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Tumor front
For all three models, tumor expansion takes place
independently of the infection front and according to a
single and simple analytical solution [3]:

���� � 2 ���� ∙ 	.
Using the parameters in Table 1, we obtain the range:7.90 ∙ 10�� � ���� � 4.33 ∙ 10�� 	�� �⁄ [3], which is
consistent with experimental results [4].

Infection front
The virus front speed is calculated numerically from Eqs.
(2)-(6) for each model by assuming solutions of the type
� � � ∙ ��� ���∙� . As  has not been accurately

measured, Figure 1 shows the infection front speed as a
function of the delay time �  .

Model 1: The speeds are much faster than the observed.
Results are constant because the model does not
depend on  .

Model 2: Much better results are achieved (yet, not
enough to explain the experimental data) only by
considering the delay time on the terms of death of
infected cells.

Model 3: By incorporating the second-order terms into
Eq. (2) the resulting front speed is in agreement with the
experimental data if 5.0 �  � 9.3	�.

Numerical simulations
We also solved model 3, Eqs. (2)-(6), by numerical
integration, obtaining results consistent with those from
Fig. 1 (relative errors are lower than 2.5%). Numerical
integration also allows the visualization of the moving
fronts of viruses and infected cells. In Fig. 2 we see that,
at the edge of the infection front, the number of infected
cells grows rapidly, and that then there is a plateau as a
result of the time delay  . After this interval, the number
of infected cells starts to decay producing a rise in the
virus population.

Introduction

Clinical research has shown that the treatment of
glioblastomas (GBM) could benefit from oncolytic virus
therapy. Vesicular Stomatitis Virus (VSV) is one of the
best candidates due to its strong oncolytic properties.

Biophysical models have been developed to describe
virus treatment of tumors, though they are usually not
compared quantitatively to experimental results.

Our research focuses on the development of a
mathematical model for the VSV-GBM system which can
explain satisfactorily the virus-tumor dynamics and
reproduce the experimental in vitro propagation speeds.

Conclusions

We have described three increasingly realistic models to
understand the dynamics of a virus-tumor system.

Our most complex model, which incorporates time-delay
effects both in the reactive and diffusive terms, can
satisfactorily predict the front speed for the lytic action of
oncolytic VSV on GBM observed in vitro.

We have shown that the delay time  is crucial in this
reaction-diffusion models. For the VSV-GBM system our
analysis predicts a range value of 5.0 �  � 9.3 h.

Our results for the in vitro front speed evidence that�#$# % ����, so theoretically the virus front could reach
the tumoral front and cease its expansion.

Fig. 2 Radial profiles for viruses and infected cells �∗ � #
# '()

and *∗ � +
+ '() at three different times for model 3. Zooming in

would show that �∗ and *∗ share the same edge of the front.
(Adapted from Fig. 3 in Ref. [3]).

Results

Parameter [unit] Value Ref.

�#$#	 ��, �⁄ -. ./ ∙ 01�2
and 1.44 ∙ 10�� [5 - 6]

����	 ��, �⁄ 3.75 ∙ 10�3 [7]

		 4	5�6 0.01 7 0.3 [4]

8	 ��99: ��;⁄ 01< [8]

= 103 7 01- [9]

 	 � 2 7 12 [10]

86	 ��; �⁄ 5 ∙ 10�6> 7 2 ∙ 01�- [9]

8,	 ��6 1 ?∗ 7  ⁄ [9]

8;	 ��6 0.014 7 1. 1@ 7 0.028 [9]

?∗ � 36 7 C- 7 60 [9]

Reaction-Diffusion Model

We have developed the models below in order to explain
a particular in vitro VSV-GBM experiment: a virus injected
into the center of the tumor spreads through a two-
dimensional geometry.

Viruses diffuse through the medium before infecting tumor
cells. When infected cells die, a new generation of viruses
is created and the process begins anew. So, essentially
the process is described by the reactions

� D E FG→* FI→= ∙ �
We present three increasingly realistic models using
partial differential equations to describe the
spatiotemporal dynamics of the virus-tumor system.

Model 1: Based on the studies of Wodarz [1] and Nowak
and May [2], their equations are modified to fit our more
complex VSV-GBM problem: no homogeneous system

⇒	 KI # �,�
K�I M 0; no free virus in steady-state ⇒ K # �,�

K� M
0; virus population number is reduced due to adsorption.
(Blue terms in Eqs. (2)-(5)).

Model 2: Infected tumoral cells do not die instantly; there
is a time delay  before the cell dies and releases the new
progeny of viruses. This fact is included by adding the red
terms into Eqs. (4) and (5).

Model 3: Fickian’s diffusion (used in models 1 and 2) does
not consider the time interval during which a virus does
not move in space. Second-order temporal derivatives are
included to incorporate the diffusive time-delay effect
(green terms in Eqs. (2) and (6)). Higher orders are
excluded because they yield similar results.

Eqs. (2)-(6) describe the 3 models, with each term color
coded in agreement with the model that incorporates it [3].
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Parameter sensitivity analysis
Parameters = and 86 have very wide ranges, spanning
several orders of magnitude. Figure 3 shows how the
front speed changes depending on these parameter
values for model 2 and model 3.

For our best framework, model 3, neither = nor 86 affect
significantly the speed of the front.

For model 2, on the other hand, the results vary
considerably with = and 86. Nonetheless, not even in the
most favorable scenario, can it predict the observations.

Fig. 1 VSV front propagation speed as a function of the delay time for model 1, model 2 and model 3. The hatched area shows the
experimental in vitro VSV front speed [9]. Solid curves are
calculated from typical or average parameter values; dashed
curves correspond to the upper and lower bounds of the
parameters in Table 1. (Figure adapted from Fig. 2 in Ref. [3]).

Fig. 3 VSV front speed on GBM for various values of = and 86. 
(Adapted from Fig. 4 in Ref. [3])

Parameter values

All parameters used in the models are estimated from
independent experiments for VSV and GBM and, when
possible, from in vitro experiments on VSV applied to
GBM [4-9].
Table 1 Experimental parameter values and references to the
sources
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