

Demic-cultural models, archaeology and genetics of Neolithic spread

Joaquim Fort Universitat de Girona (Catalonia, Spain) International workshop Theoretical Models of Cultural Evolution during Modern Human Dispersals *'Cultural History of PaleoAsia' project* Meiji University, Tokyo, 28 November 2017 The Neolithic transition is the shift from huntinggathering into farming (and/or herding). Farming (i.e., the Neolithic) appeared in different places and times.

It spread gradually across several huge regions.

Reaction-diffusion range expansion models attempt to understand the speed of such spreads, the mechanisms driving them, and their genetic consequences.

Models of Neolithic spread

- **Demic diffusion** = spread of farming populations = dispersal + net reproduction
- Cultural diffusion = spread of ideas = incorporation of hunter-gatherers into farming populations, via either transmission of plants, animals and knowledge from farmers to HGs(acculturation) and/or via interbreeding between HGs and farmers.
- Demic-cultural models

PLAN OF THE TALK

FIRST PART: mathematical models

- 1. reaction-diffusion vs reaction-dispersal
- 2. non-cohabitation vs cohabitation eqs.
- 3. cultural transmission vs Lotka-Volterra eqs.

SECOND PART: comparison to data

- 4. Archaeology (Europe, Asia, Africa)
- 5. Genetics (Europe)

1. reaction-diffusion vs reaction-dispersal Fisher's equation

$$\frac{\partial F}{\partial t} = D_F \nabla^2 F + a_F F \left(1 - \frac{F}{K_F}\right)$$

$$F = F(x, y, t) = \text{population density} \text{ (e.g., farmers)}$$

$$D_F = \text{diffusion coefficient}$$

$$Logistic growth:$$

$$a_F = \text{initial growth rate}$$

$$K_F = \text{carrying capacity}$$
speed of range expansions = $\sqrt{2a_F D_F}$
₅

Derivation of Fisher's equation F(x, y, t + T) - F(x, y, t) $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(x + \Delta_x, y + \Delta_y, t) \phi_F(\Delta_x, \Delta_y) d\Delta_x d\Delta_y$ - $F(x, y, t) + R_T[F(x, y, t)] - F(x, y, t)$ T =generation time $\phi_F(\Delta_x, \Delta_y)$ = probability to move (Δ_x, Δ_y) during T

Logistic growth: $R_T[F(x, y, t)] = \frac{e^{a_F T} K_F F(x, y, t)}{K_F + (e^{a_F T} - 1) F(x, y, t)}$

A Taylor expansion ($\Delta_{\chi} \approx 0, \Delta_{y} \approx 0, T \approx 0$) yields Fisher's eq., with $D_F = \frac{\overline{\Delta^2}}{4T}$. Fort & Méndez, Phys. Rev. Lett. (1999) Is Fisher's eq. a good approximation for humans? ₆

where $I_0(\lambda r_j) = \frac{1}{2\pi} \int_0^{2\pi} d\theta \exp[-\lambda r_j \cos\theta]$ is the modified Bessel function of the first kind and order zero

We will compare this speed to Fisher's = $\sqrt{2a_F D_F}$

Preindust	rial populations (farmers)
Population A*:	$\{p_j\}=\{0.54, 0.17, 0.04, 0.25\},\$
	{ <i>r_j</i> }={2.4, 14.5, 36.3, 60.4}km.
Population B*:	$\{p_j\}=\{0.40, 0.17, 0.17, 0.26\},\$
	{ <i>r_j</i> }={2.4, 14.5, 36.3, 60.4}km.
Population C*:	$\{p_j\}=\{0.19, 0.07, 0.22, 0.52\},\$
	${r_j} = \{2.4, 14.5, 36.2, 60.4\}$ km.
Population D**:	$\{p_j\} = \{0.19, 0.54, 0.17, 0.04, 0.04, 0.02\},\$
	$\{r_j\}=\{5, 30, 50, 70, 90, 110\}$ km.
Population E***:	$\{p_j\}=\{0.42; 0.23; 0.16; 0.08; 0.07; 0.02; 0.01; 0.01\},\$
	$\{r_j\}=\{2.3, 7.3, 15, 25, 35, 45, 55, 100\}$ km.
*Ethiopia; **Brazi	il; ***Central African Republic

Preindustrial populations (farmers)

Values of a_F and T: $0.023 \ y^{-1} \le a_F \le 0.033 \ y^{-1}$ (from 4 ethnographic and 1 archaeological populations)

T = 32 y (from ethnographic data)

Population	speed (km/yr)	Fisher (km/yr)	error Fisher
Α	0.71-0.81	0.85-1.02	20%-26%
В	0.75-0.84	0.93-1.11	24%-32%
С	0.92-1.01	1.26-1.51	37%- <u>50%</u>
D	0.93-1.06	1.11-1.34	19%-26%
Е	0.61-0.74	0.54-0.65	-11%12%

Isern, Fort & Pérez-Losada, JSTAT (2008) ⁹

2. non-cohabitation vs cohabitation eqs.

Up to now: non-cohabitation eq.: $F(x, y, t + T) - F(x, y, t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(x + \Delta_x, y + \Delta_y, t) \phi_F(\Delta_x, \Delta_y) d\Delta_x d\Delta_y - F(x, y, t) + R_T[F(x, y, t)] - F(x, y, t)$

Cohabitation equation:

$$F(x, y, t + T) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_T [F(x + \Delta_x, y + \Delta_y, t)] \phi_F (\Delta_x, \Delta_y) d\Delta_x d\Delta_y$$

population density

Populatior	Preindustrial Cohabitation	populations (fai error non-cohab. (relative to cohab.)	rmers) error Fisher (relative to cohab.)
Α	0.91-1.10	-22%26%	-6%8%
В	0.96-1.15	-22%27%	-5%3%
С	1.20-1.40	-23% <u>28%</u>	5%-8%
D	1.18-1.44	-21%26%	-6%7%
Е	0.74-0.94	-18%22%	27- <u>31%</u>

Another way to see the limitations of Fishers' eq.:

Fisher's speed = $\sqrt{2a_F D_F} \rightarrow \infty$ if $a_F \rightarrow \infty$ Cohabitation speed* $\rightarrow \frac{r_{max}}{T}$ if $a_F \rightarrow \infty$ * cohabitation speed = $\frac{min}{\lambda > 0} \frac{a_F T + \ln[\sum_{j=1}^{M} p_j I_0(\lambda r_j)]}{T\lambda}$ 11 **3. cultural transmission vs Lotka-Volterra eqs.** Cultural transmission takes 2 forms:

1) Vertical = due to <u>interbreeding</u> between hunter-gatherers (HG) and farmers (F)

2) Horizontal/oblique = due to
 <u>acculturation</u> (teaching and/or
 copying)

Cultural transmission

Are Lotka-Volterra equations adequate? Population numbers after (P') and before (P) cultural transmission (during 1 generation) number of farmers (F): $P'_F = P_F + \alpha P_F P_H$ (1) number of hunter – gatherers (H): $P'_H = P_H - \alpha P_F P_H$ (2)

Problem:

Number of HGs converted per farmer according to Eq. (2) = $\frac{P_H - P'_H}{P_F} = \alpha P_H \rightarrow \infty!$ No maximum! if $P_H \rightarrow \infty$

Cavalli-Sforza & Feldman, *Cultural transmission and evolution* (1981), p.131 & 151 (oblique & horiz. trans.) n = number of teachers that a HG contacts during

his/her lifetime.

[If *n* were proportional to $P_F + P_H$, we would obtain L-V eqs.] [But *n* is roughly the same for many populations (Dunbar, 1993).]

 $\frac{P_F}{P_F+P_H} = u = \text{proportion of teachers of a HG who are F.}$

 $n \frac{P_F}{P_F + P_H} = n u =$ number of teachers of a HG who are F.

- q = probability that a HG becomes F due to contact with a single F teacher.
- $1 (1 q)^{nu}$ = probability that a HG becomes F during probab. not F his lifetime

 $1 - (1 - q)^{nu} \approx nqu = fu$ if $q \ll 1$, with f = nq

number of HGs who become Fs per generation = $f u P_H^{14}$

These equations are different from Lotka-Volterra eqs.:

 $\begin{cases} P'_{F} = P_{F} + \alpha P_{F} P_{H} \\ P'_{H} = P_{H} - \alpha P_{F} P_{H} \checkmark \frac{P_{H} - P'_{H}}{P_{F}} = \alpha P_{H} \to \infty! & \text{No maximum.} \\ \text{if } P_{H} \to \infty & 15 \end{cases}$

Limitation of these equations (noted by L. L. Cavalli-Sforza, 2011)

$$\begin{cases} P'_F = P_F + f \frac{P_F P_H}{P_F + P_H} & \text{if } P_F \gg P_H \\ P'_H = P_H - f \frac{P_F P_H}{P_F + P_H} \approx P_H - f P_H = (1 - f) P_H > 0 \rightarrow f \leq 1 \\ \end{cases} \\ \begin{cases} P'_F = P_F + f \frac{P_F P_H}{P_F + P_H} & \text{if } P_H \gg P_F \end{cases} \end{cases}$$

 $\left(P'_{H} = P_{H} - f \frac{P_{F}P_{H}}{P_{F} + P_{H}} \approx P_{H} - f P_{F} \rightarrow \frac{P_{H} - P'_{H}}{P_{F}} = f
\right)$

each farmer can at most convert a single HG in their lifetime! A generalization avoids this limitation •We have assumed that a HG is equally likely to learn from Fs or HGs, so that:

number of F-teachers per HG = $n \frac{P_F}{P_F + P_H}$

We now assume that a HG contacts only (for learning purposes) a proportion ρ of his F neighbors and a proportion κ of his HG neighbors, then:

number of F-teachers per HG = $n \frac{\rho P_F}{\rho P_F + \kappa P_H} = n \frac{P_F}{P_F + \gamma P_H}$ Then: $if P_F \gg P_H$ $\gamma = \kappa / \rho$ $P'_H = P_H - f \frac{P_F P_H}{P_F + \gamma P_H} \approx P_H - f P_H = (1 - f) P_H > 0 \rightarrow f \leq 1$ $P'_H = P_H - f \frac{P_F P_H}{P_F + \gamma P_H} \approx P_H + \frac{f}{\gamma} P_F \rightarrow \frac{P_H - P'_H}{P_F} = \frac{f}{\gamma} \text{ not} \leq 1_{17}$ Population numbers after (P') and before (P) cultural transmission (during 1 generation):

farmers (F):
$$P'_F = P_F + f \frac{P_F P_H}{P_F + \gamma P_H}$$

nunter – gatherers (H): $P'_H = P_H - f \frac{P_F P_H}{P_F + \gamma P_H}$

 $\gamma < 1$ indicates preference of *H*s to copy *F*s rather than *H*s If $\gamma \approx 1$: random copying

Frequency-dependent transmission yields more complicated eqs. and a slower front speed, but the same speed as a function of a parameter that can be called the cultural transmission intensity*

*Fort, *PNAS* 2012

$$\begin{cases} P'_{F} = P_{F} + f \frac{P_{F}P_{H}}{P_{F} + \gamma P_{H}} \approx P_{F} + C P_{F} & \downarrow \\ P'_{H} = P_{H} - f \frac{P_{F}P_{H}}{P_{F} + \gamma P_{H}} \approx P_{H} - C P_{F} & \downarrow \\ P'_{H} = P_{H} - f \frac{P_{F}P_{H}}{P_{F} + \gamma P_{H}} \approx P_{H} - C P_{F} & \downarrow \\ P'_{H} = P_{H} - f \frac{P_{F}P_{H}}{P_{F} + \gamma P_{H}} \approx P_{H} - C P_{F} & \downarrow \\ P'_{H} = P_{H} - f \frac{P_{H} - P_{H}}{P_{F} + \gamma P_{H}} \approx P_{H} - C P_{F} & \downarrow \\ P'_{H} = P_{H} - f \frac{P'_{H} - P_{H}}{P_{F} + \gamma P_{H}} \approx P_{H} - C P_{F} & \downarrow \\ P'_{H} = P_{H} - f \frac{P'_{H} - P_{H}}{P_{F} + \gamma P_{H}} \approx P_{H} - C P_{F} & \downarrow \\ P'_{H} = P_{H} - f \frac{P'_{H} - P_{H}}{P_{F} + \gamma P_{H}} \approx P_{H} - C P_{F} & \downarrow \\ P'_{H} = P_{H} - f \frac{P'_{H} - P_{H}}{P_{F} + \gamma P_{H}} \approx P_{H} - C P_{F} & \downarrow \\ P'_{H} = P_{H} - f \frac{P'_{H} - P_{H}}{P_{F} + \gamma P_{H}} \approx P_{H} - C P_{F} & \downarrow \\ P'_{H} = P_{H} - f \frac{P'_{H} - P_{H}}{P_{F} + \gamma P_{H}} \approx P_{H} - C P_{F} & \downarrow \\ P'_{H} = P_{H} - f \frac{P'_{H} - P_{H}}{P_{F}} = number of HGs converted per F per equation (in horizontal and/or objque transmission) or \\ P'_{H} = \frac{P'_{H} - P_{F}}{P_{F}} = fraction of Fs that mate HGs per generation (in horizontal and P - P_{F}) = fraction of Fs that mate HGs per generation (in horizontal and P - P_{F}) = fraction of Fs that mate HGs per generation (in horizontal and P - P_{F}) = fraction of Fs that mate HGs per generation (in horizontal and P - P_{F}) = fraction of Fs that mate HGs per generation (in horizontal and P - P_{F}) = fraction of Fs that mate HGs per generation (in horizontal and P - P_{F}) = fraction (in horizontal and P - P_{F})$$

 P_F (in vertical transmission^{*}→γ = 1 and $C \le 1$; if f = 1: random mating)

* Fort, Phys Rev E 2011

19

Using population densities (*F* = farmers, *H*=HGs) $\begin{cases}
F(x, y, t + T) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{F}(x + \Delta_x, y + \Delta_y, t) \phi_F(\Delta_x, \Delta_y) d\Delta_x d\Delta_y \\
H(x, y, t + T) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{H}(x + \Delta_x, y + \Delta_y, t) \phi_H(\Delta_x, \Delta_y) d\Delta_x d\Delta_y
\end{cases}$

$$\widetilde{F}(x, y, t) \equiv R_T[F(x, y, t)] + f \frac{R_T[F(x, y, t)]R_T[H(x, y, t)]}{R_T[F(x, y, t)] + \gamma R_T[H(x, y, t)]}$$
$$\widetilde{H}(x, y, t) \equiv R_T[H(x, y, t)] - f \frac{R_T[F(x, y, t)]R_T[H(x, y, t)]}{R_T[F(x, y, t)] + \gamma R_T[H(x, y, t)]}$$

$$R_{T}[F(x, y, t)] = \frac{e^{a_{F}T} K_{F} F(x, y, t)}{K_{F} + (e^{a_{F}T} - 1) F(x, y, t)}$$
$$R_{T}[H(x, y, t)] = \frac{e^{a_{H}T} K_{H} H(x, y, t)}{K_{H} + (e^{a_{H}T} - 1) H(x, y, t)}$$
Fort, PNAS 2012

20

Demic-cultural models The front speed for the previous set is $\min_{\lambda > 0} \frac{a_F T + \ln[(1 + C)(\sum_{j=1}^{M} p_j I_0(\lambda r_j))]}{T\lambda}$

Without cultural transmission (C=0), we recover the speed of the cohabitation single-population model (given in a previous slide).

More general models include, besides besides the demic disperal kernel $\{p_j, r_j\}$, a cultural dispersal kernel $\{P_j, R_j\}$ (Fort, *JRS Interface* 2015)

Spread of the Neolihtic in Europe

What is the observed speed?

23

What is the observed speed?

0.9-1.3 km/yr

735 sites in Europe & Near East r = 0.83(highest-*r* origin)

dates vs distances great circles & shortest paths

Pinhasi, Fort & Ammerman, *PLoS Biol.* (2005)

equations

♦ simulations

Cultural effect (%) = (speed – demic speed) /speed · 100

Simulations on a grid

They are useful to:

1. check the analytical speed (pevious slides)

2. consider realistic geographies

3. compute genetic clines

Steps in simuations

The following cycle is repeated many times (once per generation) on each node of a <u>grid</u> with initially HGs everywhere and Fs only in some region:

1. logistic reproduction (of both populations)

- 2. cultural transmission (horizontal/oblique or vertical)
- 3. dispersal (kernel of probability vs distance)

The order of steps does not change the front speed²⁷

Ancient genetics

We have gathered a database of all Neolithic individuals (514) whose mtDNA has been determined

We analyze haplogroup K because its frequency (red) decreases Westwards and Nothwards

Effect (%) = (speed – demic speed) /speed · 100

•Archaeology: cultural effect $<48\% \rightarrow$ mainly demic and $C < 3 \rightarrow < 3$ HGs were converted by every farmer.

 Genetics: cultural effect ~2% →demic>>cultural and C≈0.02→ only 2 HGs were converted by every 100 Fs; or 2% of Fs interbred with HGs.

Only $\sim 2\%$ of farmers took part in cultural diffusion

Spread of domesticated rice

Data from Silva et al., *PLoS One* (2015) [updated databse of Fuller et al, *The Holocene* (2011)]

35

Cobo, Fort & Isern, submitted (2017)

Neolithic case studies

1. Europe: speed ~1 km/yr \rightarrow mainly demic [1].

2. Domesticated rice in eastern and southeastern Asia: speed $\sim 1 \text{ km/yr} \rightarrow \text{mainly } \frac{\text{demic}}{\text{demic}}$ [2].

3. Southwest Asia from Near East:

speed ~1 km/yr \rightarrow mainly <u>demic</u> [3].

4. Africa (Bantu): ~1 km/yr \rightarrow mainly <u>demic</u> [4].

5. Southern Africa (Khoikhoi): >2 km/yr \rightarrow mainly <u>cultural</u>. The final state was herding, without farming.

[1] Fort, *PNAS* (2012)
[2] Cobo, Fort & Isern, *submitted* (2017)
[3] Comas, Fort, Lancelotti, Ruiz & Madella, *submitted* (2017)
[4] Isern & Fort, *in preparation* (2017) 38
[5] Jerardino, Fort, Isern & Rondelli, *PLoS One* 2014

Neolithic transitions (this talk)

F= farmers

H=hunter-gatherers

Front speeds (from archaeological data) give maximum values for the % of cultural diffusion and the % of farmers involved in cultural transmission (teaching and/or interbreeding).

Genetic clines give more precise values.

'Cultural History of PaleoAsia' project

F= modern humans H=Neanderthals

Front speeds (from archaeological data) could give maximum values for the % of cultural diffusion and the % of modern humans involved in cultural transmission (teaching and/or interbreeding). 39 Genetic clines could give more precise values.

Questions?

