection, whereas cooperation only manages to survive at very low values of v and
b (v < 0:03 and b = 1:05).
The curves in Fig. 7.4 clearly show that the system is sensitive to the addition of

both social and nonsocial punishment. Thus we now analyze what values of ps and pa
drive the population to cooperation. Before an in-depth analysis, in the inset of Fig.
7.4 we consider the case in which social punishment is as frequent as ps = 0:3 and
nonsocial punishment is not allowed (full line). Then cooperation wins for most values
of b if the mobility is not high (v < 0:1). When increasing the mobility, the cooperative
state displays its usual decay to more modest values of b. However, under a critical
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value of the temptation to defect (in this speci�c case for b < 1:45) cooperation prevails
at any speed in the range v 2 [0:1], indicating that the positive e¤ects of such extended
social punishment (ps = 0:3) sustain cooperation even when the system is close to a
well-mixed population. This behavior remains qualitatively the same if a moderate
degree of nonsocial punishment is introduced in the system (dash-dotted line in the
inset of Fig. 7.4, i.e., pa = 0:1 in addition to ps = 0:3). In this latter situation the range
of b cooperation can endure is always below the case where only social punishment is
present (solid line in Fig. 7.4, inset). For comparison, we have also included the system
without punishment (dashed line in Fig 7.4, inset). Finally, the nonsocial environment
ps = pa = 0:3 has also been explored, but no full cooperation phase has been found in
the parameter ranges explored. This indicates that increasing the value of pa leads to a
harsher e¤ect against cooperation (compare to the case ps = pa = 0:1 in Fig. 7.4 where
a small cooperative region is found). Summarizing, we have shown in Fig. 7.4 that
social punishment enhances notably the v-b region available for the cooperative phase.
Furthermore, social punishment produce bene�ts for cooperation even if some degree
of nonsocial punishment is considered. However, when nonsocial punishment becomes
substantially frequent, it leads to the triumph of freeloaders.
In order to further analyze the role of ps and pa, Fig. 7.5 shows their e¤ect on

the transition between cooperative and defective regimes (for b = 1:5). The solid
line in Fig. 7.5 shows computational results for a mobility rate v = 0:01. Note that
cooperation is not possible below a critical social punishment probability (ps . 0:15).
For ps > 0:15, the all-C stable state is reached provided that pa takes moderate values
(full cooperation is reached if ps > pa). It follows that the more extended nonsocial
punishment is in the system, the more frequent the social punishment has to be in order
to sustain cooperation. There is an interesting region (0:15 < ps < 0:4) where social
punishment seems to resist better the presence of nonsocial punishment. The dashed
line depicts the case v = 0:2, where in response to the higher mobility, the system
is more sensible to nonsocial punishment in the region 0:15 < ps < 0:4. The dotted
line corresponds to a substantially higher mobility, v = 0:6. Now the system needs
more frequent social punishment to make cooperation successful. Indeed, whereas for
v < 0:2 cooperation is found at ps & 0:15 (solid and dashed lines), for v = 0:6 no
cooperation phase exists below ps = 0:25 (dotted line). Furthermore, there is again a
region where social punishment is more e¢ cient against nonsocial punishment (dotted
line, 0:25 < ps < 0:5). Finally, the dash-dotted line in Fig. 7.5 displays a highly mobile
system (v = 0:8), which is closer to a well-mixed population than the case v = 0:6
(dotted line). Under very high mobility, the enhanced e¢ ciency of social punishment in
the region 0:25 < ps < 0:5 disappears, and cooperation is not sustainable below more
frequent social punishment (ps = 0:35).
Although the solid line in Fig 7.5 depicts the phase transition for the case v = 0:01,

we have also performed simulations for several values in the range v 2 [0; 0:01], and the
corresponding phase transitions are independent of v in this range. On the other hand,
the outcome of simulations performed for v > 0:8 agree well with the case v = 0:8.
Whereas in Fig. 7.5 we have shown the dependence of the phase transitions on

the parameters ps and pa for di¤erent mobilities and a �xed value of b = 1:5, in Fig.
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Figure 7.5: Phase diagrams for di¤erent mobility rates as a function of ps and pa in the
speci�c case with b = 1:5. Results have been obtained for a population of N = 1000
individuals, with � = 1:30. The solid line depicts the phase transition when the mobility
of the agents is v = 0:01, the dashed line stands for the case v = 0:2, the dotted line is
for v = 0:6, and the dash-dotted line represents the case of v = 0:8.

7.6 we vary the temptation to defect b for a �xed value of v (v = 0:1). The dashed
line in Fig. 7.6 (b = 1:5, as in Fig. 7.5) shows similar behavior to the solid line in
Fig. 7.5 (v = 0:01), including a region where social punishment is especially e¤ective
(0:15 < ps < 0:30). On the other hand, the solid line in Fig. 7.6 represents a much
more social environment since the temptation to defect is now b = 1:1 (cooperation is
available even in the absence of punishment, ps = pa = 0). The dotted line in Fig. 7.6
corresponds to a high temptation to defect (b = 2). In this case, the region available for
cooperation is limited to high values of social punishment (cooperation is not sustainable
for ps < 0:45), similar to what happens under high mobility (dash-dotted line in Fig.
7.5).

In Figs. 7.5 and 7.6, we have shown that for very high values of v or b, defection is
the dominant strategy, and cooperation is only possible for extreme social punishment
frequencies (in contrast, for low values of v and b cooperation is more sustainable).
This extends the results by Meloni et al. [44] to systems under social and nonsocial
punishment, as observed in many human populations [45]. Moreover, when v and b take
moderate values, low doses of social punishment are especially e¤ective in counteracting
the e¤ects of nonsocial punishment. This is an important result because it means that
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Figure 7.6: Phase diagrams for several temptation to defect values as a function of ps and
pa, and v = 0:1. Results have been obtained for a population of N = 1000 individuals,
with � = 1:30. The solid line depicts the phase transition when the temptation to defect
is b = 1:1, the dashed line stands for the case b = 1:5, and the dotted line presents the
case b = 2:0.

players do not need to be rude punishers in order to promote cooperation; thus in the
�ght against defection, lower mean expenditures on altruistic punishment are necessary.

7.5 Conclusions

We have built a model that introduces altruistic punishment options in a population
with mobile players of the PD game. Players move continuously in a two-dimensional
world, a case of practical relevance with potential applications, such as the design of
cooperation-based protocols for communication [132] and the modelization of trans-
itions in human prehistory [1]. In our model, punishment is not a strategy but an
action that players may perform against their partners with a certain probability after
each round of the game. We have found that punishing after only 10% of the cooperator-
defector interactions is enough to lead the system to a world of cooperation, in some
environments where otherwise defection would take over the population. Furthermore,
this conclusion holds even if some degree of nonsocial punishment (an action that is
commonly performed by human players) is present in the system. Our analytical predic-
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tions for the mean payo¤ of the �nal state agree with simulations. We have also found
that, although soft nonsocial punishment can lead to a cooperative state, it yields lower
payo¤s than social punishment.
We have extensively analyzed the role of the relevant model parameters: the mobility

of the players v, the temptation to defect b, the social punishment probability ps, and
the nonsocial one pa. The phase diagrams have shown that social punishment increases
the values of v and b where cooperation is available. We have found that this result
resists some degree of nonsocial punishment. Moreover, the full-cooperation region
is sensible to the increment of pa. Finally, we have shown that the bene�ts of social
punishment are limited, and defection asymptotically prevails in harsh environments
for cooperation (represented here by high mobilities, high temptation to defect values,
and extended practices of nonsocial punishment).
The model in this paper takes into account simple mobility rules and strategies.

Additional degrees of complexity could be added in order to closely study human abil-
ities to face defector (or cooperator) neighbors. For example, success-driven migration
could be studied (this has been recently proposed in square lattices [124] but not yet
for continuous motion).
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Chapter 8

Results and discussion

The main work in this thesis has been presented as the collection of papers in chapters
4-7. This chapter provides a uni�ed discussion on the main conclusions of the papers.
Furthermore, some assumptions on the models are reviewed in order to present interest-
ing alternatives, and brief guidelines for potential future work are mentioned. Although
the following discussion may deliberate back and forth between the di¤erent models and
their methods, for clarity the sections below indicate which model is being principally
considered.

8.1 2D structured populations model

The overlapping generations model in chapter 4 specially focuses on tree population
fronts. Nevertheless, the model establishes the physical and mathematical bases for the
2D analysis of structured populations dynamics in general. Noteworthy, it is simple to
relax or modify the speci�c assumptions for the tree population (e.g., dispersal of seeds
immediately follows reproduction), in order to describe any di¤erent biological popula-
tion. Generally, such new assumptions are not expected to alter the two main methods

to obtain analytical results, namely: i) the creation of the reaction-dispersal matrix
�!�!
H

(which contains the Bessel function I0(��) if isotropic 2D spread is considered), and

ii) the derivation of the front speed from the largest real eigenvalue of
�!�!
H .

In the model in chapter 4, every year during the lifetime of the individual determines
a speci�c stage. Typically, structured populations have been described by stages which
represent longer periods or phases [19, 107]. For example, a very simple, three-stage
model could assume that yellow poplar individuals are classi�ed into young, adult and
old trees. This would lead to the following demographic matrix:

�!�!
A =

0@1� � R0 0
� 1� � 0
0 � 1� 


1A ; (8.1)

where � is the fraction of young individuals that survive to become adults, � the
corresponding fraction for the transition from the adult stage to the old stage, and 
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the mortality of old individuals. The population structure de�ned by the matrix (8.1)
assumes that only adult individuals produce seeds (R0 is the net reproductive rate per
tree and year, as in chapter 4). Analytically, a model involving a few number of phases
(such as the above three stages example) is far less complex to solve than the age-
structured model in chapter 4. However, the year-associated stages in the overlapping
generations model in this thesis allow for yearly age dependencies ofR0 and the dispersal
kernel [see, e.g., Eq. (4.7)]. Nevertheless, the use of high order matrices is required,
and this notably increases the complexity of the evolution equations. Fortunately this
is not an important handicap, since the computation times to obtain the front speed
are not excessive1.
Chapter 4 has shown analytical results from both CSRW and DSRW, as well as the

front speed from numerical integrations. When dealing with integrodi¤erence equations
[such as Eqs. (4.1) and (4.25)], analytical expressions allow the analysis of multiple fea-
tures of the system (e.g., the sensitivity of the front speed to the parameter R0). Such
analyses become usually simpler to perform by means of analytical approximations than
developing numerical simulations. Moreover, integrodi¤erence equations can be easily
adapted to examine many di¤erent hypotheses (e.g., continuous space versus discrete
space). However, analytical solutions are subject to several assumptions (see Sec. 3.2.1
and 3.2.2) on the population density at the front edge, such as the marginal stability as-
sumption. On the other hand, numerical simulations are not based on such assumptions
and provide very useful checks of the front speed. Nevertheless, the main drawback of
numerical integrations is that they necessarily consider discrete spaces. This can a¤ect
the results because of relevant approximations on the dispersal kernel and a compulsory
feedback between the resolution of the spatial grid and the computation time. Con-
cerning the structured model in chapter 4, the front speeds from numerical simulations
corroborate the approximations used in the analytical approach, since perfect agree-
ment between DSRW and numerical integration results is observed. In contrast, the
di¤erences (of about 5%) between the front speed from CSRW and numerical simula-
tions (or DSRW) show that the discretization of the space can signi�cantly in�uence
the results.
When considering parameter values for the yellow poplar species, the overlapping

generation model exhibits two important features. On the one hand, the spread rates
from the overlapping model are substantially higher than those from the nonoverlapping
theory (except in the limit R0 !1, see Sec. 8.3). Admittedly, both the nonoverlapping
and the overlapping models are able to predict spread rates which could explain Reid�s
paradox, provided that long-distance dispersals are considered for the yellow poplar.
On the other hand, taking into account multiple reproduction events allows to analyze
some extreme situations in which the nonoverlapping model fails. For example, the
nonoverlapping model predicts extinction if R0 < 1, whereas considering the structure
of the population in the same situation can reveal the survival of the species (see in
Fig. 4.2). This suggests the structured model is specially suitable for further analysis
and applications. For example, it would be interesting to introduce stochasticity in the

1See footnote ** in chapter 4.
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parameter values, representing periods in which the population is a¤ected by plague,
extreme meteorological conditions, etc. Such studies are not suitable for a nonstructured
model in which the population cannot resist transitory harsh conditions (e.g., R0 ! 0).
In agreement with analogous conclusions for nonstructured populations in Ref. [15],

considering a 2D structured populations model leads to lower spread rates than the
corresponding 1D analysis (Table 4.2 in chapter 4 shows di¤erences above 14% between
1D and 2D results). Because the majority of biological invasions take place in two
dimensions, the 2D model in chapter 4 provides a more reasonable approach than
previous 1D structured populations studies [19].

8.2 Reaction-di¤usion equations for multiple spe-
cies systems: focal infections

Chapter 5 in this thesis has focused on the equations for focal infection systems, in
which viruses and their host cells interact.
In this thesis the reaction-di¤usion equations in Ref. [10] have been revised. In

agreement with recent considerations on the partial derivatives of the HRD equation
(1.2) [43], the e¤ect of the virus growth function has been properly computed. The
front speed from the new equations has been compared with observed infection speeds
of both VSV and T7 viruses.
Analytical results have been checked by comparing to infection speeds from numer-

ical simulations. Mainly, the front speed from analytical solutions to the di¤erential
equations for virus infections presents the same advantages and drawbacks as analytical
methods for integrodi¤erence equations (see discussion in section 8.1). Noteworthy, for
the numerical integrations of the virus infections systems, very short time steps and
high de�nition spatial grids have been used (see section 5.4). Consequently, exact ana-
lytical results (which consider continuous space) closely agree with the front speed from
numerical integrations (that consider discrete space), as shown in Figs. 5.2 and 5.3, as
well as Fig. 6.1. Moreover, numerical integrations allow to monitor the evolution of the
concentration pro�les of the di¤erent species in the system (see Fig. 5.1). This is an
additional advantage of numerical simulations with respect to analytical solutions for
the front speed.
Chapter 5 has clearly shown the critical role of the lag time on VSV infections. Real-

istic lag time values have lead to predicted front speeds which agree with those observed
in VSV focal infection experiments (see Fig. 5.2). Instead, a clear mismatch with the
experimental front speeds is obtained when considering � = 0 (which corresponds to
non-delayed models, such as that in Ref. [23]).
The model in chapter 5 aims to avoid the use of unnecessary adjusted parameters.

Noticeably, the predicted front speed has been shown to be independent of the adsorp-
tion rate k1 for several orders of magnitude (see Fig. 5.3). Moreover, dimensionless
equations have been used to derive both analytical and numerical solutions, and the
di¤usivity D a¤ects only relative speeds because it is only relevant when switching to
the dimensional expression of the front speed from the relation c = c

p
k2D. Admit-
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tedly, the relative independence of the dimensionless front speed on both D and k1
strongly supports the usefulness of the results in chapter 5, since they are the only two
parameters of the model for which an experimental measure has not been found.
Due to the complex equations driving the dynamics of focal infections [see Eqs.

(5.11)-(5.13)], the exact infection front speed can only be computed numerically. Be-
cause of this, simpler approximate expressions are very useful to better understand the
results of the model. Assuming a high virus yield and a low value of � 2, the following
approximate front speed is obtained:

c =

r
1

�
=

r
2

�
: (8.2)

The above approximate solution presents a remarkably good agreement with exact
results (as shown in Figs. 5.2 and 5.3). Moreover, it indicates that the dimensionless
lag time � is the only relevant parameter to compute the dimensionless front speed of
VSV infecting BHK cells. For the derivation of Eq. (8.2), � >> 1 was assumed, which
is equivalent to assume � >> 0:81h for VSV in chapter 5. Not only this condition is
satis�ed by the experimental observations (5 < � < 10h for VSV infecting BHK cells,
see Fig. 3.2), but also the approximate speed is very close to the exact results for
� > 0:5h (see Fig. 5.2).
The model for virus infections has specially focused on the front speed. Future works

could target further characteristics which are observable in focal infection experiments.
For example, additional terms in the reaction-di¤usion equations could account for an
immune response of the cells, or stochastic anisotropic dispersion (see the experimental
images in Ref. [58]). In Ref. [23] the authors attempted to model such observable
phenomena, but their model completely neglects the lag time � and makes use of a
large number of adjusted parameters.
To summarize, the model in chapter 5 shows the lag time � plays a critical role

on VSV infections. Instead, other parameters (specially k1) become irrelevant for the
computation of the spread rate, if the lag time � of the virus is large enough. When this
conclusions were reached, the question arose if the approximate speed (8.2) could be
useful to describe other focal infections. Rather surprisingly, a deep analysis of several
time-delayed reaction-di¤usion models revealed that the approximate speed (8.2) is also
appropriate for a variety of biological fronts (see the next section).

8.3 Approximate front speed for time-delayed spread-
ing populations

The lag time has been shown to be of utmost importance for several virus species. When
applying the approximate Eq. (8.2) to the spread of T7 mutants infecting bacteria (see
chapter 6, specially Fig. 6.1), the approximate results are as close to the exact theory
as in the case of VSV infections (see also section 8.2). Concerning the assumptions on

2In chapter 4 we de�ned this parameter as � � k1C0=k2.
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the parameter values under which Eq. (8.2) was derived (see section 8.2), remarkably,
these assumptions are not very limiting for virus infection systems. For example, all
of the viruses analyzed in this thesis display values of the yield Y > 30, which is
enough to obtain useful approximate front speeds that perfectly agree both with exact
theoretical solutions and with experimentally measured spread rates. This suggests the
approximate Eq. (8.2) could describe a general trend in virus focal infections. For the
case of human invasions, instead, the high reproductive rate assumption is appreciably
more restrictive than for virus invasions (see below).
For single-species systems driven by the HRD equation (1.2), the approximate speed

c =
p
2D=T is obtained when considering the limit of high reproduction rates. In

chapter 6 the Neolithic transition front has been analyzed in order to check the useful-
ness of the approximate speed. Signi�cant di¤erences (above 15%) are observed between
the approximate speed and the exact solution of the HRD equation, if a realistic value
for the Neolithic human reproduction rate (namely, a = 2:8 � 10�2 yr�1) is considered
(see Fig 6.2). Nevertheless, the approximate speed reasonably agrees with observed
spread rates of the Neolithic in Europe, indicating the speed c =

p
2D=T is a useful

estimation of the speed of the Neolithic front.
The overlapping generations model for tree populations presents the mathematically

most complex equations in this thesis. The high order of the matrices involved in the
reaction-di¤usion equations of the model makes it impractical to derive an exact explicit
equation for the front speed. Fortunately, if high (but realistic) reproduction rates are
considered, both the nonoverlapping generations and the overlapping generations mod-
els tend to the same asymptotic front speed (see section 8.1). Thus, the nonoverlapping
generations assumption has been considered when deriving the approximate front speed
for postglacial recolonizations (details on this derivation appear in chapter 6). As with
focal infections and the Neolithic invasion, the approximate speed c =

p
2D=T has also

been shown to be useful to explain observed spread rates of postglacial recolonizations.
Its results are closer to the exact front speed from the structured populations model
when high (but realistic) reproduction rates are considered (see Fig 6.3).
The generational reproduction rate R0g is a very relevant parameter in order to

obtain front speeds from the nonoverlapping generations theory that closely agree with
the predictions of the overlapping generations model. In chapter 6, the approximation
R0g = TR0 has been used, as it provides a more reasonable assumption than those
in previous attempts [15, 108]. However, other approaches to R0g could be studied in
order to obtain more realistic results from the approximate theory. In Fig. 8.1 the
front speed from the nonoverlapping generations equation is analyzed for several values
of the generational reproduction rate, which in this case is assumed to be an integer
multiple of R0. For comparison, the dashed line and the dotted curve in Fig. 8.1
show the nonoverlapping generations results for the cases R0g = R0 (as in Ref. [15])
and R0g = TR0 (chapter 6), respectively. It can be observed the front speed from
the nonoverlapping theory better reproduces the behavior of the overlapping theory if
R0g = TR0 is considered instead of R0g = R0 (see specially the rapid decay of the
dashed line for R0 < 30). However, the overlapping results seem to correspond to an
intermediate case between the nonoverlapping speeds with R0g = TR0 and R0g = R0.
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This seems reasonable intuitively, because only seed produced during the �rst few years
(after the �rst tree produces seeds at a previously empty location) could be reasonably
expected to a¤ect the colonization speed. Indeed, the nonoverlapping generations front
speed is specially close to the overlapping generations speed for R0g = 4R0 (full triangles
in Fig. 8.1). Fig. 8.1 reveals that the evaluation of the generational reproduction rate
(which was introduced in chapter 6) still remains an open question. Forthcoming studies
could focus on convenient ways to estimate the generational reproduction rate of tree
species, and then theoretical analyses would possibly be able to reveal why R0g = 4R0
provides such close approach between the two models presented in Fig. 8.1.
The above conclusions on the application of the approximate speed to three rather

di¤erent biological invasions (virus infections, the Neolithic transition and postglacial
tree recolonizations) suggest that the expression c =

p
2D=T could describe a general

trend in front propagation. Future work could report further applications of the ap-
proximate front speed c =

p
2D=T . For example, the approximate front speed could

be compared with results from cohabitation equations for human invasions (such as the
Neolithic transition) [30]. Moreover, it would be interesting to check the validity of
the approximate speed in other biophysical systems (such as cancer tumors [66]) and
in nonbiological systems presenting delay times (such as crystallization fronts [109] or
combustion fronts [110]).
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Figure 8.1: Front speed in two dimensions versus net reproductive rate per year. The
solid line (empty circles) stand for the exact analytical solution (numerical simulations)
from the overlapping generations model. The dotted line (empty triangles) and the
dashed line (empty squares) correspond to the exact analytical solution (numerical
simulations results) from the nonoverlapping model when R0g = TR0 and R0g = R0,
respectively. Full squares, full triangles and full stars show the front speed from the
nonoverlapping model for the cases R0g = 7R0, R0g = 4R0 and R0g = 3R0, respectively.
The same parameter values used in chapter 5 for the yellow poplar species have been
used, i.e., � = 6000 m, pe = 0:99798, T = 18 yr, and a lifespan of 130 yr (which is only
applied in the overlapping generations model).
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8.4 Cooperation and probabilistic punishment

The paper in chapter 7 has gone beyond spatial population dynamics (chapters 4-6) by
analyzing evolutionary dynamics in a spatial context. To this end, chapter 7 has been
devoted to the evolution of cooperation when agents move continuously and punishment
upon coplayers can be applied. The type of punishment rules which have been explored
is specially innovative: instead of conceiving punishment as an additional strategy in
the game, players engage themselves in punishment actions with a certain probability.
Thus, facing twice the very same conditions after a Prisoner�s Dilemma interaction, a
cooperator (or a defector) can behave di¤erently when asked to punish his/her coplayer.
This simple probabilistic punishment not only represents the occasional human disposi-
tion to punish opponents, but it also prevents individuals to bear the unreasonable cost
of punishing every partner they confront. To the authors knowledge, such probabilistic
form of punishment has not previously been studied. Furthermore, punishment has
been seldom studied in environments where players move continuously.
Both time series and snapshots (Figs. 7.1 and 7.2, respectively) of several repres-

entative punishment scenarios have shown the cooperation enhancement e¤ect of social
punishment. Low doses (such as a 10% probability) of social punishment are enough
to lead the population to the full cooperation state, in some environments where other-
wise defectors would win. It has also been shown that these bene�ts to cooperators can
resist moderate doses (e.g., pa = 0:05) of nonsocial punishment, though such nonsocial
practices necessarily involve a certain decay of the average payo¤ per player.
In order to reach robust conclusions on the e¤ects of mobility, nonmobile scenarios

have been also analyzed (see specially Fig. 7.3). In general, the outcome of a nonmobile
system (v = 0) is roughly the same than that of analogous societies undergoing low
mobilities (e.g., v = 0:01). Nevertheless, in the case v = 0 neither the full cooperation
nor the full defection state can be reached because of agents that are unable to update
their strategy (because they were randomly isolated at the start of the simulation).
In the absence of punishment, low mobilities (v) promote cooperation, but the full

cooperation state can only be reached for moderate values of the temptation to defect
(b) (these conclusions are in agreement with the previous work by Meloni et al. [44],
who did not include any kind of punishment). In general, the practice of social punish-
ment results in higher v and b values that cooperation can resist, whereas the extended
practice of nonsocial punishment has the opposite e¤ect (Fig 7.4). Remarkably, for
moderate values of v, b and pa (the three parameters which promote defection), the
phase diagrams show that social punishment is specially e¢ cient in counteracting non-
social punishment (Figs. 7.5 and 7.6).
The model in chapter 7 on the spread of cooperation relies on some simple assump-

tions on both mobility and punishment. Future work could be addressed to study
further player abilities such as success-driven migration, the e¤ect of network topology,
etc. Admittedly, punishment has been typically analyzed within the Public Goods
(PG) game. Forthcoming versions of the PG game could report further conclusions on
the practice of probabilistic punishment. Moreover, it could be interesting to explore
similar situations considering positive incentives, thus assigning to agents a probability
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of o¤ering rewards (rather than punishment) to their coplayers.
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Chapter 9

Conclusions

This thesis has studied both population and evolutionary dynamics of several spatial
systems. Reaction-di¤usion equations have been used to model biological fronts, and
the evolution of cooperation has been studied in mobile populations where players can
punish.
Concerning tree population fronts, the fact that generations of di¤erent individuals

overlap has been shown to remarkably increase the invasion speed (specially, when
reproduction rates are not high). Further, taking into account overlapping generations
can lead to predict survival instead of extinction in some cases. This result has been
attained from the structured populations model in chapter 4. The matrix equations
in the model are able to represent the structure of the population in general, not only
that of tree populations. Hence, the model is useful to analyze other two-dimensional
invasions. The models in chapter 4 are consistent with the observed speeds of tree
recolonizations after the last glaciation.
In chapter 5, reaction-di¤usion equations have been used to analyze the evolution

of several-species systems. We have considered the case of Vesicular Stomatitis Virus
infections. The delay time (i.e., the time interval during which the virus is inside the
host cell) is critically important in VSV infections. Moreover, the delay time and the
di¤usivity are the only two relevant parameters in order to compute the front speed, as
it has been indicated by approximate results that closely agree with the exact theory,
numerical simulations and experimental data.
The approximate front speed solution c = (2D=T )1=2 has been derived from sev-

eral time-delayed reaction-di¤usion models in chapter 6. This approximate expression
provides more accurate results when the populations display high reproduction rates.
Remarkably, the approximate speed provides results which explain the observed spread
rates of several virus infections, the Neolithic transition in Europe, and postglacial tree
recolonizations. Thus, it could be a general trend in front propagation.
In chapter 7 the evolutionary dynamics of cooperation has been studied. Two spe-

ci�c mechanisms a¤ecting the population have been considered: continuous motion and
punishment. Simulations show that cooperation is favoured by low mobilities and social
punishment. Instead, free-riders succeed in the following scenarios: i) the temptation
to defect is high, ii) highly mobile systems, iii) extended use of nonsocial punishment.
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