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Abstract 

Complex systems are composed mainly of various interconnected parts or dynamics. Because of this, 

the parts interact and the system develops new properties that cannot be explained by considering a 

single isolated part. This thesis focuses on a specific field of the whole possible range that 

encompasses complex systems, namely population dynamics. By resorting to reaction-diffusion-

interaction equations, we can explain in an analytical and computational way the spatio-temporal 

changes of the different populations that interact between them. In this thesis, a single mathematical 

basis is used for the following three applications, which at first glance seem very different. 

   The first model presented in this thesis (Chapter 3) studies the dynamics of viral infections. Due to 

the numerous experimental data available, we have studied various bacteriophage T7 mutants 

infecting E. coli host bacteria. By incorporating the delay time in the terms of diffusion and reaction, 

as well as new mathematical terms that describe the behavior of infected cells in a biologically correct 

way, we obtain a model that agrees better than previous ones with the observed front propagation 

speeds in several strains of the T7 virus. 

   Chapter 4 proposes several mathematical models on the dynamics of oncolytic viruses. Oncolytic 

viruses are those that infect mainly tumor cells. They are applied in some experimental medical 

treatments of cancer. When a virus infects a tumor cell, it reproduces within it. Finally, a great number 

of viruses are released when the infected cell dies (lysis). Our models are focused on the spread of 

Vesicular Stomatitis Virus (VSV) in glioblastomas, the most aggressive brain tumors. Improvements 

are incorporated into the equations of a model already proposed, and comparison is performed with 

the results observed in vitro. The only model capable of efficiently explaining the dynamics of the 

system takes into account the delay time for the diffusion and also for the reaction processes. 

   Finally, Chapter 5 explains and compares quantitatively, for the first time, Neolithic DNA samples 

with mathematical simulations based on reaction-diffusion methods. It is believed that farming and 

stockbreeding (the Neolithic) spread across Europe with a progressive migration of the first farmers 

from the Near East, leading to the spread of new haplogroups (variations of the human DNA) that 

were absent in European indigenous populations (hunter-gatherers). We have performed a detailed 

bibliographical search to gather a database with all 513 Neolithic individuals in Europe, Anatolia 

(Turkey) and Syria older than 3,000 years before the Common Era (BCE), such that their mitochondrial 

DNA (mtDNA) has been published. With these data, it is possible to calculate what percentage of the 

Neolithic population had each haplogroup, in different places and times. Focusing on haplogroup K, 

which displays a decrease with increasing distance to the origin of the Neolithic expansion, Chapter 5 

builds a computational model that takes into account the two mechanisms of Neolithic diffusion, 

namely demic and cultural. The simulations show that to correctly explain the genetic cline, the 

transition would have been basically due to population movement (demic diffusion) and only 2% of 

Neolithic farmers would have interbred with hunter-gatherers or taught new techniques to them 

(cultural diffusion). 
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Resum  

Els sistemes complexos es formen principalment de diverses parts o dinàmiques connectades entre 

elles o entrellaçades. A causa d'aquesta interconnexió, les parts interaccionen i el sistema pot 

desenvolupar noves propietats que no podrien ser explicades a partir d'una sola part aïllada. Aquesta 

tesi s'enfoca en un camp específic de tot el possible ventall que engloben els sistemes complexos: la 

dinàmica de poblacions. Gràcies a les equacions de reacció-difusió-interacció, podem explicar de 

manera analítica i computacional l’evolució espaciotemporal de diferents poblacions que interactuen 

entre elles. En aquesta tesi, una mateixa base matemàtica s’utilitza per a les tres següents aplicacions 

que, aparentment, són molt diferents. 

   El primer model que presenta aquesta tesi (Capítol 3) estudia la dinàmica de les infeccions víriques. 

Degut a l’elevat nombre de dades experimentals disponibles, hem estudiat el bacteriòfag T7 infectant 

el bacteri E. coli. Gràcies a la incorporació del temps de retard en els termes de difusió i reacció, així 

com de nous termes matemàtics que descriuen de manera biològicament correcta la dinàmica de les 

cèl·lules infectades, hem aconseguit un model que mostra un millor acord que els anteriors amb les 

velocitats de propagació observades en diferents cepes del virus T7. 

   El Capítol 4 està dedicat a diferents models matemàtics de dinàmica de virus oncolítics. Els virus 

oncolítics són aquells que infecten principalment cèl·lules tumorals. Es fan servir en alguns 

tractaments mèdics experimentals de càncer. Després que un virus infecta una cèl·lula tumoral es 

reprodueix dins seu. Finalment s'allibera un gran nombre de virus quan la cèl·lula infectada mor (lisi). 

En concret, els models s'apliquen a l'expansió del Vesicular Stomatitis Virus (VSV) en glioblastomes, 

els tumors cerebrals més agressius. S'incorporen millores en les equacions d'un model ja proposat, i 

es compara amb els resultats observats in vitro. Es troba que l'únic model capaç d'explicar de manera 

eficient la dinàmica del sistema té en compte el temps de retard per als processos de difusió i també 

de reacció.  

   Finalment, el Capítol 5 explica i compara per primera vegada, d'una manera quantitativa, les mostres 

d'ADN neolític amb simulacions matemàtiques basades també en els mètodes de reacció-difusió. Es 

creu que  l'agricultura i la ramaderia (el neolític) es van propagar per Europa amb una migració 

progressiva dels primers agricultors des d'Orient Proper i que, amb ells, es van propagar nous 

haplogrups (variacions trobades en l'ADN humà) que no existien en les poblacions europees 

autòctones (caçadors-recol·lectors). Hem portat a terme una cerca bibliogràfica minuciosa per 

recopilar una base de dades amb tots els 513 individus neolítics a Europa, Anatòlia (Turquia) i Síria 

anteriors a l’any 3.000 a.C. (abans de Crist), tals que el seu ADN mitocondrial (mtDNA) ha estat 

publicat. Amb aquestes dades, es pot calcular quin percentatge de la població neolítica tenia cada 

haplogrup, en diferents llocs i èpoques. Centrant-se en l’haplogrup K, el qual mostra una disminució 

respecte a la distància a l'origen de l'expansió neolítica, al Capítol 5 es construeix un model 

computacional que té en compte els dos mecanismes de difusió neolítica: dèmica i cultural. Les 

simulacions mostren que per a poder explicar correctament la clina genètica, la transició hauria 

d’haver estat bàsicament deguda al moviment de població (difusió dèmica) i només el 2% dels 

agricultors neolítics s'haurien aparellat amb caçadors-recol·lectors o els haurien ensenyat les 

tècniques agrícoles (difusió cultural). 
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Resumen 

Los sistemas complejos se componen principalmente de diversas partes o dinámicas conectadas entre 

sí o entrelazadas. Debido a esta interconexión, las partes interaccionan y el sistema puede desarrollar 

nuevas propiedades que no podrían ser explicadas a partir de una sola parte aislada. Esta tesis se 

enfoca en un campo específico de todo el posible abanico que engloban los sistemas complejos: la 

dinámica de poblaciones. Gracias a ecuaciones de reacción-difusión-interacción, podemos explicar de 

manera analítica y computacional el cambio espacio-temporal de distintas poblaciones que 

interactúan entre ellas. En esta tesis, una misma base matemática es utilizada para las tres siguientes 

aplicaciones que, a primera vista, parecen muy distintas. 

   El primer modelo que presenta esta tesis (Capítulo 3) estudia la dinámica de las infecciones víricas. 

Debido al alto número de datos experimentales disponibles, estudiamos el bacteriófago T7 infectando 

a la bacteria E. coli. Gracias a incorporar el tiempo de retraso en los términos de difusión y reacción, 

así como nuevos términos matemáticos que describen de manera biológicamente correcta la dinámica 

de las células infectadas, conseguimos un modelo que muestra un mejor acuerdo que los anteriores 

con las velocidades de propagación observadas en diferentes cepas del virus T7. 

   El Capítulo 4 propone diferentes modelos matemáticos sobre la dinámica de virus oncolíticos. Los 

virus oncolíticos son aquellos que infectan principalmente células tumorales. Se aplican en algunos 

tratamientos médicos experimentales de cáncer. Cuando un virus infecta a una célula tumoral, se 

reproduce en su interior. Finalmente un gran número de virus salen cuando la célula infectada muere 

(lisis). En concreto, los modelos se aplican a la expansión del virus Vesicular Stomatitis Virus (VSV) en 

glioblastomas, los tumores cerebrales más agresivos. Se incorporan mejoras en las ecuaciones de un 

modelo ya propuesto, y se compara con los resultados observados in vitro. Se encuentra que el único 

modelo capaz de explicar de manera eficiente la dinámica del sistema tiene en cuenta el tiempo de 

retraso para los procesos de difusión y también de reacción.  

   Por último, el Capítulo 5 explica y compara por primera vez, de una manera cuantitativa, las muestras 

de ADN neolítico con simulaciones matemáticas basadas también en los métodos de reacción-

difusión. Se cree que la agricultura y ganadería (el neolítico) se propagaron por Europa con una 

migración progresiva de los primeros agricultores desde Oriente Próximo y que, con ellos, se 

propagaron nuevos haplogrupos (variaciones encontradas en el ADN humano) que no existían en las 

poblaciones europeas autóctonas (cazadores-recolectores). Hemos llevado a cabo una búsqueda 

bibliográfica minuciosa para recopilar una base de datos con todos los 513 individuos neolíticos de 

Europa, Anatolia (Turquía) y Síria anteriores al año 3.000 a.C. (antes de Cristo), tales que su ADN 

mitocondrial (mtDNA) ha sido publicado. Con estos datos, se puede calcular qué porcentaje de la 

población neolítica tenía cada haplogrupo, en diferentes lugares y épocas. Centrándose en el 

haplogrupo K, el cual muestra una disminución respecto a la distancia al origen de la expansión 

neolítica, en el Capítulo 5 se construye un modelo computacional que tiene en cuenta los dos 

mecanismos de difusión neolítica: démica y cultural. Las simulaciones muestran que para poder 

explicar correctamente la clina genética, la transición debería haber sido debida básicamente al 

movimiento de población (difusión démica) y tan solo el 2% de los agricultores neolíticos se habrían 

apareado con cazadores-recolectores o les habrían enseñado nuevas técnicas (difusión cultural). 

  



xxii 

 

 

 



PART I Introduction, objectives and methods 

 

  

 

PART I 

 

Introduction, objectives 

and methods 

 



2 

 

  



3 

 

1. Introduction 

This thesis focuses on the quantitative analysis of biophysical systems where dispersion and reaction 

processes coexist (both in microbiological and in human populations). The theories usually applied to 

describe such systems are called reaction-diffusion theories, and their basic formulation will be 

reviewed in Sec. 1.2 below. Reaction-diffusion theories are commonly used in chemistry to describe 

systems where one or more substances may chemically react and diffuse in the medium containing 

them, leading to changes of their densities in space and time. A well-known example is the 

propagation of combustion flames [1]. Reaction-diffusion processes also take place in physical 

systems, e.g. superconductors [2], as well as in many biological and social phenomena that are of 

importance in archaeology [3], virology [4], genetics [5] and linguistics [6]. In biological systems, the 

diffusion process describes random migratory movements of the individuals, and the reaction process 

can include both population growth (births and deaths) as well as interactions between several 

populations or species (e.g., predator-prey, competition, or symbiotic interactions). 

   Each of the three main Chapters of this thesis (Chapters 3-5) reproduces a research paper devoted 

to describe mathematically a specific biological system [7, 8, 9]. All three systems share a common 

feature, namely that various species or populations change their number densities by reproducing, 

interacting with other species and spreading throughout the medium where they live. These three 

papers [7, 8, 9] try to contribute and improve previous work on modelling this type of reaction-

diffusion systems in three separate fields of study, namely the spread of viruses in a bacterial medium 

(Chapter 3) [7], the spatiotemporal dynamics of oncolytic viruses injected to defeat cancerous tumors 

(Chapter 4) [8], and the study of the variation in space and time of the percentage of a Neolithic 

genetic marker in ancient human populations (Chapter 5) [9]. 

   This introduction contains the background on each of these three systems (Sec. 1.1), an overview of 

population dynamics models previously applied to such problems (Sec. 1.2), and a summary of the 

models applied in this thesis (Sec. 1.3). 

1.1. Three applications of reaction-diffusion processes 
This section provides a brief introduction to the three systems studied in this thesis. It also includes 

discussions on their scientific interest, as well as on the features that are relevant for this thesis. 

 Virus infection fronts 
Virus growth dynamics differs significantly from that of cellular organisms. The so-called one-step 

growth experiments were devised by physicist Max Delbrück. In these experiments, viruses are 

distributed homogeneously in a medium of susceptible or host cells (i.e., cells that can be infected and 

killed by the viruses). The viruses first adsorb to the cells and, some time later, it is observed that all 

the viruses reproduce almost at once (i.e., at 'one step'), so the population number does not increase 

exponentially as for cellular organisms [10]. For this and related work, Delbrück was awarded the 

Nobel prize in Medicine or Physiology in 1969.  
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   An important class of non-homogeneous systems is obtained by injecting viruses in a small region of 

a medium containing host cells, i.e. cells that can be infected by the viruses. Then it is observed that a 

circular region of dead cells (called a plaque) gradually grows in size [11]. For many virus-host systems, 

viruses can only infect hosts that are reproducing, thus the plaque growth stops spontaneously when 

host reproduction ceases due to exhaustion of nutrients [11] (unless fresh host is added, but this 

complicates accurate experimental measurements [12]). On the other hand, the plaques of some 

virus-host systems (e.g., those of virus T7 infecting E. Coli cells) grow without any bound (other than 

the dimensions of the experimental setup) because cell infection takes place even without host 

reproduction [12]. In such systems, it is easy to measure the plaque radius as a function of time, even 

after the plaque becomes visible to the naked eye, and this makes it possible to perform accurate 

estimations of the speed of plaque growth [12].  

   In Chapter 3 we shall consider bacteriophages (i.e., viruses that infect bacterial cells). The 

experimental technique consists of distributing many susceptible bacteria homogeneously on a disk-

shaped surface (Petri plate) containing nutrient agar, which immobilizes the bacteria, so they do not 

diffuse [12]. A few viruses are then injected at the center of the plate and the so-called lytic cycle 

begins, i.e. each virus spreads through nearby bacteria, infects one of them, reproduces inside it until 

this cell dies (lysis) and the virus progeny leave it. This cycle repeats many times, leading to a growing 

region of killed (or lysed) bacteria, i.e. a plaque (see Fig. 1.1 for a scheme). Between the adsorption of 

a virus into a cell and the exit of the virus progeny from it, there is an elapsed time which can range 

from minutes to hours. During this time interval, the virus replicates within the host cell. Thus, during 

this time interval neither the original virus nor its progeny moves. This time interval is very important 

in this thesis. It is called the delay time, latent period, eclipse time or lag time, and is usually denoted 

by 𝜏. 

 
Figure 1.1 Left: Diagram representing the virus (red) propagation front through the host cells (blue). Right: 
Dimensionless radial profiles of the concentrations of viruses 𝑽 (red), infected cells 𝑰 (purple) and uninfected 
cells 𝑩 (blue) in a growing plaque. All three profiles move with the same speed c. Such a profile for 𝑽 is called 
a front (or sometimes a wavefront). The profile for 𝑰 is called a pulse. Some authors also call them travelling 
waves. 
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   The edge of a plaque has a well-characterized and constant speed (Fig. 1.1). The speed of the front 

can be measured experimentally [12]. It can be also calculated from reaction-diffusion sets of 

equations (see Sec. 1.2.3 below). Such equations consider the three processes at work, namely (i) 

diffusion of viruses, (ii) adsorption or entrance of viruses into host cells (which will become infected), 

and (iii) reproduction of viruses (the new offspring being released after the host cell has been infected 

for a certain time 𝜏). These processes are depicted in Fig. 1.2. 

 
Figure 1.2 Schematic of a virus lytic cycle (viral replication): (i) search, attachment and entrance to the 
susceptible cell, (ii) production of new viruses while inside the cell and (iii) burst and release of the new 
viruses. 
 

   Koch developed a first model in 1964 which, based on heuristic arguments, assumed that the rate 

of growth of the plaque should be constant and dependent only on the viral diffusivity and the lag 

time of viral replication [13] (the model due to Koch and its limitations will be described at the end of 

Sec. 1.2.1.). Later other authors have developed more accurate and realistic models, with rigorous 

derivations that take into account the rates of virus adsorption and cell lysis. We can highlight the 

work by Yin and co-workers [12, 14, 15, 16, 17, 18], who performed many experiments and 

incorporated new kinetic parameters into their renewed reaction-diffusion equations. They computed 

the speed of travelling-wave solutions (i.e., the speed of plaque growth) analytically [14] and also 

performed numerical simulations [17]. They studied the dynamics and evolution of several strains of 

the bacteriophage T7 infecting Escherichia coli (E. coli). We stress that they could perform accurate 

experimental measurements due to the fact (mentioned above) that, unlike the plaques of many 

viruses that stop growing (when cells reach a stationary state, i.e. when there is no net cell 

reproduction), plaques of T7 on a plate continue to grow in size indefinitely (until the edge of the plate 

is reached) [12]. A decade later, it was noted that the T7-E. coli speed resulting from the models due 

to Yin and co-workers was much faster than the experimental one [19]. For this reason, and Fort and 

Méndez [4] took into account the latent period 𝜏 during which viruses do not move, by using a time-

delayed equation. The computed wave speeds then agreed perfectly with the observed ones [4]. 

However, the term including the latent time is not biologically intuitive.  Chapter 3 explains this 



6 

 

problem and tries to fix it, by means of a new term that we consider mathematically and biologically 

more appropriate. In the paper reproduced in Chapter 3 [7], we consider only T7 viruses infecting E. 

coli for definiteness. However, this is not the only system to which our results can be applied. Indeed, 

in the next section and in the paper in Chapter 4 [8] we consider Vesicular Stomatitis Viruses (VSVs). 

These viruses infect mammalian or insect cells (not bacteria) [18, 20, 21]. For VSV infections, the cells 

do not burst. But again, there is a delay time between the adsorption of a virus by a cell and the release 

of the virus progeny. For this reason, our models are also relevant to VSV infections. 

 Oncolytic virotherapy 
Cancer represents a threat of utmost importance for public health worldwide. Traditional treatments 

are surgery, radiotherapy and chemotherapy. But despite important advances, certain forms of cancer 

do not respond well to these traditional treatments. For example, glioblastomas (GBM) are highly 

malignant brain tumors (median survival <15 months [22]) and their treatment will require innovative 

approaches. One of them is oncolytic virotherapy [23]. In this technique, viruses that infect cancerous 

cells are injected into a tumor [24, 25]. Some strains of Vesicular Stomatitis Viruses (VSVs) are 

candidates for such therapies due to their effectiveness infecting cancer cells, without damaging 

healthy cells nearby [26, 27]. Some strains of VSVs replicate in tumoral cells and kill them, by following 

a cycle like that represented in Fig. 1.2. The hope is, then, that VSVs could be able to infect all the 

cancerous cells and defeat the tumor. 

   The original idea of treating tumors with viruses arose already in the 20th century [28], but research 

was then limited because of the difficulty to obtain sufficiently effective viruses to infect tumors, 

without killing healthy cells. Nowadays, due to the rapid development of genetic engineering, 

scientists can create viruses with improved skills, e.g. with increased tumor-cell selectivity, more 

effective replication inside infected cells, and enhanced oncolytic activity leaving the normal cells 

unharmed. For these reasons, interest in cancer treatments with viruses has reappeared 

tremendously during the last decade [29, 30, 31].  

   In parallel, mathematical models of cancer treatment with viruses have been developed in the last 

years. This biophysical system is very similar to that described in the previous section, in the sense 

that a virus is injected into a tumor, and spreads through the population of cancer cells (for in vitro 

experiments, the spread takes place in a basically two-dimensional geometry). Because of the 

similarities with the system in the previous section, the virus-tumor travelling wave can also be 

described using reaction-diffusion equations. However, in a virus-tumor system, the tumor is also 

expanding. For this reason, contrarily to the representation in Fig. 1.1, there is an additional travelling 

wave of tumor cells (i.e., an expansion of the outer circle in Fig. 1.1). It is therefore necessary to model 

tumor growth (i.e., the spread of the blue region in Fig. 1.1). In contrast to solid tumors [32, 33], the 

cells of glioblastomas diffuse. Therefore, the growth of glioblastomas can be described using reaction-

diffusion equations (see, e.g., Ref. [34] and citations therein). More information on glioblastoma 

growth is given in Sec. 2.1.6 below. 

   Wodarz and co-workers have applied previous, more general work on virus-cell systems (as reviewed 

by Nowak and May [35]) to the more specific case of virus-tumor systems [36, 37, 38, 39, 40]. Those 

works considered only non-spatial systems, i.e. without diffusion (so they are based on ordinary 

differential equations). Spatial models (based on partial differential equations) have been also 
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considered [41, 42, 43, 44, 45, 46]. They are reviewed in Sec. 1.2. In Chapter 4 we use spatial models 

to describe the propagation of the virus infection front (red region and arrows in Fig. 1.1) as well as 

that of the tumor cell front (blue region in Fig. 1.1) [8].  

 DNA clines and the nature of the Neolithic spread 
The Neolithic is defined as an economic system based on farming and stockbreeding, as opposed to 

the hunting and gathering economy practiced during the Paleolithic (including its final phase, which is 

often called the Mesolithic). The adoption of this new economic system was a major transition for 

humankind. The earliest Neolithic sites appeared about 11,000 yr BCE in the Near East, i.e. Israel, 

Jordan, Iraq, Syria, etc.). From there, the Neolithic spread to Anatolia (present-day Turkey), next to 

Greece, and then along two main routes: northwards to Central Europe and westwards to the Iberian 

Peninsula (along the Mediterranean coast). It arrived at around 6,000 yr BCE to southeastern Europe 

[47], at about 5,500 yr BCE to Portugal [48], and at around 4,000 yr BCE to the British Islands and 

Scandinavia [47]. This process radically changed the environment and led to an increase in population 

densities, as well as to new forms of social organization [49]. An important question is whether the 

spread of the Neolithic was due to demic diffusion (dispersal of farming populations), to cultural 

diffusion (incorporation of hunter-gatherers into the farming populations, either via interbreeding 

with farmers and/or becoming farmers by acculturation), or to a combination of both mechanisms. 

These processes would have left different footprints on the genetics of the first farmers. For this 

reason, the study of the Neolithic gene pool may be crucial to achieve a better understanding of the 

process. We deal with this problem in Chapter 5 [9]. 

   In 1971, archaeologist A.J. Ammerman and geneticist L.L. Cavalli-Sforza analyzed the dates of the 

early Neolithic European sites that had been discovered and dated at the time. In this way, they were 

the first to provide a statistically sound estimation of the speed of the spread of the Neolithic in Europe 

[50]. Their result for the observed speed, 𝑐𝑜𝑏𝑠 = (1.0 ± 0.2) km/year [50, 51], should be understood 

as the average spread rate from a presumed origin in Jericho (the Neolithic site in the Near East which 

yielded the highest correlation coefficient, namely 𝑟 = 0.89). Ammerman and Cavalli-Sforza also 

noted regional variations (a slowdown in the Alps and a faster spread along the Mediterranean) [50] 

and later used spatial interpolation techniques to generate isochrone maps of the spread of farming 

in Europe [52]. By comparing the observed rate mentioned above, i.e. (1.0 ± 0.2) km/year [50, 51], 

to a similar value resulting from a reaction-diffusion model due to Fisher (and explained in Sec. 1.2.1 

below), they also postulated that the propagation of the Neolithic could have been due mainly to the 

dispersal of farming populations (demic diffusion) rather than acculturation or interbreeding (cultural 

diffusion) [50, 53]. And, crucially, they suggested that the spread pattern observed from 

archaeological data (i.e., younger Neolithic sites with increasing distance from the Near East) might 

be detected in the genetics of modern human populations, in the form of spatial variations (clines) in 

the frequencies of some alleles (i.e., variations of a gene) with a maximum (or a minimum) in the Near 

East (due to interbreeding with hunter-gatherers) [50, 53]. Note that, whereas Ammerman and 

Cavalli-Sforza proposed that demic diffusion could have been the most important mechanism 

spreading the Neolithic, they also suggested a clear role for cultural diffusion, because in their 

proposal interbreeding between farmers and hunter-gatherers would have led to the formation of 

genetic clines, although they had not been yet observed by then. Some years later, their prediction 

was impressively confirmed by synthetic genetic maps of modern Europeans [54, 55]. We mention 
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that other massive migrations (such as the arrival of modern humans about 50,000 yr BCE) have surely 

had effects on such modern genetic maps (see below), and that other possible mechanisms leading to 

genetic clines have been proposed (see, e.g., Ref. [56]). However, the Neolithic transition is widely 

considered as a relevant cause of the observed modern genetic pattern [57, 58].  

  The Y chromosome is one of the two sex chromosomes (X and Y) found in the cellular nucleus, 

whereas mitochondrial DNA (mtDNA) is located in cellular mitochondria (organelles located outside 

the nucleus). Many studies on human population genetics have analyzed the Y chromosome and 

mtDNA [59]. These two types of DNA are uniparentally inherited (the Y chromosome is present only 

in men and is inherited from the father, whereas mtDNA is present both in men and women and is 

inherited from the mother) [59, 60, 61]. Different migratory behaviors in women and men will lead to 

different mtDNA and Y-chromosome patterns [62]. Although most of the DNA in the Y chromosome 

(Y-DNA) and the mtDNA is transmitted without changes to the next generation, the offspring will often 

inherit the DNA information with some modifications. The individual sequences of Y-DNA and mtDNA 

are known as haplotypes, but similar haplotypes with a common ancestor are usually grouped under 

haplogroups (which are therefore groups of sequences with a common ancestor), which are useful for 

the study of genetic composition of the early Neolithic populations of the genetic effect of the 

Neolithic spread. 

   Since four decades ago, studies on genetic markers of present populations have tried to shed some 

light into the genetic effects of the Neolithic transition [54, 63]. Fifteen years ago, Semino et al. [60] 

studied the Y chromosomes of 1,007 modern Europeans. Their analysis suggested that about 80% of 

the European human gene pool dates back to Paleolithic, and only 20% of European modern DNA can 

be included into the Neolithic package, in agreement with previous mtDNA studies [64, 65] and work 

on so-called classical markers (blood groups, Rh, HLA-B, etc.). Indeed, classical markers suggested that 

the spatial function that accounts for most of the spatial variation of present European genetic 

frequencies (the so-called first principal component (PC)) corresponds to the Neolithic transition, and 

accounts for about 28% of the total variation [54, 55, 66]. It is also very interesting that Semino et al. 

[60] identified as Neolithic markers those with higher correlations with the first PC and found that 

their frequencies are higher for Mediterranean populations than for non-Mediterranean ones. They 

interpreted this as the result of stronger demic diffusion along the Mediterranean than in northern 

Europe, a possibility that has been suggested independently by archaeologists [67, 68, 69, 70]. 

However, the genetics of modern Europeans have been surely affected by subsequent substantial 

population movements (besides Paleolithic and Neolithic range expansions). For example, the well-

known Bronze-age migrations from the Urals that possibly spread the Indo-European languages had 

strong genetic effects [71]. Therefore, it is clear that in order to disentangle quantitatively the effects 

of demic and cultural diffusion in the spread of the Neolithic, it is better to use ancient (rather than 

modern) DNA. However, until recent years it has been very difficult to determine the DNA of ancient 

individuals, due to the degradation of DNA molecules.  

   In year 2012, a study proposed that demic diffusion had a more important effect than cultural 

diffusion on the spread rate of the Neolithic [3]. In contrast, the genetic consensus at the time was 

that cultural diffusion had been more important than demic diffusion [60, 72, 73, 74]. However, that 

proposal [3] was based on purely on archaeological, non-genetic data, and there is no general theory 

showing that the primacy of demic over cultural diffusion concerning the spread rate necessarily 

implies its primacy concerning the genetic pool.  
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   As mentioned three paragraphs above, a mtDNA haplogroup is a group of several sequences (or 

collections of allelels, which are called haplotypes) of mtDNA with a common ancestor. Each individual 

has a single mtDNA haplogroup. Haplogroups usually date back thousands of years, when a mutation 

occured (thus leading to the first individual with the haplogroup considered). Subsequent mutations 

lead to new haplogroups (which are subgroups, or subclades, of the older haplogroup), e.g. A1a and 

A1b are subclades of haplogroup A1.  

   The possibility to analyze ancient DNA has become a reality only during the last 15 years, due 

originally to technological advances in DNA sequencing and, more recently, to the identification of 

some parts of the human body (e.g., the petrous bone in the inner ear) giving excellent DNA yields 

[75]. The first relevant study using ancient DNA was published in year 2005. It detected the N1a 

haplogroup in a surprisingly high proportion (6 of 24 skeletons) of early farmers of the LBK culture in 

Germany, Austria and Hungary [76]. N1a is very rare in Europe at present, so Ref. [76] suggested that 

present Europeans descend from local hunter-gatherers rather than incoming farmers, i.e. that the 

Neolithic spread in Europe had been mainly cultural. However, this conclusion has been ruled out by 

the results of later ancient DNA studies [77], which indicate that the now common mtDNA 

haplogroups H, T, K and J are absent in HGs.  The genetic pool of European hunter-gatherers (HG) 

comprises exclusively U mtDNA haplogroup lineages (U, U4, U5 and U8), which are rare at present in 

Europe [77]. Early farmers from Europe, Syria and Anatolia are characterized by various mtDNA 

haplogroups including N1a, T2, K, J, HV, V, W, and X (also known as the 'Neolithic genetic package' 

[78]).  

   Since year 2010 [79], the study of ancient DNA has gone a step further by performing genome-wide 

studies. This makes it possible to determine not only the haplogroup of, e.g., the mtDNA, but also the 

presence or absence of millions of mutations in the individual considered [79]. Genome-wide studies 

have allowed further inferences on the demic or cultural nature of the Neolithic expansion. For 

example, Mathieson et al. [80] performed a genome-wide study of the largest ancient DNA (aDNA) 

dataset assembled by the time. That database had 230 individuals. Of these, 28 were Anatolian 

Neolithic farmers, and their genome-wide DNA was reported in Ref. [80] for the first time. The results 

clearly support a demic Neolithic expansion, with very little cultural diffusion. Indeed, Mathieson et 

al. [80] estimated that early Neolithic European farmers had a genetic Anatolian component larger 

than 90%, and the rest (below 10%) was identified as hunter-gatherer ancestry. This implies that the 

modern DNA work summarized above [64, 65, 60] had erroneously identified the non-Neolithic 

component as a Paleolithic one, whereas ancient DNA [80, 81, 82] indicates that it must be mainly due 

to post-Neolithic migrations [83, 74, 84, 85]. It also implies that demic diffusion was very important in 

the spread of the Neolithic, as originally proposed by Ammerman and Cavalli-Sforza [50, 53]. Very 

recently, ancient genetics has addressed another very important question, namely whether the first 

farmers that brought agriculture to different regions of Europe were all derived from a single source 

population or from several ones. Genome-wide results indicate that early Neolithic farmers from 

Iberia (Epicardial culture), central Europe (LBK culture), the Balkans and Anatolia [86], as well as those 

from Britain [87], are all closely related. This provides strong support for a single migration from 

Anatolia. 

   For the purposes of this thesis, it is important to stress the following point. In order to determine 

the percentage of farmers involved in cultural transmission, we think that the best approach is to 

consider a single marker that has not been apparently affected by other processes (such as selection, 
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mutation, drift, etc.). In this way, we do not have to introduce any additional unknown parameter 

values related to those other processes. Such a marker will be studied in Chapter 5 [9], where we shall 

also present a model that predicts its percentage in the population as a function of position (i.e., its 

genetic cline). In Chapter 5 we shall show that comparing the predicted cline to the observed one 

makes it possible to estimate the percentage of farmers involved in cultural transmission [9]. In 

contrast, genome-side studies include many markers. As mentioned above, some of them can be 

affected by other processes besides cultural transmission (selection, mutation, drift, etc.). Thus, each 

marker can have a very different cline, depending on the processes that have shaped it. For example, 

drift can drastically reduce or increase the frequency of a marker during the propagation of a 

population front [56]. For this reason, in our opinion genome-wide studies such as that by Mathieson 

et al. [80] cannot be used to explain the shapes of specific genetic markers, neither to determine the 

percentage of farmers involved in cultural diffusion. For this, it seems necessary to consider the cline 

of a marker that has been affected by cultural diffusion, and not by any other effects. We will study 

(in Chapter 5) the spatiotemporal variation on the frequency of a mitochondrial Neolithic marker, 

namely haplogroup K, and evaluate quantitatively the fraction of the Neolithic population involved in 

cultural diffusion. This will be done by comparing the observed ancient cline of haplogroup K to the 

results of a demic-cultural reaction-diffusion model. Previous authors had performed demic-cultural 

reaction-diffusion studies [5, 88, 89, 90, 91, 92], although our equations are different because we use 

cultural transmission theory (see Sec. 1.2.5 below) [93, 94, 3, 95]. Another difference with those earlier 

works is that we compare (in Chapter 5) [9] to ancient rather than to modern DNA data. 

1.2. Previous mathematical models 
This section summarizes previous attempts to mathematically model the three systems studied in this 

thesis. Although all the models have been adapted to better suit the biological application they 

pretend to describe, it is important to emphasize that all of them are reaction-diffusion models based 

on an equation introduced by R. A. Fisher in the 1930s [96]. The subsections below first provide a 

general overview of the initial attempts to improve that original reaction-diffusion equation, and then 

the specific approaches to the three systems we deal with in Chapters 3-5. 

 One equation to rule them all 
For a two-dimensional space (i.e., a surface), the simplest equation describing a system where 

diffusion and reaction processes coexist is 

𝜕𝑝

𝜕𝑡
= 𝐷 (

𝜕2𝑝

𝜕𝑥2
+
𝜕2𝑝

𝜕𝑦2
) + 𝐹(𝑝). (1.1) 

Below we give a derivation of this equation. In biological systems, 𝑝 = 𝑝(𝑥, 𝑦, 𝑡) is the population 

density (number of individuals per unit area at position (𝑥, 𝑦) and time time 𝑡) of the single population 

present in this model, 𝐷 is its diffusion coefficient, and the so-called growth function 𝐹(𝑝) includes 

the effect of net reproduction (births and deaths). The same equation can be applied to physical and 

chemical systems (in the latter case, 𝑝(𝑥, 𝑦, 𝑡) is the concentration of a chemical species, and 𝐹(𝑝) 

includes the effect of chemical reactions).  In general, the diffusion coefficient can be written as 𝐷 =
〈∆2〉

2𝑛𝜏
, where 〈∆2〉 is the mean squared displacement, 𝜏 is the time interval between two successive 
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jumps of a particle (or individual), and 𝑛 is the number of spatial dimensions [97, pp. 78-79]. Therefore, 

in the special case of a two-dimensional space (𝑛 = 2), as in most of this thesis, the diffusion 

coefficient is given by 𝐷 =
〈∆2〉

4𝜏
 (a proof of this equation is given in Sec. 1.2.2 below) [97, 98]. Equation 

(1.1) is called the Kolmogorov-Petrovsky-Piskounov (KPP) equation [99], and is classified as a parabolic 

reaction-diffusion (PRD) equation. This equation describes the variation in time on the population 

density 𝑝 (left-hand side) because of a diffusion process (first term on the right-hand side), 

characterized the diffusion coefficient 𝐷, and a reaction process characterized by the function 𝐹(𝑝). 

If 𝐹(𝑝) = 0, there is no reaction process and Eq. (1.1) corresponds to the so-called Fickian diffusion. 

This kind of diffusion is the simplest one, and assumes a random walk for individuals, in the sense that 

there is no preferential direction of movement [100, 101]. 

   For the sake of completeness, let us include here a well-known derivation of Eq. (1.1) for the simplest 

possible case, namely one spatial dimension (i.e., 𝑛 = 1) and a single jump distance [102, pp. 17-21] 

(a more complicated derivation, valid for 𝑛 = 2 and several jump distances will be provided laer on, 

in Sec. 1.2.2). Consider a physical (or biological) one-dimensional system (e.g., a narrow wire or a 

population of birds living along a coast) such that all particles or individuals jump a distance ±∆𝑥 every 

time interval 𝜏. Suppose that we know the number of particles at two very close points along the 

system at time 𝑡, namely 𝑃(𝑥) and 𝑃(𝑥 + ∆𝑥). If the particles move randomly, after the time interval 

𝜏 we can assume that half the particles initially at 𝑥 will have moved across a transversal area 𝐴 

(located between the two points) from left to right, and half the particles initially at 𝑥 + ∆𝑥 will have 

moved from right to left across the same unit area 𝐴. Therefore, the net flux of particles along the 𝑥 

axis and across the unit area 𝐴 (i.e., the number of particles crossing 𝐴 per unit area and unit time) 

can be written as 

𝐽𝑥 = −
1

2

[𝑃(𝑥 + ∆𝑥) − 𝑃(𝑥)]

𝐴 𝜏
. (1.2) 

   As mentioned above, the diffusion coefficient in one dimension is defined as  𝐷 =
∆𝑥2

2𝜏
, so we can 

multiply the previous equation by Δ𝑥2 and use this equation for 𝐷. Then, since the number of particles 

divided by the volume (𝐴 Δ𝑥) is the number density of particles, 𝑝 = 𝑃/(𝐴 Δ𝑥), the flux Eq. (1.2) can 

be rewritten as 

𝐽𝑥 = −𝐷
𝑝(𝑥 + Δ𝑥) − 𝑝(𝑥)

Δ𝑥
. (1.3) 

   In the limit Δ𝑥 → 0, the right-hand side is a partial derivative in space, thus we obtain  

𝐽𝑥 = −𝐷
𝜕𝑝

𝜕𝑥
. (1.4) 

   This is called Fick’s law and states that the net flux is proportional to the gradient of the 

concentration. The derivation of Eq. (1.1) for the special case 𝐹(𝑝) = 0 follows from combining Eq. 

(1.4) with the law of conservation of mass (or of particle number). The latter is formalized as follows. 

Consider a box of volume 𝐴 Δ𝑥 (see Fig. 1.3). Obviously, 𝐽𝑥(𝑥)𝐴𝜏 particles will enter the box from the 

left and 𝐽𝑥(𝑥 + Δ𝑥)𝐴𝜏 will leave it to the right during the time interval. If particles are neither created 

nor destroyed, the number of particles per unit volume (i.e., the density of particles) in that box will 

increase at rate 



12 

 

[𝑝(𝑡 + 𝜏) − 𝑝(𝑡)]

𝜏
= −

1

𝜏
[
𝐽𝑥(𝑥 + Δ𝑥)𝐴𝜏 − 𝐽𝑥(𝑥)𝐴𝜏

𝐴 Δ𝑥
] = −

[𝐽𝑥(𝑥 + Δ𝑥) − 𝐽𝑥(𝑥)]

Δ𝑥
. (1.5) 

   In the limit Δ𝑥 → 0 and 𝑇 → 0, the first and last quotients are partial derivatives, so we obtain 

𝜕𝑝

𝜕𝑡
= −

𝜕𝐽𝑥
𝜕𝑥
. (1.6) 

   Using Fick's law, Eq. (1.4), into this equation, we finally obtain 

𝜕𝑝

𝜕𝑡
= 𝐷

𝜕2𝑝

𝜕𝑥2
. (1.7) 

which is Eq. (1.1) for the special case of no reaction (i.e. 𝐹(𝑝) = 0), one spatial dimension (i.e., 𝑛 = 1) 

and a single jump distance (Δ𝑥). It is easy to generalize the previous derivation to more dimensions 

and jump distances (see, e.g., Ref. [103]). A derivation for the case most relevant to this thesis (𝑛 = 2 

and several jump distances) is given in Sec. 1.2.2 below. 

 

Figure 1.3 The net flux passing by the faces of a thin box of volume 𝑨 𝚫𝒙. The surfaces normal to the 𝒙 axis 
have area 𝑨. 

 

   The last term in Eq. (1.1), i.e. 𝐹(𝑝), is simply added to take care of the population density change 

due to net reproduction (or to the species concentration change due to chemical reactions, in chemical 

systems).  In 1937, the same year of publication of the KPP equation (1.1) [99], Fisher wrote a paper 

on the spread of advantageous genes in which he proposed a logistic function for the growth or 

'reaction' term, namely [96] 

𝐹(𝑝) = 𝑎𝑝 (1 −
𝑝

𝑝𝑚𝑎𝑥
), (1.8) 

were 𝑝𝑚𝑎𝑥 is called the saturation density. Equation (1.8) is used for the following reason. Consider 

homogeneous systems, i.e., such that 𝑝 does not depend on the spatial coordinates 𝑥, 𝑦. Then, there 

is no diffusion (because Eq. (1.4) yields 𝐽𝑥 = 0) and Eq. (1.1) becomes simply  
𝜕𝑝

𝜕𝑡
= 𝐹(𝑝). For logistic 

growth, this reads 
𝜕𝑝

𝜕𝑡
= 𝑎𝑝 (1 −

𝑝

𝑝𝑚𝑎𝑥
) and, if the population density is initially small (𝑝 ≈ 0), we have 

𝜕𝑝

𝜕𝑡
≈ 𝑎𝑝 at early times. This implies an initial exponential growth (with rate 𝑎). However, at some point 
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𝑝 will become large enough so that the negative term (−
𝑝

𝑝𝑚𝑎𝑥
) will no longer be negligible. Then the 

population density increases per unit time (
𝜕𝑝

𝜕𝑡
) will become gradually slower, until 𝑝 = 𝑝𝑚𝑎𝑥. At this 

point, obviously 
𝜕𝑝

𝜕𝑡
= 0 and the population number does not increase further. Thus, we have a self-

limiting population growth, and we can interpret 𝑝𝑚𝑎𝑥 as the maximum possible value of the 

population density is (therefore it is called the saturation density or carrying capacity). This scenario 

makes biological sense, because populations cannot become arbitrarily large (due to limited nutrients, 

space, etc.). Indeed, Eq. (1.8) is widely used in mathematical biology [104], because it is realistic for 

many microbiological [105] and ecological [106] systems. Using Eq. (1.8) into Eq. (1.1) yields the well-

known Fisher equation [96], 

𝜕𝑝

𝜕𝑡
= 𝐷 (

𝜕2𝑝

𝜕𝑥2
+
𝜕2𝑝

𝜕𝑦2
) + 𝑎𝑝 (1 −

𝑝

𝑝𝑚𝑎𝑥
). (1.9) 

   A travelling wave (also called front or wave of advance) is, for the purposes of this subsection, a 

solution to a reaction-diffusion equation (e.g., Eq. (1.9)) with constant shape and speed, that describes 

a population invading empty space from some initial region. For Eq. (1.9), Fisher derived the following 

equation for the speed c of travelling waves 

𝑐 = 2√𝑎𝐷, (1.10) 

which is the well-known Fisher propagation speed (a detailed derivation of Eq. (1.10) from Eq. (1.9) is 

included in Sec. 2.3.1 in this thesis). This was the first mathematical approach to the spreading of 

biological populations, and the starting framework of most subsequent modelling approaches. For the 

purposes of this thesis, we have found it more useful to present the results due to Fisher considering 

that p is the population density (whereas Fisher considered it to be the frequency of a mutant gene). 

In fact, some years later (in 1951) J. G. Skellam [107] was the first (in a paper devoted to biological 

invasions) to consider that p is the population density, although he considered that the population 

growth was Malthusian, namely  

𝜕𝑝

𝜕𝑡
= 𝐷 (

𝜕2𝑝

𝜕𝑥2
+
𝜕2𝑝

𝜕𝑦2
) + 𝑎𝑝. (1.11) 

   This is known as the Skellam equation. Unlike that due to Fisher (Eq. (1.9)), Eq. (1.11) does not 

contain the last, non-linear term. It is easy to see that Eq. (1.11) corresponds to unbounded population 

growth, i.e. that the population density can become arbitrarily large, which is not biologically realistic. 

In contrast to the Fisher equation (1.9), Eq. (1.11) can be solved explicitly. For Eq. (1.9), the invading 

species advances at a constant speed given again by Eq. (1.10) [108].  

   Equations similar to Eq. (1.1) can be also applied to the spread of virus infections. As mentioned 

above (Sec. 1.1.1), A. L. Koch made the first attempt to describe the growth of viral plaques 

quantitatively [13]. Koch studied the phage T4 growing on E. coli and noticed that the system behaves 

like that of Fig. 1.2 (which describes the virus lytic cycle). Therefore, phage reproduction in a plaque 

requires replication of viruses inside the host cell during a time interval 𝜏 before the lysis of the host 

cell, leading to the subsequent then virus dispersal (with diffusion coefficient 𝐷, dependent on the 

virus and the medium) and adsorption to new host cells. From heuristic arguments, Koch proposed 

that, if the adsorption process is fast enough, the speed of plaque growth should be approximately 
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𝑐 ∝ √𝐷 𝜏⁄ . This conclusion can be also reached using dimensional analysis, but at present it is known 

that, unfortunately, this approximation breaks down because in practice adsorption is not fast 

enough. In 1992, Yin and McCaskill developed a set of reaction-diffusion equations capable of 

describing in a quantitative way the spatial dynamics of a growing plaque [14]. They used three 

equations because they were dealing with three interacting species (viruses, healthy bacteria and 

infected bacteria), but these equations were based on the KPP model Eq. (1.1). Their model will be 

described in Sec. 1.2.3. 

  The Fisher equation (1.9) has important applications in archaeology and population genetics. During 

his postdoctoral work on bacterial genetics with R. A. Fisher in Cambridge (1949-51), L. L. Cavalli-Sforza 

became aware of the paper published by Fisher in 1937 [109]. Two decades later, Cavalli-Sforza was 

working on human genetics and became interested in the effects of prehistoric population range 

expansions. This led him to analyze the dates of early Neolithic sites in Europe with archaeologist A. J. 

Ammerman. As mentioned above (Sec. 1.1.3), in 1971 they obtained the first statistically sound 

estimation of the speed of the spread of the Neolithic in Europe, 𝑐𝑜𝑏𝑠 = (1.0 ± 0.2) km/year [50, 51]. 

Later Ammerman and Cavalli-Sforza suggested that Fisher’s equation (1.9) might be adequate to 

describe the Neolithic spread across Europe [53]. Here the idea is that, although individual migratory 

movements should obey particular motivations (locations of water, fertile land, etc.), such individual 

preferences will be averaged if we consider many individuals and large geographical areas. Therefore, 

the modelling at large scales in space and time can arguably be based on reaction-diffusion equations 

with Fickian diffusion. Later Ammerman and Cavalli-Sforza [52] estimated the diffusion coefficient 𝐷 

and initial growth rate 𝑎 (using data from etnhographic obervations) and calculated the farming 

spread rate using Fisher’s speed (1.10). In fact, if using realistic values of 𝐷 and 𝑎 for preindustrial 

populations, this theoretical Neolithic front propagation speed was somehow faster than the observed 

value, mentioned above, namely 𝑐𝑜𝑏𝑠 = (1.0 ± 0.2) km/year [50, 51]. This problem was solved by 

taking into account time-delay effects [51], which we review below. 

 Time delay effects 
   An important modification to Fisher’s equation, that we shall use in the models in this thesis, was 

the introduction of a delay time [51]. As seen above (Sec. 1.1.1), in virus infections there is an 'eclipse' 

time between the infection of a cell and the release of the new progeny, during which neither the 

original virus nor the new generation diffuse. Rather similarly, when considering human populations 

usually the children remain with their parents until adulthood, when they move from their home to 

create a new family. Therefore, in both cases there is a time delay between the diffusion (or migration) 

of the parent and the offspring generations, which will slow down the speed of the traveling waves. 

For this reason, Fort and Méndez [51] introduced a time delay into the mathematical description of 

both systems. In mathematical terms, this corresponds to using a hyperbolic reaction-diffusion (HRD) 

equation, instead of the classical PRD equation (Sec. 1.2.1) that leads to Fickian diffusion and the Fisher 

equation (1.9). When considering a single population, an HRD equation can be derived as follows [51]. 

   Let 𝑝(𝑥, 𝑦, 𝑡) stand for the population density at location (𝑥, 𝑦) and time 𝑡, and 𝜏 for the time delay 

between two consecutive migration movements (usually one generation) [51]. If we assume that the 

effects of diffusion and population growth are additive (as done already below Eq. (1.7) to derive Eq. 

(1.1)), between times 𝑡 and 𝑡 + 𝜏 the processes of diffusion and reaction will cause the following 

change in the population density in area 𝑑𝑠 = 𝑑𝑥 𝑑𝑦  
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[𝑝(𝑥, 𝑦, 𝑡 + 𝜏) − 𝑝(𝑥, 𝑦, 𝑡)]𝑑𝑠
= [𝑝(𝑥, 𝑦, 𝑡 + 𝜏) − 𝑝(𝑥, 𝑦, 𝑡)]𝑚𝑑𝑠 + [𝑝(𝑥, 𝑦, 𝑡 + 𝜏) − 𝑝(𝑥, 𝑦, 𝑡)]𝑔𝑑𝑠, 

(1.12) 

where the subscripts 𝑚 and 𝑔 stand for migration and population growth processes, respectively. Let 

∆𝑥 and ∆𝑦 stand for the spatial variations in the coordinates of a given random walk during 𝜏 (i.e., the 

distances between, e.g., the birthplaces of a parent and one of her/his children). Then the migration 

term in Eq. (1.12) can be written as 

[𝑝(𝑥, 𝑦, 𝑡 + 𝜏) − 𝑝(𝑥, 𝑦, 𝑡)]𝑚𝑑𝑠

= 𝑑𝑠∫ ∫ 𝑝(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡) 𝜙(∆𝑥, ∆𝑦) 𝑑∆𝑥 𝑑∆𝑦
∞

−∞

∞

−∞

− 𝑑𝑠 𝑝(𝑥, 𝑦, 𝑡), 
(1.13) 

where 𝜙(∆𝑥, ∆𝑦) is the dispersion kernel, i.e. the probability per unit area that the migration distances 

take the values (∆𝑥, ∆𝑦). Obviously, the total probability (computed over all possible values of 

(∆𝑥, ∆𝑦)) must add up to one, so this function satisfies that ∫ ∫ 𝜙(∆𝑥, ∆𝑦)𝑑∆𝑥 𝑑∆𝑦
∞

−∞

∞

−∞
= 1. We 

assume for simplicity that the low-scale migration is isotropic [98], i.e. 𝜙(∆𝑥, ∆𝑦) = 𝜙(−∆𝑥, ∆𝑦) =

𝜙(∆𝑥,−∆𝑦) = 𝜙(∆𝑦, ∆𝑥). If the increments of time and space are small enough, i.e. 𝜏 ≪ 𝑡, ∆𝑥 ≪ 𝑥 

and ∆𝑦 ≪ 𝑦, we may Taylor-expand the new population density up to second order as 

𝑝(𝑥 + ∆𝑥, 𝑦 + ∆𝑦, 𝑡)

= 𝑝(𝑥, 𝑦, 𝑡) +
𝜕𝑝

𝜕𝑥
∆𝑥 +

𝜕𝑝

𝜕𝑦
∆𝑦 +

𝜕2𝑝

𝜕𝑥2
 
∆𝑥2

2
+
𝜕2𝑝

𝜕𝑦2
 
∆𝑦2

2
+ 2

𝜕2𝑝

𝜕𝑥𝜕𝑦
 
∆𝑥∆𝑦

2
. 

(1.14) 

 

   Since, as mentioned above, we assume that migration is isotropic, we have that 𝜙(∆𝑥, ∆𝑦) =

𝜙(−∆𝑥, ∆𝑦) = 𝜙(∆𝑥,−∆𝑦) and therefore, when using Eq. (1.14) into (1.13), linear and cross-terms 

are suppressed and only the second space derivatives remain, i.e. 
𝜕2𝑝

𝜕𝑥2
∫ ∫ 𝜙(∆𝑥, ∆𝑦)

∆𝑥2

2
 𝑑∆𝑥 𝑑∆𝑦

∞

−∞

∞

−∞
 and  

𝜕2𝑝

𝜕𝑦2
∫ ∫ 𝜙(∆𝑥, ∆𝑦)

∆𝑦2

2
 𝑑∆𝑥 𝑑∆𝑦

∞

−∞

∞

−∞
.  

   The assumption that migration is isotropic also implies that 𝜙(∆𝑥, ∆𝑦) = 𝜙(∆𝑦, ∆𝑥), thus 

∫ ∫ 𝜙(∆𝑥, ∆𝑦)
∆𝑥2

2
 𝑑∆𝑥 𝑑∆𝑦 = ∫ ∫ 𝜙(∆𝑥, ∆𝑦)

∆𝑦2

2
 𝑑∆𝑥 𝑑∆𝑦 =

∞

−∞
∫ ∫ 𝜙(∆𝑥, ∆𝑦)

∆2

4
 𝑑∆𝑥 𝑑∆𝑦

∞

−∞

∞

−∞

∞

−∞

∞

−∞

∞

−∞
, where 

∆= √∆𝑥2 + ∆𝑦2, and these two integrals can be written simply as 𝐷 · 𝜏 if we apply that  

𝐷 =
1

4𝜏
∫ ∫ 𝜙(∆𝑥, ∆𝑦)∆2 𝑑∆𝑥 𝑑∆𝑦

∞

−∞

∞

−∞
 is the diffusion coefficient in 2-dimensional space. This will 

lead to Eq. (1.16), which reduces (for 𝜏 → 0) to Eq. (1.1). This proofs that 𝐷 =
〈∆2〉

4𝜏
 in 2 dimensions, as 

mentioned below Eq. (1.1). 

   On the other hand, the population growth term in Eq. (1.12) can be Taylor expanded as 

[𝑝(𝑥, 𝑦, 𝑡 + 𝜏) − 𝑝(𝑥, 𝑦, 𝑡)]𝑔𝑑𝑠 = (𝜏𝐹(𝑥, 𝑦, 𝑡) +
𝜏2

2

𝜕𝐹(𝑥, 𝑦, 𝑡)

𝜕𝑡
+ ⋯)𝑑𝑠, (1.15) 

   where 𝐹(𝑥, 𝑦, 𝑡) is the change in the population number due to population growth processes.  

   If we now introduce these results into Eq. (1.12), and Taylor-expand to second order the left-hand 

side of the equation, we finally achieve the HRD equation 

𝜕𝑝

𝜕𝑡
+
𝜏

2

𝜕2𝑝

𝜕𝑡2
= 𝐷 (

𝜕2𝑝

𝜕𝑥2
+
𝜕2𝑝

𝜕𝑦2
) + 𝐹(𝑥, 𝑦, 𝑡) +

𝜏2

2

𝜕𝐹(𝑥, 𝑦, 𝑡)

𝜕𝑡
. (1.16) 
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This equation was first applied to describe the range expansion of the European Neolithic [51], and 

later to those of Paleolithic populations [110, 111], non-human species [112] and virus infections [4, 

21] (in the latter case it must be supplemented with additional equations, as we shall explain in the 

next subsection).  

   If one assumes a logistic function for the reaction or population growth term, Eq. (1.8), as done 

above to obtain the Fisher equation, Eq. (1.16) leads to the following expression for the front speed 

[51] 

𝑐𝐻𝑅𝐷 =
2√𝑎𝐷

1 + 𝑎
𝜏
2

   . (1.17) 

If 𝜏 = 0, from this equation we recover the Fisher propagation speed, Eq. (1.10), and the HRD Eq. 

(1.16) reduces to the PRD Eq. (1.1), as it also should. For 𝜏 > 0, the predicted front speed is obviously 

lower than the one predicted by using the Fisher equation, Eq. (1.10). This is reasonable, because the 

role of 𝜏 is to introduce a time delay in the diffusion process, as explained above.  

   Fort and Méndez applied the time-delayed speed (1.17) to obtain a spread rate that agrees better 

with that observed for the Neolithic in Europe than the speed due to Fisher (1.10) [51]. Similar results 

were obtained for Paleolithic populations [110, 111] and non-human species [112]. The time-delayed 

approach also yields better fits to data from in vitro experiments of growing virus plaques [4] than 

previous, non-delayed models [14]. We next review the latter application. 

 The plaque growth problem 
Let us consider the first of the three problems that we want to address, namely the plaque growth of 

viral focal infections. In this subsection we review the previous mathematical models that are 

necessary to understand our paper on this topic (which is reproduced in Chapter 3).  

   The dynamics of a virus-host cell system is complex, due to intra- and extracellular interactions 

between invading virus particles and host cells. Nevertheless, the models summarized below try to 

reduce the complexity of the equations, and at the same time to account for the experimental speeds.  

   As mentioned in Secs. 1.1.1 and 1.2.1, Yin and McCaskill developed in 1992 the first set of reaction-

diffusion equations capable of describing in a quantitative way the spatial dynamics of a system 

composed by viruses (𝑉), healthy host bacteria (𝐵) and infected cells (𝐼) [14]. They followed previous 

similar work on non-viral systems [113, 114]. The relevant interactions in this system can be 

summarized by the reactions 

𝑉 + 𝐵
 𝑘1 
→ 𝐼

 𝑘2 
→ 𝑌 ∙ 𝑉, (1.18) 

where 𝑘1 is the rate constant of virus adsorption into uninfected cells, 𝑘2 is the death rate of infected 

cells, and 𝑌 is the yield or burst size (𝑌 is defined as the number of new viruses per lysed cell or, 

equivalently, per initial virus). Note that here we are dealing with three populations (𝑉, 𝐵 and 𝐼), 

whereas in the simpler systems considered in the previous section we had only one. For this reason, 
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it is not possible to find an exact, explicit speed similar to Eq. (1.17) for virus infections. However, 

implicit equations for the speed can be easily derived, as we next explain. 

   Because plaques are usually radially symmetric, Yin and McCaskill [14] proposed a set of three 

reaction-diffusion equations in polar coordinates. We use t to denote the time, r the distance from 

the inoculation point (or, equivalently, the center of the region where viruses are localized at 𝑡 = 0), 

and square brackets to denote concentrations. Then, the Yin-McCaskill model is [14] 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) − 𝑘2[𝐼](𝑟, 𝑡), (1.19) 

𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
= 𝐷

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑟2
− 𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) + 𝑌𝑘2[𝐼](𝑟, 𝑡), (1.20) 

𝜕[𝐵](𝑟, 𝑡)

𝜕𝑡
= −𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡). (1.21) 

   Because in the experiments they wanted to describe the host bacteria are immobilized in agar, only 

the equation describing the virus dynamics (1.20) includes a diffusive term (i.e., that depending on the 

diffusion coefficient 𝐷 of viruses), whereas Eqs. (1.19) and (1.21) only include the terms related to the 

reactions (1.18). Note that Eq. (1.20) is simply a special case of Eq. (1.1).  

   In agreement with the first reaction in Eq. (1.18), the terms containing 𝑘1 in Eqs. (1.19)-(1.21) imply 

that the concentration of infected bacteria [𝐼] increases as a result of virus infection (positive term in 

Eq. (1.19)), while the concentrations of free viruses [𝑉] and healthy bacteria [𝐵] decrease (negative 

terms in Eqs. (1.20)-(1.21)). On the other hand, the lysis process (second reaction in Eq. (1.18)) causes 

a decrease in the concentration of infected cells (last term in Eq. (1.19)) and an increase of free viruses 

(last term in Eq. (1.20)), both of them with rate 𝑘2.  

   Yin and McCaskill [14] considered the boundary conditions 
𝜕[𝑉](𝑟,𝑡)

𝜕𝑟
= 0 at 𝑟 = 0 (vanishing flux), and 

[𝑉] = [𝐼] = 0 and [𝐵] = 𝐵0 as 𝑟 → ∞, and initial conditions such that all bacteria are infected within 

a small disk centered at 𝑟 = 0. This makes it possible to obtain an implicit and rather complicated 

expression for the speed. However, it was noted that, when all parameter values are estimated from 

independent experiments (rather than adjusting them as in the Ref. [14]), the speeds from the model 

are several times faster than the observed ones [14, 19]. Later it was suggested that the eclipse or 

delay time (i.e. the time interval during which a virus is inside a cell and thus does not move) could 

affect the speed of the infection front, slowing down its spread [4]. For this reason, Fort and Méndez 

replaced Eq. (1.20) by the time-delayed one Eq. (1.16) to describe the dynamics of virus infections, 

obtaining a good fit between model and observations without fitting any parameter values [4]. After 

several subsequent contributions on the effect of the delay time on virus infection fronts [115, 116], 

Amor and Fort improved the previous approaches by using the following reaction-diffusion set of 

equations [21] 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) − 𝑘2[𝐼](𝑟, 𝑡) (1 −

[𝐼](𝑟, 𝑡)

𝐼𝑚𝑎𝑥
), (1.22) 
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𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
+
𝜏

2

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑡2
= 𝐷

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑟2
+ 𝐹(𝑟, 𝑡) +

𝜏

2

𝜕[𝐹](𝑟, 𝑡)

𝜕𝑡
|
𝑔

, (1.23) 

𝜕[𝐵](𝑟, 𝑡)

𝜕𝑡
= −𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡), (1.24) 

where the virus growth function 𝐹(𝑟, 𝑡) accounts for all reactive processes, i.e. viruses’ adsorption 

into susceptible cells at rate 𝑘1 (which decreases the density of free viruses) and the release of 𝑌 of 

viruses at rate 𝑘2 when an infected cell dies (which increases the number of viruses), 

𝐹(𝑟, 𝑡) ≡
𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
|
𝑔

= −𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) + 𝑘2𝑌[𝐼](𝑟, 𝑡) (1 −
[𝐼](𝑟, 𝑡)

𝐼𝑚𝑎𝑥
). (1.25) 

   Note that the last parentheses in Eqs. (1.22) and (1.25) is a logistic term [such as Eq. (1.8)], and that 

it does not appear in Eq. (1.19). This logistic term was introduced [4] because it makes it possible to 

obtain agreement with experiments for homogeneous systems without adsorption, 𝑘1 = 0  (these are 

the so-called one-step experiments). In this situation, we obtain from Eqs. (1.22)-(1.24)  
𝑑[𝑉]

𝑑𝑡
=

−𝑌
𝑑[𝐼]

𝑑𝑡
= 𝑘2𝑌[𝐼] (1 −

[𝐼]

𝐼𝑚𝑎𝑥
), and the solution to this equation under the appropriate boundary 

conditions (𝑙𝑖𝑚[𝐼]→𝐼𝑚𝑎𝑥[𝑉] = 0 and 𝑙𝑖𝑚[𝐼]→0[𝑉] = [𝑉]𝑚𝑎𝑥) is [𝑉] =
𝑌 𝐼𝑚𝑎𝑥

1+𝑐1exp (−𝑘2𝑡)
 , where 𝑐1 is an 

integration constant [4]. This dependence of [𝑉] on time is consistent with the one-step data, in which 

[𝑉] remains fairly constant for some time, then increases steeply, and finally saturates (for details see 

Fig. 1 in Ref. [4]). Thus, the use of a logistic term is an improvement over Eq. (1.19), because Eq. (1.19) 

predicts an exponential dependence of [𝑉] on time and this is clearly inconsistent with those 

experiments [4]. In spite of this improvement, we shall explain a limitation of this logistic description 

and propose a more appropriate model in Chapter 3 [7].  

   In Eq. (1.23), which is the same as Eq. (1.16), the symbol … |𝑔 indicates that time derivatives of 𝐹 are 

related exclusively to the reactive process (and not to the diffusive one) [117]. This point, namely the 

proper computation of the terms with the symbol … |𝑔 in Eq. (1.23), is the main theoretical 

improvement of the model by Amor and Fort [21] relative the original time-delayed model [4]. Note 

that the Yin-McCaskill Eqs. (1.19)-(1.21) are not time-delayed, i.e. they do not include the first and last 

terms that appear in Eq. (1.23) (terms of this kind were first included in virus infections in Ref. [4], and 

we stress that they are the same as the corresponding ones in Eq. (1.16)). The time derivative of the 

reactive function 𝐹 (which appears in Eq. (1.23)) is 

𝜏

2

𝜕𝐹(𝑟, 𝑡)

𝜕𝑡
|
𝑔

= −
𝜏

2
𝑘1
𝜕{[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡)}

𝜕𝑡
|
𝑔

+
𝜏

2
𝑘2𝑌

𝜕

𝜕𝑡
[[𝐼](𝑟, 𝑡) (1 −

[𝐼](𝑟, 𝑡)

𝐼𝑚𝑎𝑥
)]

= −
𝜏

2
𝑘1[𝑉](𝑟, 𝑡)

𝜕[𝐵](𝑟, 𝑡)

𝜕𝑡
−
𝜏

2
𝑘1[𝐵](𝑟, 𝑡)𝐹(𝑟, 𝑡)

+
𝜏

2
𝑘2𝑌

𝜕

𝜕𝑡
[[𝐼](𝑟, 𝑡) (1 −

[𝐼](𝑟, 𝑡)

𝐼𝑚𝑎𝑥
)]. 

(1.26) 

  Amor and Fort [21] obtained an analytical, implicit solution for the speed, and checked it by 
integrating numerically the model (1.22)-(1.26) using parameters values obtained from independent 
experiments [21]. The simulations agree with the observed data, and the mathematical description is 
sounder than that in the first model by Yin and McCaskill [14]. Still, as mentioned above, the use of a 
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logistic function in Eq. (1.22) is questionable from a biological point of view. We shall explain this 
problem in Chapter 3, and use this mathematical model as our starting point to develop a biologically 
sounder model. Amor and Fort were also the first to apply the time-delayed approach to VSV 
infections [21] (previous work had used experimental data for the T7-E. Coli system). VSV is the virus 
that we have studied for its oncolytic effect in Chapter 4. 

 Oncolytic treatment of cancer tumors 
The second problem addressed in this thesis is related to virus treatment of cancer tumors. Due to 

advances in genetic engineering, medical interest in oncolytic virotherapy has been renewed recently 

[118, 119, 120, 30, 31]. In turn, this has stimulated novel mathematical models to describe oncolytic 

processes [40, 46, 121]. Full understanding of virus-tumor dynamics is still far away from us, partly 

because of the complexity of the genetics of the tumors themselves [122, 123, 124]. Nonetheless, 

mathematical and computational modelling, as well as statistical analysis of macroscopic data, have 

contributed to improve our understanding of some aspects of tumor [125, 34] and oncolytic [126, 127, 

128, 45, 121] dynamics. In spite of the fact that we do not understand the full complexity of the 

process, mathematical and computational modelling can describe important processes affecting 

treatments with oncolytic viruses. 

   Many authors have developed mathematical models to describe of oncolytic systems (see Sec. 0). 

Because we will analyze front speeds (Chapter 4), we are especially interested in spatial models [41, 

42, 43, 44, 45, 46]. In this subsection we introduce the model by Wodarz et al. [45, 46], and later we 

will improve it (Chapter 4). In Ref. [45], Wodarz et al. compared the results from a mathematical 

model, based on a set of reaction-diffusion partial differential equations (PDEs), as well as those from 

an agent-based computational model, to the results obtained from in vitro experiments performed 

with a newly constructed virus. Here we shall focus on their PDE model. The main advantage of PDE 

models (as compared to agent-based models) is that they usually allow to find front speeds as a 

function of parameter values fast (compared, e.g., to agent-based models, in which it is necessary to 

repeat many simulations, which takes substantially more computing time). In their model, Wodarz et 

al. [45] consider the dynamics of only two populations, uninfected tumoral cells 𝑇 and infected 

tumoral cells 𝐼. In order to derive their model, consider first the following two equations 

𝜕[𝑇](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝑇

𝜕2[𝑇](𝑟, 𝑡)

𝜕𝑟2
+ 𝑎[𝑇](𝑟, 𝑡) {1 −

[𝐼](𝑟, 𝑡) + [𝑇](𝑟, 𝑡)

𝑘
} − 𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡), (1.27) 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝐼

𝜕2[𝐼](𝑟, 𝑡)

𝜕𝑟2
− 𝑘2[𝐼](𝑟, 𝑡) + 𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡). (1.28) 

where, as in Eqs. (1.19) and (1.21), parameters 𝑘1 and 𝑘2 are the rate of adsorption of viruses into 

uninfected tumor cells and the rate of death for infected tumor cells, respectively. Parameter 𝑎 is the 

proliferation rate of the uninfected tumor cells 𝑇, and 𝑘 is the local carrying capacity of tumor (infected 

and non-infected) cells. Thus, the term containing the symbols { } in Eq. (1.27) is just an example of 

logistic growth, Eq. (1.8). Note that in Eq. (1.21) this term did not appear because at the beginning of 

that experiment the cell population is already saturated all over that system, and the reproduction of 

cells is very slow compared to their death due to infection. Similarly, in the tumor-virus system 

considered in this subsection, if most of the cells infected by the virus die before reproducing, a term 

describing the proliferation rate of infected cells (analogous to the second term in the right-hand side 
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of Eq. (1.27)) can be neglected in Eq. (1.28), as done by Wodarz et al. [45]. The first term on the right-

hand side of both equations describes the diffusion of the 𝑇 and 𝐼 cells, which in general are ruled by 

their own diffusion coefficients, 𝐷𝑇 and 𝐷𝐼, respectively (recall than in Eqs. (1.19) and (1.20) there are 

no diffusive terms because the cells are immobilized by agar in those experiments). Note that in Eqs. 

(1.27)-(1.28) we have three concentrations ([𝑇], [𝐼] and [𝑉]), so a third equation for the virus dynamics 

(e.g., Eq. (1.20) with [𝐵] replaced by [𝑇]) is necessary to find the evolution of [𝑇], [𝐼] and [𝑉] in space 

and time. However, as explained in detail below, Wodarz et al. [45] considered the dynamics of only 

two concentrations. 

   Wodarz et al. [45] took Eqs. (1.27)-(1.28) from a previous homogeneous model (i.e., 
𝜕2[… ]

𝜕𝑟2
= 0) by 

Nowak and May [35], which had originally three equations with three variables (viruses 𝑉, susceptible 

cells 𝑇 and infected cells 𝐼), similarly to Eqs. (1.19)-(1.21). Nowak and May [35] wrote down Eq. (1.20) 

including a rate 𝑘3 of decay for free viruses (natural death) in homogeneous systems (
𝜕2[𝑉](𝑟,𝑡)

𝜕𝑟2
= 0) 

as   

𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
= 𝑌𝑘2[𝐼](𝑟, 𝑡)− 𝑘3 [𝑉](𝑟, 𝑡). (1.29) 

Nowak and May [35] neglected the term −𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) in Eq. (1.20), because in some systems 

this turns out to be a good approximation. Usually we include this term in our models (but for the T7-

E. Coli system it can be neglected, and the results become simpler, as discussed in Sec. 3.5 in this 

thesis).  

   There are two problems with the model due to Wodarz et al. [45]. The first problem is that, following 

Nowak and May [35] , they assume that free viruses are approximately in a steady state, i.e. 
𝜕[𝑉]

𝜕𝑡
≈ 0 

and therefore Eq. (1.29) yields [𝑉](𝑟, 𝑡) ≈
𝑘2𝑌

𝑘3
[𝐼](𝑟, 𝑡) [35, 45]. Wodarz et al. used [45] this special 

relationship between [𝑉] and [𝐼] to write down their mathematical model from Eqs. (1.27)-(1.28) as  

𝜕[𝑇](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝑇

𝜕2[𝑇](𝑟, 𝑡)

𝜕𝑟2
+ 𝑎[𝑇](𝑟, 𝑡) {1 −

[𝐼](𝑟, 𝑡) + [𝑇](𝑟, 𝑡)

𝑘
} − 𝑏[𝐼](𝑟, 𝑡)[𝑇](𝑟, 𝑡), (1.30) 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝐼

𝜕2[𝐼](𝑟, 𝑡)

𝜕𝑟2
− 𝑘2[𝐼](𝑟, 𝑡) + 𝑏[𝐼](𝑟, 𝑡)[𝑇](𝑟, 𝑡). (1.31) 

   where 𝑏 =
𝑘1𝑘2𝑌

𝑘3
. Note that, in contrast to Eqs. (1.27)-(1.28), there are only two concentrations in 

Eqs. (1.30)-(1.31), namely [𝑇] and [𝐼]. 

   Nowak and May [35] argue that the virus quasi-steady approximation (i.e., 
𝜕[𝑉]

𝜕𝑡
≈ 0) is valid if 𝑘3 ≫

𝑘2, i.e. if viruses die much faster than the infected cells (see the last term in Eqs. (1.29) and (1.19)). 

The same special case (𝑘3 ≫ 𝑘2 and, therefore, 
𝜕[𝑉]

𝜕𝑡
≈ 0) had been introduced previously (in a 

different context) by May and Anderson [129], who justified it by arguing that 𝑘3 ≫ 𝑘2 implies that 

the virus concentration decays so fast that it becomes adjusted essentially instantaneously, for any 

given values of  [𝑇](𝑟, 𝑡) and [𝐼](𝑟, 𝑡), to its local equilibrium level, namely [𝑉](𝑟, 𝑡) =
𝑘2𝑌

𝑘3
[𝐼](𝑟, 𝑡) 

(from Eq. (1.29) with 
𝜕[𝑉]

𝜕𝑡
= 0). Thus, in case the virus concentration surpasses this local equilibrium 
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value, it will diminish very rapidly until virus deaths (last term in Eq. (1.29)) are compensated by the 

production of new viruses (last-but-one term in Eq. (1.29)). Therefore, this production term avoids the 

total disappearance of viruses. 

   In contrast to Wodarz et al. [45], we will not apply the quasi-steady approximation to oncolytic 

systems because, as argued in the next paragraph, neither  𝑘3 ≫ 𝑘2 nor  
𝜕[𝑉]

𝜕𝑡
≈ 0 are satisfied in the 

oncolytic systems that we analyze in Chapter 4. 

   Using realistic parameter values of 𝑘3 and 𝑘2, we can check whether the assumption 𝑘3 ≫ 𝑘2 is valid 

or not. For the system that we will analyze in Chapter 4, these parameters will be estimated in Secs. 

2.1.3 and 2.1.4 from experimental data. It turns out that their numerical ranges (namely, 0.017 <

𝑘2 < 0.042 ℎ
−1 and  0.014 < 𝑘3 < 0.028 h-1) are of the same order of magnitude. This shows 

conclusively that the assumption 𝑘3 ≫ 𝑘2 is not valid for our purposes. Similarly, for the non-oncolytic 

virus system discussed in Chapter 3, 𝑘3 ≈ 0 and, again, the assumption 𝑘3 ≫ 𝑘2 canot be made. 

   Moreover, when a travelling wave of viruses propagates, it is easy to argue that the assumption  
𝜕[𝑉]

𝜕𝑡
≈ 0 is not justified. An intuitive way to see this is the following. Outside the initially infected area, 

before the arrival of the infection, there are no viruses ([𝑉] = 0), when the infection arrives [𝑉] 

increases (
𝜕𝑉

𝜕𝑡
> 0), and after cells are killed [𝑉] decreases again (

𝜕𝑉

𝜕𝑡
< 0). This suggests that the 

condition 
𝜕𝑉

𝜕𝑡
≈ 0 cannot be assumed for the systems that we analyze in this thesis.  

   Before dealing with the second problem, we mention that other authors, e.g. [130], justify the quasi-

steady approximation 
𝜕[𝑉]

𝜕𝑡
≈ 0 in a different way, namely by assuming that viruses reproduce much 

faster than tumor cells (𝑌𝑘2 ≫ 𝑎). Here the idea is that a long time is necessary for a new cell to appear 

(compared to the time spent by a virus to reproduce inside an infected cell). This means that, after a 

virus reproduces, its progeny finds almost no cells to infect for a long time, during which 
𝜕[𝑉]

𝜕𝑡
≈ 0 is a 

realistic approximation. In homogeneous systems such that 𝑌𝑘2 ≫ 𝑎 this is reasonable, but in this 

thesis, we do not deal with homogeneous systems. The systems considered by us are clearly non-

homogeneous, because in the infected region (red area and curve in Fig. 1.1) there are only free 

viruses, in the infection leading edge there are infected cells and free viruses (purple and red curves 

in Fig. 1.1), and in the non-infected region there are only non-infected cells (blue region a curve in Fig. 

1.1). In such systems, when a virus front arrives to a region with uninfected cells, it obviously finds 

many cells to infect, even if they do not reproduce at all.  

   For all of the reasons above, in our opinion the assumption 
𝜕[𝑉]

𝜕𝑡
≈ 0 is not justified (even if 𝑌𝑘2 ≫ 𝑎). 

So, in contrast to Wodarz et al. [45], we will not make use of this assumption. 

   A second problem with the model by Wodarz et al. [45] (Eqs.(1.30)-(1.31)) is that it does not take 

into account the delay time (see the text above Eq. (1.22)), but we know from previous work [4, 21] 

that its effect can be very important.  

   In conclusion, a different model is necessary for our purposes, and we will introduce it in Chapter 4. 

   It is worth to mention that Wodarz et al. [45] noted the following interesting application of the study 

of front speeds in virus treatments of cancer tumors. Recall that, for virus infections, if initially only 
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the cells of a small region are infected (this would correspond to a very small area in the center of the 

red region in Fig. 1.1), we can distinguish three well-defined regions, namely (i) an inner area 

containing infected cells (𝐼 ≠ 0), corresponding to the red region in Fig. 1.1, surrounded by (ii) a region 

where host cells are at their maximum carrying capacity and which has not yet been reached by the 

infection front (𝑇 = 𝑘 and 𝐼 = 0, blue region in Fig. 1.1) and (iii) the outermost medium without 

presence of any cell (𝑇 = 𝐼 = 0, white region in Fig. 1.1). The virus front advances from region (i) 

outwards into region (ii), and we will denote its speed by 𝑐𝐼. The tumor front advances from region (ii) 

outwards into region (iii), and we will denote its speed by 𝑐𝑇. From Eqs. (1.30)-(1.31), these  speeds 

can be estimated as [45] 𝑐𝐼 = 2√𝐷𝐼(𝑘1𝑘 − 𝑘2) and 𝑐𝑇 = 2√𝐷𝑇𝑎. Note that 𝑐𝑇 = 2√𝐷𝑇𝑎  is nothing 

but the Fisher speed (Eq. (1.10)), because for the tumor front we are dealing simply with an expanding 

population of uninfected tumor cells. On the other hand,  𝑐𝐼 = 2√𝐷𝐼(𝑘1𝑘 − 𝑘2) can be obtained from 

Eq. (1.31) by noting that, in the leading edge of the virus front, [𝑇] ≈ 𝑘 and comparing to the Skellman 

equation, Eq. (1.11). The important point is that, if 𝑐𝐼 > 𝑐𝑇, the viruses can eventually kill the tumor, 

whereas otherwise they will never reach all of the tumor cells [45]. We caution that the result 𝑐𝐼 =

2√𝐷𝐼(𝑘1𝑘 − 𝑘2) by Wodarz et al. [45]  will break down for the system we are interested in (due to 

the two problems explained above). However, this point highlights the usefulness of comparing the 

values of 𝑐𝐼 and 𝑐𝑇, and thus the importance of the study of the speeds of advancing waves in virus 

treatments of cancer tumors. 

 Neolithic spread and human interaction 
The third application studied in this thesis is related to the geographic expansion of the Neolithic 

across Europe. In this thesis we use the term 'Neolithic' to denote farming and stockbreeding, as 

usually done by most archaeologists in Western Europe (in contrast, in Russia and Eastern Europe 

sometimes 'Neolithic' denotes the use of pottery, not necessarily by farmers). During the early and 

mid-twentieth century, qualitative analysis of archaeological data led to the clear conclusion that 

European farming originated in the Near East, from where it spread gradually across Europe [131, 132, 

133, 134, 135, 136]. As we have mentioned above (end of Sec. 1.2.1), Ammerman and Cavalli-Sforza 

were the first to apply a statistically sound analysis to the archaeological data [50], and to apply the 

Fisher equation (1.9) to describe the spread of early farmers across Europe [53]. Since then, many 

authors have developed new mathematical and computational models to better describe the 

dynamics of the Neolithic spread at continental and local scales [92, 137, 3, 95, 138, 48]. As one 

example of such models, above we have discussed the effect of a delay time (see Eq. (1.16)) related 

to the fact that newborn humans spend some time with their parents before leaving them [51]. 

   However, while differential-equation models such as the Fisher equation (1.9) or the HRD equation 

(1.16) are useful to predict average behaviors, they cannot capture effects due to a real, non-

homogenous geography. For this reason in 2012 Fort, Pujol and Vander Linden [47] developed a 

computational model  to describe the Neolithic transition in which they took into account the effects 

of sea travel and mountain barriers. Their simulation runs on a rectangular grid of 180 × 102 square 

cells covering the whole European continent and part of the Near East. Each cell is a square with side 

equal to 50 km, because this is the value corresponding to the mobility per generation obtained from 

measured data for preindustrial farmers [52, 139]. The Neolithic population is initially present only at 

some regions in the Near East, specifically where pre-pottery Neolithic B/C (PPNB/C) sites have been 

found. The reason is that the formation of the Neolithic in the Near East was not a front propagation 
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phenomenon at the beginning, because some innovations appeared earlier, others later on, and in 

different areas [140]. A really homogeneous package of domestic plants and animals formed only 

later, with the PPNB/C cultures, and it was this well-defined cultural package that later spread across 

Europe [141]. The PPNB/C sites in the database used by Fort, Pujol and Vander Linden [47] are located 

in Israel, Jordan, Lebanon, Iraq, Syria and Turkey. In the numerical simulation model by Fort, Pujol and 

Vander Linden [47], the Neolithic spread by following a two-step reaction-diffusion scheme that is 

repeated at each generation. Firstly, the new number of Neolithic farmers (𝑃𝐹) due to population 

growth is computed in each cell and at each time step (generation) according to the following rules: 

 𝑃′𝐹(𝑖, 𝑗, 𝑡) = 𝑅0,𝐹 𝑃𝐹(𝑖, 𝑗, 𝑡)     if     𝑃𝐹(𝑖, 𝑗, 𝑡) <
𝑃𝐹 𝑚𝑎𝑥

𝑅0,𝐹
⁄   

 𝑃′𝐹(𝑖, 𝑗, 𝑡) = 𝑃𝐹 𝑚𝑎𝑥     if     𝑃𝐹(𝑖, 𝑗, 𝑡) ≥
𝑃𝐹 𝑚𝑎𝑥

𝑅0,𝐹
⁄

 , (1.32) 

where 𝑅0,𝐹 is the net reproductive rate (or fecundity) per generation1 and 𝑃𝐹 𝑚𝑎𝑥 corresponds to the 

maximum sustainable population in a cell. Alternatively, a logistic function could be also used, but the 

results would not change. Secondly, the effect of dispersion is computed at each time step. In the case 

of homogeneous land travel, the simple model used in Ref. [47] assumes that each generation time 𝑇, 

a fraction 𝑝𝑒  (persistence) of the initial population in each cell will not disperse and one fourth of the 

remaining population will move to one of the four nearest neighbor cells (i.e., with center 50 km away 

from that of the original cell). This process can be described by the following equation:  

𝑃𝐹(𝑖, 𝑗, 𝑡 + 1) = 𝑝𝑒  𝑃′𝐹(𝑖, 𝑗, 𝑡)

+
1 − 𝑝𝑒
4

[𝑃′𝐹(𝑖 − 1, 𝑗, 𝑡) + 𝑃′𝐹(𝑖 + 1, 𝑗, 𝑡) + 𝑃′𝐹(𝑖, 𝑗 − 1, 𝑡)

+ 𝑃′𝐹(𝑖, 𝑗 + 1, 𝑡)], 

(1.33) 

where 𝑖 and 𝑗 are the grid coordinates of the original cell. Alternatively, more complicated dispersal 

models involving several distances could be used, but the authors of Ref. [47] expect that the main 

conclusions would be the same and prefer to focus on non-homogenous effects. When mountain and 

sea cells are considered, the dispersal process is no longer homogeneous. If one of the four 

neighboring cells is a mountain cell, farmers leaving the original cell will redistribute among the 

remaining three cells. On the other hand, if one of the four neighboring cells is a sea cell, the 

population that would move there is assumed to travel by sea to coast cells within a given range.  A 

more detailed explanation of this type of computational model is given in Sec. 2.3.3 and Chapter 5 of 

this thesis, because we use the same kind of simulations to model the genetic consequences of the 

Neolithic spread (in contrast, no genetics simulations were performed in Ref. [47]). Note, however, 

that there is a direct analogy between the computational model described here and the differential-

equation models in Eqs. (1.9) and (1.16). In addition, the time delay effect from the HRD equation 

(1.16) is implicitly included in this kind of simulations. In their simulations, Fort, Pujol and Vander 

Linden [47] noted that mountains do not hinder the expansion remarkably. On the other hand, 

assuming travel distances of up to 150 km and using parameter values from ethnographic data, they 

obtained good agreement between their simulations and a database of 919 dated sites (at the 

                                                           
1 𝑅0,𝐹 is directly related to the growth rate 𝑎 (introduced in Sec. 1.2.1) as 𝑎 =

ln 𝑅0,𝐹

𝑇
. The next chapter (Materials 

and methods) describes in detail all of the parameters used in this thesis; for more information about this parameter 

see Sec. 2.2.6. 
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continental level). They observed that, in contrast to mountains, sea travel had an important effect, 

by accelerating the Neolithic spread along the Mediterranean. 

   Some authors have also performed space-time genetic simulations of the Neolithic spread. They did 

not compare to ancient DNA data, because they were then unavailable (the first comparison to the 

shape of an ancient genetic marker is presented in Chapter 5 in this thesis). Let us summarize two of 

these approaches [5, 89]. In 1986, Rendine et al. published one of the earliest such simulations [5]. 

Their computational model is similar to that in Ref. [47] described above, but also includes a cultural 

interaction process, according to which in each step, following a Lotka-Volterra approach, 

𝛾𝑃𝐻𝐺(𝑡)𝑃𝐹(𝑡) hunter-gatherers become farmers at each cell (with 𝑃𝐻𝐺(𝑡) and 𝑃𝐹(𝑡) the initial number 

of hunter-gatherers and farmers at the cell considered, respectively). Also, the population frequencies 

of several genes were computed, in order to see how genetic gradients (which also called genetic 

clines) form, depending on the initial frequencies. Additionally, by assuming several migrations (from 

different regions and times), it was shown  that the effects of independent dispersals can be 

recognized by means of a statistical method called principal components [5] (which had been 

previously used to analyze the genetics of present European populations [54]).  

   In another spatial simulation study on the genetic consequences of the Neolithic transition, Currat 

and Excoffier [89] studied different degrees of demic and cultural diffusion. Their simulation is inspired 

by that from Rendine et al. [5]. One difference between both studies is that by Currat and Excoffier 

[89] include, besides the spread of Neolithic farmers from the Near East, the first arrival and spread 

of Paleolithic populations (modern humans) across Europe, after their out-of-Africa dispersal. Another 

difference between both studies is that the acculturation process considered by Currat and Excoffier 

[89] is described mathematically as 𝛾
2𝑃𝐻𝐺𝑃𝐹
(𝑃𝐹+𝑃𝐻𝐺)

2, where 𝛾 = 0 corresponds to a fully demic diffusion 

model. Currat and Excoffier [89] found that minute amounts of cultural diffusion have important 

effects on the genetic composition of the farming population. They also found that clines with extreme 

frequencies in the Near East could have formed not only due to the Neolithic spread, but also due to 

the arrival and spread of the first modern humans into Europe. The reason of the latter clines is a 

series of founder effects at the population wavefront, in which specific markers increase their 

frequencies because of random effects due to the low population density [89]. 

   Although the two previous models [5, 89] include cultural terms, none of them are based on cultural 

transmission theory [93]. This theory formalizes mathematically the three different kinds of cultural 

transmission, namely vertical transmission (which corresponds to the transmission of cultural traits 

from parents to their children), horizontal transmission (from some individuals to others of the same 

generation), and oblique transmission (from some individuals of a generation to others of the next 

one, excluding their children) [93]. Recently, vertical cultural transmission effects on Neolithic spread 

where analyzed by Fort [94]. He used cultural transmission theory [93] to describe the effects of cross-

matings between hunter-gatherers (HGs) and farmers (Fs) on Neolithic spread. In agreement with 

ethnographic data [142, 143], it can be assumed that when farmers mate with hunter-gatherers their 

children will be all farmers. Thus, the number of farmers 𝑃𝐹 increases and the number of hunter-

gatherers 𝑃𝐻𝐺 decreases as a result of this interaction. In this framework, Fort [94] derived the 

following reaction terms (which include growth and interaction) for farmers (F) and hunter-gatherers 

(HG)  
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𝑃𝐹(𝑡 + 𝑇) = 𝑅0,𝐹𝑃𝐹(𝑡) + 𝑅0,𝐹𝜂
𝑃𝐹(𝑡)𝑃𝐻𝐺(𝑡)

𝑃𝐹(𝑡) + 𝑃𝐻𝐺(𝑡)
, (1.34) 

𝑃𝐻𝐺(𝑡 + 𝑇) = 𝑅0,𝐻𝐺𝑃𝐻𝐺(𝑡) − 𝑅0,𝐻𝐺𝜂
𝑃𝐹(𝑡)𝑃𝐻𝐺(𝑡)

𝑃𝐹(𝑡) + 𝑃𝐻𝐺(𝑡)
, (1.35) 

where 𝑇 is the generation time, and 𝜂 is the intensity of interbreeding. A simplified derivation of Eqs. 

(1.34)-(1.35) is the following. Let 𝑢 =
𝑃𝐹(𝑡)

𝑃𝐹(𝑡)+𝑃𝐻𝐺(𝑡)
  stand for the frequency of farmers, and 𝑝′(𝑢) stand 

for the probability that a HG mates a farmer, i.e. the number of cross-matings divided by 𝑃𝐻𝐺(𝑡). Then 

𝑃𝐹(𝑡 + 𝑇) = 𝑅0,𝐹𝑃𝐹(𝑡) + 𝐼𝑁, where 𝐼𝑁 = 𝑅0,𝐹 𝑝
′(𝑢)𝑃𝐻𝐺(𝑡) is the interaction term due to 

interbreeding. Now, if we assumed that 𝑝′(𝑢) is independent of 𝑢, we would obtain two unacceptable 

results: (i) 𝐼𝑁 would not increase with increasing values of 𝑃𝐹(𝑡); and (ii) 𝐼𝑁 → ∞ for 𝑃𝐻𝐺(𝑡) → ∞, 

which again is not reasonable because we expect that, if 𝑃𝐻𝐺 ≫ 𝑃𝐹, then HGs will have reached their 

maximum number of social contacts (encounters per unit time, personal relationships, etc.) with 

farmers, so that  𝐼𝑁 should not diverge but rather saturate at a finite value. On the other hand, if we 

assumed that 𝑝′(𝑢) were proportional to 𝑢2, or 𝑢3, or 𝑢4, etc. (or a linear combination of such 

powers), then we would obtain 𝐼𝑁 → 0 if 𝑃𝐻𝐺(𝑡) → ∞, which is obviously unreasonable. Finally, if 

𝑝′(𝑢) is proportional to 𝑢, say  𝑝′(𝑢) = 𝜂𝑢, then these problems do not arise and we obtain Eqs. 

(1.34)-(1.35). A more detailed derivation and discussions can be found in Ref. [94]. That work also 

combines Eqs. (1.34)-(1.35) with a reaction-diffusion model and, by comparing the model predictions 

to the average continental speed of the Neolithic front in Europe, concludes that the interbreeding 

parameter would have been 𝜂 < 0.1, implying a relatively low importance of cultural diffusion against 

demic diffusion. We will use this model in Chapter 5 [9]. On the other hand, Eqs. (1.34)-(1.35) have 

been also applied in another very recent model, albeit focused in a specific region (the Western 

Mediterranean) and without any genetic analysis [48]. 

   Some previous spatial genetic simulations have been based on Lotka-Volterra equations [5], i.e. on 

replacing Eqs. (1.34)-(1.35) by 𝑃𝐹(𝑡 + 𝑇) = 𝑅0,𝐹[𝑃𝐹(𝑡) + 𝛾𝑃𝐻𝐺(𝑡)𝑃𝐹(𝑡)] and 𝑃𝐻𝐺(𝑡 + 𝑇) =

𝑅0,𝐻𝐺[𝑃𝐻𝐺(𝑡) − 𝛾𝑃𝐻𝐺(𝑡)𝑃𝐹(𝑡)].  But we can see that this is problematic if we note, e.g., that problem 

(ii) mentioned below Eq. (1.34) also arises for Lotka-Volterra equations.  

In 2012, Fort [3] proposed a model to describe horizontal/oblique cultural transmission effects on 

Neolithic spread, again based on cultural transmission theory [93]. Thus, this model describes the 

adoption of farming by hunter-gatherers which is not due to interbreeding but to the learning of 

agricultural techniques from the farmers of the same (horizontal) or the previous (oblique) generation. 

Assuming again that the transition takes place only towards learning farming (not hunting and 

gathering), as a result of the interaction the number of farmers 𝑃𝐹 increases and the number of 

hunter-gatherers 𝑃𝐻𝐺 decreases as [3]  

𝑃𝐹(𝑡 + 𝑇) = 𝑅0,𝐹𝑃𝐹(𝑡) + 𝑅0,𝐹𝑓
𝑃𝐹(𝑡)𝑃𝐻𝐺(𝑡)

𝑃𝐹(𝑡) + 𝛾𝑃𝐻𝐺(𝑡)
, (1.36) 

𝑃𝐻𝐺(𝑡 + 𝑇) = 𝑅0,𝐻𝐺𝑃𝐻𝐺(𝑡) − 𝑅0,𝐻𝐺𝑓
𝑃𝐹(𝑡)𝑃𝐻𝐺(𝑡)

𝑃𝐹(𝑡) + 𝛾𝑃𝐻𝐺(𝑡)
, (1.37) 

where 𝑓 can be called the intensity of cultural transmission (note that the cultural effect vanishes if 

𝑓 = 0), and 𝛾 measures the preference of hunter-gatherers to copy the behavior of farmers (rather 
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than hunter-gatherers) if 𝛾 < 1 (or, on the contrary, to copy other hunter-gatherers if 𝛾 > 1). The 

derivation of Eqs. (1.36)-(1.37) is not included here (because it is longer than that of Eqs. (1.34)-(1.35)) 

but can be found in Ref. [3]. That work also combines Eqs. (1.36)-(1.37) with a demic model, and by 

comparing the result to the speed from archaeological data concludes that demic diffusion played a 

more important role in the spread of the Neolithic than cultural diffusion. It is worth noticing that for 

random copying (𝛾 = 1), the previous Eqs. (1.36)-(1.37) would be completely analogous to Eqs. (1.34)-

(1.35), with the acculturation parameter f in Eqs. (1.36)-(1.37) playing the same mathematical role as 

the interbreeding parameter 𝜂 in Eqs. (1.34)-(1.35).  

   As mentioned above, some previous work has used Lotka-Volterra equations [5]. A very important 

difference between them and our acculturation Eqs. (1.36)-(1.37) can be seen by considering, e.g., the 

simple case 𝑅0,𝐻𝐺 = 1 (no net population growth) and Eq. (1.37). Then, the number of hunter-

gatherers converted per farmer, namely 
𝑃𝐻𝐺(𝑡+𝑇)−𝑃𝐻𝐺(𝑡)

𝑃𝐹(𝑡)
 , is equal to 𝑓

𝑃𝐻𝐺(𝑡)

𝑃𝐹(𝑡)+𝛾𝑃𝐻𝐺(𝑡)
, and this has an 

upper bound for increasing values of 𝑃𝐻𝐺(𝑡), namely  
𝑓

𝛾
. This saturation effect is absent in the Lotka-

Volterra approach, because then Eq. (1.37) is replaced by 𝑃𝐻𝐺(𝑡 + 𝑇) = 𝑃𝐻𝐺(𝑡) − 𝛾𝑃𝐻𝐺(𝑡)𝑃𝐹(𝑡), thus 

the number of hunter-gatherers converted per farmer, 
𝑃𝐻𝐺(𝑡+𝑇)−𝑃𝐻𝐺(𝑡)

𝑃𝐹(𝑡)
, is equal to 𝛾𝑃𝐻𝐺(𝑡) and this 

increases withouth bound for increasing values of 𝑃𝐻𝐺(𝑡). The latter result is not reasonable because 

obviously, the number of HGs that a farmer can convert during his lifetime cannot be arbitrarily large 

[3].  

1.3. Models in this thesis 
In this thesis we have developed new reaction-diffusion models based on the models summarized in 

Sec. 1.2. In the rest of this Chapter, we provide an overview of the most important features of the 

models presented in this thesis (Chapters 3-5). 

 Plaque growth models with more biological sense 
Previous plaque growth models (Sec. 1.2.3) present several drawbacks to correctly describe virus 

infection dynamics.  

   First, the reaction-diffusion model by Yin and co-workers [14, 144] assumes Fickian diffusion with no 

delay time. However, as noted by Fort and Méndez, neglecting the delay time as in Refs. [14, 144] 

predicts speeds up to an order of magnitude faster than those observed in in vitro experiments (Fig. 2 

in Ref. [4]). As explained in Sec. 1.2.3, the cause for this difference between predictions and 

experiments is that the time during which viruses replicate within a cell (and thus do not diffuse) 

reduces the effective speed of the infection front. Therefore, in our model in Chapter 3 we will use an 

HRD equation (similar to Eq. (1.16)), which includes the delay time, so that we can properly describe 

the dynamics of the virus front. 

   Equations (1.22)-(1.26) correspond to the model introduced by Amor and Fort [21]. That model and 

similar ones do already incorporate the delay time in the virus diffusive process (either with a single 

delay time [4, 115, 21, 145] or with a distribution of delay times [116]). However, in all of those models 

a logistic function is used to describe the growth dynamics of viruses and the decay of infected cells 

[positive term in Eq. (1.25) and negative term in Eq. (1.22), respectively]. This is biologically 
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questionable because, according to this assumption, the number of infected cells that die per unit 

time is given by −𝑘2[𝐼](𝑟, 𝑡) (1 −
[𝐼](𝑟,𝑡)

[𝐼]𝑚𝑎𝑥
), which implies that infected cells die at a rate 𝑘2 

proportionally to the density of infected cells [𝐼](𝑟, 𝑡), but also to the 'free' space 1 −
[𝐼](𝑟,𝑡)

[𝐼]𝑚𝑎𝑥
 (i.e., the 

space not occupied by infected cells). The latter point is strange from a biological perspective. It is true 

that such a dependency is assumed in logistic growth (Eq. (1.8)), but that refers to a net reproduction 

process. It is biologically reasonable that such a rate can be proportional to the free space because 

this can happen, for example, if the net reproduction rate is proportional to the nutrients available 

and those are in turn proportional to the free space. But here we are dealing with a purely death 

process, and there is no intuitive reason why such a rate could be proportional to the free space. In 

contrast, our new model (Chapter 3) uses the more reasonable assumption that the number of cells 

dying in a given instant is proportional to the number of infected cells at some previous instant. If 

there is a delay time 𝜏 between virus adsorption and the beginning of the release of the new progeny, 

then it is reasonable to describe the death of infected cells as −𝑘2[𝐼](𝑟, 𝑡 − 𝜏), i.e. proportional to the 

density of infected cells at a time 𝑡 − 𝜏. Note that this delay-time formulation does not affect the 

diffusive process (in contrast to Eqs. (1.16) or (1.23)) but a reactive one (the death of infected cells). 

Naturally, because each dead cell releases 𝑌 viruses, this correction also affects the virus growth 

dynamics.  

   A reactive delay time in virus infections has been already considered by other authors [146, 147], 

albeit with two important differences with our work. The first one is that they do not assume the 

infected death rate −𝑘2[𝐼](𝑟, 𝑡 − 𝜏) but −𝑘1[𝑉](𝑟, 𝑡 − 𝜏)[𝐵](𝑟, 𝑡 − 𝜏) (with an additional factor in 

Ref.  [146]). Therefore, their basic equation for the infected cell concentration is 
𝜕[𝐼](𝑟,𝑡)

𝜕𝑡
=

𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) − 𝑘1[𝑉](𝑟, 𝑡 − 𝜏)[𝐵](𝑟, 𝑡 − 𝜏). Note than both terms have the same rate 𝑘1 (in 

contrast to, e.g. Eq. (1.19)), thus they assume that all cells die at the same time after infection. This 

disagrees with experimental data (see Chapter 3). The other difference with our work is that they do 

not take into account the effect of the delay time on the diffusive process. In Chapter 3 we also 

compute front speeds using those previous models [146, 147]. 

   In Chapter 3, we attempt to develop a more realistic approach to the dynamics of growing plaques 

than all of those previous works. For this purpose, we consider the effects of the time delay both in 

the diffusive process as well as in the reactive ones (infected cell death and virus growth). In Chapter 

3 we also develop an approximation to our new model, which yields realistic results and avoids 

cumbersome mathematical equations. 

 The crucial delay time in oncolytic viral assays 
In Sec. 1.1.2 we have described the current interest on the possibility of treating some deadly brain 

tumors called glioblastomas (GBMs) with virus infections. Chapter 4 presents three increasingly 

realistic mathematical models developed to describe in vitro experiments on the oncolytic effect of 

VSVs on GBMs. Our approach avoids several problems of the model by Wodarz et al. [45], which we 

have introduced in Sec. 1.2.4 [Eqs. (1.27)-(1.28)].  

   As already mentioned in Sec. 1.2.4, the assumption of a steady-state for free virus (so that [𝑉] ∝

[𝐼]), which allowed Wodarz et al. [45] to use a simplified two-equation model, does not hold for the 



28 

 

VSV-GMB system that we want to study (see Chapter 4 for more details). For this reason, in our first 

approach to modeling the virus-tumor dynamics (model 1), we will adapt the model by Wodarz et al. 

[45] to a three-equation system. Similarly, to the original model by Wodarz et al. [45], we consider 

Fickian diffusion in our model 1. Thus, the first oncolytic model developed in this thesis is similar to 

Yin and McCaskill’s model [14] to describe a growing plaque, Eqs. (1.19)-(1.21), but including tumor 

growth and the decay rate of viruses 𝑘3. 

   As we have argued above and has been shown in previous works [4, 21], the time delay effect (which 

results from the eclipse time 𝜏 elapsed between cell infection and the release of the new progeny) 

plays a very important role in virus infection dynamics. Therefore, it is clearly important to take it into 

account in order to describe the virus-tumor dynamics in oncolytic treatments. For this reason, our 

models 2 and 3 in Chapter 4 include delay-time effects. In order to distinguish the importance of each 

effect, model 2 includes the delay time only into the reactive process (i.e., the death of infected cells 

and the growth of the virus population), using the term  −𝑘2[𝐼](𝑟, 𝑡 − 𝜏), which we have introduced 

in the previous subsection. Finally, in Chapter 4 we also incorporate the effect of the delay time on 

the diffusive dynamics of viruses into our model 3. Therefore, in Chapter 4 we study individually the 

effect of incorporating the time delay into the different processes and find that only when it is included 

in both the reactive and diffusive dynamics, can we achieve the best agreement with the experimental 

data. Also, the sensitivity analysis performed in Chapter 4 allows us to determine that the most 

important parameter in determining the rate of spread of the infection front of an oncolytic virus (and 

thus related to the effectiveness of the virus in defeating a growing tumor) is precisely the eclipse time 

or delay time 𝜏, whereas other parameters, such as the rate of adsorption 𝑘1 or the burst size 𝑌, have 

little effect on the front speed. 

 Analysis and modeling of ancient clines of mitochondrial DNA 
As explained in Sec. 1.1.3, the genetic data of modern populations are highly affected by population 

movements that have taken place after the Neolithic transition. For this reason, in order to analyze 

the genetic consequences of the Neolithic spread, it would be of great interest to identify genetic 

clines (i.e., spatial variations in the frequency of genetic markers) from ancient DNA (aDNA) data. 

Fortunately, during the last decade it has become possible to extract DNA data from ancient 

individuals. We have used all such published data for the Early and Middle European Neolithic to 

assemble a database (included as Appendix A Data S1). It contains all of the published genetic 

information on Early and Middle Neolithic European individuals, at the time of writing the paper 

reproduced in Chapter 5 (i.e., up to August 2017). As explained in Sec. 1.1.3, The individual sequences 

of Y-DNA and mtDNA are known as haplotypes, but similar haplotypes with a common ancestor are 

usually grouped under haplogroups. 

   In Chapter 5, we use the database (Appendix A Data S1) to identify a very clear cline for the frequency 

of mitochondrial haplogroup K among the early Neolithic farmers. This frequency decreases with 

increasing distance from the Near East (we stress that, as explained at the end of Sec. 1.1.3, not all 

haplogroups are expected to display such a clear cline, because different haplogroups can be affected 

by different processes such as selection and drift). We use this cline to infer information on the 

primacy of demic or cultural transmission processes in the Neolithic spread in Europe. Indeed, in 

Chapter 5 the percentage of farmers involved in cultural transmission processes is estimated by 

comparing the observed cline to those predicted by a demic-cultural model. In order to obtain 
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simulated genetic clines, we have developed a reaction-diffusion computational model based on the 

model by Fort, Pujol and vander Linden [47] described in Sec. 1.2.5. Our simulations run on a grid of 

square cells encompassing the entire European continent and part of the Near East, from where the 

Neolithic spreads to the whole continent. Similarly to the model by Fort, Pujol and vander Linden [47], 

we use a realistic geography. Thus, Neolithic individuals can move by land or by sea, and mountains 

act as barriers. Nonetheless, the model in Chapter 5 includes two important features which were not 

taken into account in Ref. [47] (because that work had different aims), namely cultural transmission 

and genetics. 

   In the model in Chapter 5 we will define three populations: farmers who have the Neolithic marker 

K, farmers who do not have the Neolithic marker K, and hunter-gatherers (HG). None of the HGs has 

the Neolithic marker K, in agreement with observations (Sec. 5.8.2). Cultural transmission between 

the farmer and HG populations present in each cell will be taken into account by assuming a process 

of cultural transmission ruled by Eqs. (1.34)-(1.35) [94]. In principle, we could use Eqs. (1.36)-(1.37) 

instead, but those equations have two unknown parameters and, in any case, we expect that the final 

conclusions would be much the same (Sec. 5.8.9). Cultural transmission has been also included in a 

very recent model of the Neolithic spread in the Western Mediterranean [48], but the model in 

Chapter 5 is more complex because of the three population groups considered. This makes it possible 

(in contrast to Ref. [48]) to analyze the genetics, which was not done in Ref. [48]. The number of 

individuals in each generation is calculated by means of growth processes of the type described by Eq. 

(1.31); however, in order to include the genetic component in the results, we need to treat separately 

the couples where both parents have the Neolithic marker, only one of the parents have it, or none 

of the parents have it (more details on this issue are given in Chapters 2 and 5). 

   We run our simulation for approximately 200 iterations, each corresponding to one generation. In 

each generation, the population reproduces, interacts culturally (i.e., some hunter-gatherers become 

farmers) and part of it migrates. Note that this scheme already includes the time delay between 

migrations, during which the children live with their parents until adulthood (when they can migrate 

themselves and initiate the cycle anew). This process yields an advancing front of farmers, for which 

we can know the relative presence of individuals with the Neolithic marker. The analysis of these data 

shows a clear cline on the presence of the Neolithic marker away from the region of origin. By setting 

the initial fraction of farmers with this Neolithic marker (haplogroup K) in the Near East in agreement 

with the aDNA observations and running the model for different intensities of cultural transmission, 

we obtain clines that can be compared to the observed one. The comparison of the modelled and 

observed clines enables us to find out that the importance of cultural diffusion was apparently 

minimal, and that only about 2% of farmers took part in cultural diffusion (this result is quantified for 

the first time in Chapter 5 [9]). It is important to stress that cultural transmission, albeit very weak, is 

still absolutely necessary to explain the existence of the observed cline. Indeed, if no hunter-gatherers 

became farmers, the presence of the Neolithic marker K would not diminish with increasing distance 

from the Near East but would be uniform. Our conclusion that the cultural effect was minimal 

(compared to the demic one) agrees with previous findings of genome-wide studies by other authors 

[80, 81, 82, 86, 87]. However, in contrast to our work (Chapter 5 [9]),  genome-wide studies cannot 

estimate the percentage of farmers involved in cultural diffusion (because, as explained at the end of 

Sec. 1.1.3, the dynamics of different markers depend on different processes). 
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1.4. Objectives 
The main goal of this thesis is to improve the understanding of several biophysical systems where 

reaction and diffusion processes coexist. By developing new equations and numerical simulations, it 

is intended to effectively and accurately explain the current experimental data in three different 

reaction-diffusion systems, namely virus infections (Chapter 3), virus treatments of cancer tumors 

(Chapter 4), and the genetics of early Neolithic populations in Europe (Chapter 5). 

   Each of the three systems considered requires a different mathematical model. However, reaction 

(interaction, reproduction) and diffusion (movement, migration) processes coexist in all of these 

systems. Each of the three main chapters in this thesis is devoted to a specific biophysical system, for 

which experimental data exist that can be directly compared to the predictions of our new models. 

Firstly, various strains of T7 viruses interacting with E. coli bacteria (Chapter 3). Secondly, Vesicular 

stomatitis viruses (VSVs) spreading through glioblastoma (GBM) tumor cells (Chapter 4). Thirdly, the 

cline of mitochondrial haplogroup K in early farming European populations (Chapter 5). 

   For all these systems, our main objective is achieving a better quantitative agreement between a 

theoretical model and experimental or observational data.  

   More specific objectives are the following. 

- In Chapter 3, to obtain a mathematical model with full biological and mathematical meaning. 

- Also in Chapter 3, to derive propagation speeds of virus infections that are consistent with the 

experimental data for different strains of the T7 virus infecting E. coli bacteria, without requiring the 

use of any free or adjustable parameters. 

- In Chapter 4, to develop a realistic mathematical description of VSVs infecting GBMs.  

- Also in Chapter 4, to explain the propagation speeds of VSVs infecting GBMs obtained in in vitro 

experiments. 

- In Chapter 5, to understand the observed decrease of haplogroup K in the Neolithic populations of 

farmers as they migrated from Syria across Europe and interacted with Mesolithic hunter-gatherers. 

We also aim to understand the observed decrease of haplogroup K with the passage of time in each 

of the regions studied. 

- Also in Chapter 5, to obtain a quantitative estimate of the intensity of cultural diffusion in the spread 

of the Neolithic across Europe. This intensity is defined as the average number of local hunter-

gatherers who were incorporated in the farming communities per each pioneering farmer, by means 

of acculturation and/or interbreeding. 
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2. Materials and methods 

This Chapter is mainly devoted to giving details on the parameters used in the next Chapters, especially 

how their values are calculated and what they are used for. Because in Chapters 3, 4 and 5 (which 

reproduce our published papers) it is not always possible to explain all parameters in detail, here we 

include an in-depth explanation on each of them. In addition, this Chapter also contains details on the 

analytical and numerical methods applied to calculate front speeds, population densities and genetic 

percentages in the simulations. 

2.1. Data on viral infections 
The two first published papers in this thesis (Chapters 3-4) deal with viral infection systems. Firstly, we 

consider the dynamics of a growing plaque when E. coli bacteria are infected by T7 viruses (Chapter 

3). Secondly, the oncolytic effect of VSVs on GBMs is analyzed (Chapter 4). This section describes the 

main parameters related to virus infection processes, providing for each parameter a brief 

introduction and then details on the parameter values used in Chapters 3-4. 

 Diffusion coefficient (𝑫) 
The diffusion coefficient or diffusivity 𝐷 is related to how long it takes for a particular substance (e.g., 

viruses, proteins, etc.) to diffuse up to a given distance through a specific medium (such as water or 

agar). This parameter 𝐷 is encountered in all reaction-diffusion equations used in this thesis to 

describe the diffusion of viruses (Eqs. (1.20) and (1.23) and Chapters 3-4) and tumor cells (Eqs. (1.27)-

(1.31) and Chapter 4). Therefore, it is necessary to know the value of 𝐷 for the spread of viruses in the 

studied media (T7 in agar with E. Coli bacteria in Chapter 3, and VSV in a medium with GBMs in Chapter 

4), as well as the value of 𝐷 for the spread of GBM tumoral cells (in Chapter 4). Unfortunately, in none 

of these systems has the virus diffusion coefficient been directly measured. Thus, it has been 

necessary to use adequate proxies, as we next explain. 

   𝑫 for T7 viruses. As previously applied in other works [4, 14, 21], because the T7 virus resembles in 

shape and size the P22 virus, the diffusivity for T7 virus on an agar plate should be similar to that 

measured for P22. Thus, we can assume that in agar 𝐷𝑇7 ≈ 𝐷𝑃22 = 4 · 10
−8 cm2/s [4, 148]. However, 

in virus infections T7 viruses do not disperse freely in agar, but rather through a continuous medium 

of agar with a suspension of the host bacteria, E. coli, which adsorb the viruses. For this reason, the 

diffusion coefficient should be replaced by a more refined value that takes the presence of bacteria in 

the agar into account. We obtain the effective diffusivity under such conditions using an equation due 

to Fricke [149], which has been found to agree very well with experimental observations of blood cell 

suspensions [149, 101]. The effective diffusivity according to Fricke’s equation is expressed as  

𝐷𝑒𝑓𝑓 =
1 − 𝑓

1 +
𝑓
𝑥

𝐷, (2.1) 

where 𝑓 is the concentration of bacteria relative to its maximum possible value (note that if 𝑓 = 1 

then 𝐷𝑒𝑓𝑓 = 0), and 𝑥 is related to the shape of the host cell (in this case, E. coli). For spherical particles 
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𝑥 = 2, which has been sometimes used in virus diffusion studies [14, 144], but for E. coli it is more 

accurate to use the value 𝑥 = 1.67 [4, 150]. This is therefore the value of 𝑥 that we use in Chapter 3 

to estimate the diffusion coefficient of T7 viruses through agar with a suspension of E. coli cells, as a 

function of the relative concentration of the latter, 𝑓. 

   𝑫 for VSVs. As mentioned above, 𝐷𝑉𝑆𝑉 is unknown for the medium in which the propagation speed 

of VSV fronts infecting GBMs has been measured (this is a serum free medium [24], and details on the 

corresponding front speed are given in Sec. 2.1.9 below). For this reason, in Chapter 4 we use the only 

diffusion coefficient of VSVs that we are aware of, namely that measured in a water solution, 𝐷𝑉𝑆𝑉 =

8.37 · 10−5 cm2/h [151]. For comparison purposes, we shall also use the value of 𝐷 for virus P22 

measured in agar and mentioned above [21], namely 𝐷𝑉𝑆𝑉 ≈ 𝐷𝑃22 = 4 · 10
−8 cm2/s = 1.44 ·

10−4cm2/h [148]. 

   𝑫 for GBM cells. As mentioned above, in the plaque growth experiments that we consider (Chapter 

3) bacteria are immobilized. In contrast, for VSVs infecting GBMs (Chapter 4) the GBM tumor cells can 

move, so their diffusion has to be taken into account (as done in previous work [45], see e.g. 𝐷𝑇 in Eq. 

(1.27)). Stein et al. conducted experiments on GBM cells in a collagen gel [152]. They measured the 

diffusion coefficient, obtaining 𝐷𝐺𝐵𝑀 = 3.75 × 10
−6 cm2/h. This is the value we need for our study in 

Chapter 4, and has been used previously to understand the spread speed of GBM tumors [34]. In 

Chapter 4 we shall see that this value leads to a GBM front speed that is consistent with that measured 

experimentally by Stein et al. [153], again in a collagen gel. We are not aware of any measurement of 

𝐷𝐺𝐵𝑀 for the serum free medium in which the propagation speed of VSV fronts infecting GBMs has 

been measured [24] (Sec. 2.1.9), but there are not any experimental measurements of GBM front 

speeds in this medium either. 

 Rate of adsorption (𝒌𝟏) 
   The adsorption rate, 𝑘1 in e.g. Eqs. (1.19)-(1.21), provides a measure of the probability per unit time 

of adsorption of a single virus particle on a single target cell. The rate of adsorption appears both in 

the plaque growth problem (Sec. 1.2.3 and Chapter 3) and in the study on oncolytic treatment of 

cancerous tumors (Sec. 1.2.4 and Chapter 4). Below we explain how we have estimated 𝑘1 from the 

results of independent experiments for the two systems we are interested in this thesis, namely T7-E. 

coli (Chapter 3) and VSV-GBM (Chapter 4). 

   𝒌𝟏 for T7 viruses infecting E. coli. In Chapter 3 we use a value of the rate of adsorption 𝑘1 for the T7 

virus on E. coli bacteria previously estimated [4] from a plaque-forming assay performed in the 

presence of potassium cyanide (KCN), which is known to inhibit virus reproduction [154]. Therefore, 

as there is no creation of new viruses, the observed variation (decrease) in the concentration of free 

T7 phages is directly related to the adsorption on E. coli bacteria (see data points in Fig. 2.1, left). This 

simplified system with no viral reproduction can be described mathematically using, e.g., Eqs. (1.20)-

(1.21) but excluding in Eq. (1.20) the term containing a spatial derivative (which vanishes because we 

are dealing with a homogeneous system) and the term proportional to 𝑘2 (because virus reproduction 

is inhibited in this experiment). This yield 

𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
=
𝜕[𝐵](𝑟, 𝑡)

𝜕𝑡
= −𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡). (2.2) 



33 

 

From Eq. (2.2), it follows that viruses and bacteria are related by [𝐵] = [𝑉] + 𝜉, where 𝜉 is a constant. 

For the experiment we are interested in, the value of 𝜉 can be obtained from the initial concentrations 

of viruses and bacteria, yielding the value 𝜉 = 1.39 × 108 ml-1 [4]. Moreover, integrating Eq. (2.2) for 

the concentration of viruses, 

ln(
[𝑉]+ 𝜉

[𝑉]
) − ln(

[𝑉]0 + 𝜉

[𝑉]0
) = 𝑘1𝜉(𝑡 − 𝑡0), (2.3) 

where [𝑉]0 is the value of [𝑉] at 𝑡 = 𝑡0. Fitting Eq. (2.3) to the experimental data in Fig. 5 in Ref. [154] 

(shown in Fig. 2.1, left), the slope yields 𝑘1 = (1.29 ± 0.59) × 10
−9 ml/min [4].  

  
Figure 2.1 Left: T7 adsorption on E. coli (at 𝒕 = −𝟐 min the percentage of free phage was 100%, from 𝒕 = −𝟐 
min until 𝒕 = 𝟎 the sysem was kept on ice, and then transferred at 37ºC). Adapted from Fig. 5 in Ref. [154]. 
Right: Cell viability of human GBM cells after 36 and 72 hours post-infection with VSV (variant G/GFP). 
Adapted from Fig. 3C in Ref. [25]. 

 
 

   𝒌𝟏 for VSVs infecting GBMs. To estimate the value of the rate of adsorption of VSVs on GBMs (which 

will be used in Chapter 4), there is unfortunately no experiment where the reproduction of VSVs is 

inhibited (such an experiment would be analogous to that for T7-E. coli described in the previous 

paragraph). Thus we have used data from a cell viability experiment of GBMs after infection with VSVs 

(Fig. 2.1, right), where virus reproduction was not inhibited. To minimize the possible effect of virus 

reproduction, we used only the earliest recorded measurement, namely at 36 hours post-inoculation 

(Fig. 2.1, right). In this way, it seems reasonable to neglect virus reproduction, because in the next 

section we shall find that virus reproduction takes place after about 2 days, which is longer than 36 

hours. Thus, similarly to the experiment for the T7-E. coli system (previous paragraph), we can assume 

that the dynamics follows Eq. (2.2) and therefore  [𝑇] = [𝑉] + 𝜉 (we denote the tumoral cells as 𝑇 

rather than 𝐵). Because for this experiment we have data on the concentration of tumoral cells (rather 

than viruses), we use [𝑉] = [𝑇] − 𝜉 into Eq. (2.3) and obtain for 𝑘1 

𝑘1 =
1

𝜉(𝑡 − 𝑡0)
[ln (

[𝑇]

[𝑇] − 𝜉
) − ln (

[𝑇]0
[𝑇]0 − 𝜉

)]. (2.4) 

   The value of the constant 𝜉 can be estimated directly from the fact that in this experiment [25] the 

multiplicity of infection is 0.5, i.e. [𝑉]0 = 0.5[𝑇]0 and therefore 𝜉 = [𝑇]0 − [𝑉]0 = 0.5[𝑇]0. The initial 

concentration of tumor cells is difficult to estimate because it is not directly reported by Wollmann  et 



34 

 

al. in Ref. [25]. However, after extrapolating values for similar experiments by the same authors [24, 

155], we believe that a realistic range is [𝑇]0 = 10
6 − 108 cells/cm3. From the data in Fig. 2.1 (right) 

we see that the concentration of tumor cells at 𝑡 − 𝑡0 = 36 h is [𝑇] = 0.65 [𝑇]0. As mentioned above, 

we do not use the data at 72h because subsequent infection (after virus reproduction) may be playing 

a role. Using these values into Eq. (2.4), we estimate that the rate of adsorption of a VSV-GBM plaque 

lies in the range 10−10 < 𝑘1 < 10
−8 ml/h. Although this is a wide range, in Chapter 4 we shall find 

that this parameter (𝑘1) has, in fact, little effect on the predicted speed of the infection front. 

   The data shown in the right of Fig. 2.1 have been obtained for the same VSV variant (G/GFP) as that 

for which the front speed of VSVs infecting GBMs can be estimated (see Sec. 2.1.9 below). The 

advantage of this variant is that GBM cells infected by it express a fluorescent protein, which makes it 

easy to track infections (this will be explained in Sec. 2.1.9 and Fig. 2.3). 

 Rate of death of infected cells (𝒌𝟐) 
The knowledge of the death rate of infected cells 𝑘2 is crucial to properly understand viral dynamics,  

and therefore this parameter appears in all systems in this thesis dealing with viral infections (e.g., 

Eqs. (1.19)-(1.28)). Because for each infected cell that dies, an average number of 𝑌 viruses are ejected 

(where 𝑌 is called the yield or burst size, see Sec. 2.1.5 for more details on this parameter), the rate 

of death of infected cells is also indicative of the reproductive rate of the virus population [156, 4, 21, 

144]. For this reason, in all the models in this thesis, 𝑘2 is encountered in both the terms related to 

infected cell death (e.g., in Eq. (1.19)) and those related to virus reproduction (e.g., in Eq. (1.20)). The 

values for the rate of death 𝑘2 of E. coli bacteria infected by T7 viruses (Chapter 3) and for GBM cells 

infected by VSVs (Chapter 4) have been obtained from experimental data on the concentration of 

viruses versus time, as we explain in the following paragraphs. 

 
Figure 2.2 One-step growth of three T7 virus strains on E. coli host bacteria versus time. According to the 
author of Ref. [15], the concentration of host cells is uniform and adsorption is negligible, 𝒌𝟏 ≈ 𝟎. This figure 
is the same as Fig. 3.1. 
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   𝒌𝟐 for T7 viruses infecting E. coli. We will need this parameter in Chapter 3. The death rate of viruses 

can be easily estimated from the one-step growth experiment, which we already mentioned in Sec. 

1.1.1. This experiment is set so that initially there are only infected cells in the system. Therefore, any 

increase in the virus concentration will be due to the death of infected cells. This experiment always 

shows the same behavior, namely the concentration of viruses (initially, those infecting the cells) 

remains constant for a period 𝜏 (the time delay or eclipse period during which viruses reproduce within 

the cells, see Secs. 1.1.1 and 2.1.8), after which cell death and virus release begins, so that the 

concentration of viruses increases rapidly (following a step-like growth process), and finally a plateau 

is reached once all cells have lysed [10] (see Fig. 2.2). The rate of death of infected cells 𝑘2 can be 

obtained from the virus growth interval as follows. 

    In the one-step experiment, if the initial concentration of infected cells is 𝐼0, for 𝑡 ≥ 𝜏 (i.e., during 

the virus growth interval) the concentration of infected cells decays according to 𝑑[𝐼] = −𝑘2[𝐼]0𝑑𝑡 

(see, e.g., Eq. (1.19) for the case where no new cells become infected, 𝑘1 = 0). Since for each infected 

cell, Y new viruses are released, we also have that 𝑑[𝑉] = −𝑌𝑑[𝐼] = 𝑘2𝑌[𝐼]0𝑑𝑡 = 𝑘2𝑉𝑚𝑎𝑥𝑑𝑡. 

Therefore, during the virus reproductive interval (𝑡 ≥ 𝜏), the concentration of viruses can be described 

by 

[𝑉] = 𝑘2[𝑉]𝑚𝑎𝑥 ∙ (𝑡 − 𝜏) + [𝑉]0, (2.5) 

where [𝑉]0 is the initial concentration of viruses (i.e., for 0 ≤ 𝑡 ≤ 𝜏). If we define 𝑡∗ as the time when 

the plateau is reached (i.e., the moment when all infected cells have lysed), from Eq. (2.5) follows that 

𝑘2 can be obtained from 

𝑘2 =
[𝑉]𝑚𝑎𝑥 − [𝑉]0
[𝑉]𝑚𝑎𝑥 ∙ (𝑡

∗ − 𝜏)
. (2.6) 

 

   In Chapter 3 we need to know the death rate of E. coli bacteria when infected by T7 viruses. Yin [15] 

performed the one-step growth experiment for three strains of the T7 virus on E. coli, and the 

corresponding data are shown in Fig. 2.2. Using the data from Fig. 2.2 into Eq. (2.6), we estimate the 

values of 𝑘2 for each strain as 𝑘2(𝑤𝑖𝑙𝑑) ≈ 0.25 min-1 and 𝑘2(𝑝001) ≈ 𝑘2(𝑝005) ≈ 0.17 min-1. 

   𝒌𝟐 for VSVs infecting GBMs. In Chapter 4 we will need numerical values for the rate 𝑘2 of death of 

tumor cells of GBM infected with VSVs. Wollman et al. [25] performed an experiment to visualize the 

self-amplification of different VSV variants in a medium of GBM cells versus time (Fig. 4 in Ref [25]). 

Because the authors were not interested in performing a one-step growth experiment per se, their 

data are not as detailed as those available for the T7 strains, and they reported only three 

measurements at 1, 2 and 3 days post infection (dpi). Nonetheless, we can estimate the value of 𝑘2 

from those experiments. We are interested in the G/GFP variant of VSV because is that for which the 

front speed can be estimated (Sec. 2.1.9 below), but the data from the replication-restricted variants 

(labelled dG-GFP and dG-RFP) allow us to estimate the initial concentration as 10 < [𝑉]0 < 100 

PFU/ml (Ref. [25], Fig. 4). Here PFU stands for plaque-forming units, which is the same as viruses. On 

the other hand, the data for the variant G/GFP presents a maximum concentration of 108 < [𝑉]𝑚𝑎𝑥 <

109 PFU/ml at 2 days post infection (dpi) (after which there is a decay, probably due to the start of a 

new infection cycle). Because of the low number of measurements, we cannot be completely sure 

that the maximum is reached at 2 dpi, and neither that the observed concentrations correspond to its 
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absolute maximum. However, the data show clearly that [𝑉]0 ≪ [𝑉]𝑚𝑎𝑥, which allows us to simplify 

Eq. (2.6) as: 

𝑘2 ≈
1

𝑡∗ − 𝜏
. (2.7) 

   From the fact that the observed maximum is reached at about 2 dpi, we can assume that 𝑡∗ = 48 ±

12 h. The value of the delay time 𝜏 (time elapsed between viral adsorption and the release of the first 

progeny phage) is not well defined, but we can estimate a wide range 2 < 𝜏 < 12 h (see Sec. 2.1.8 

below). Therefore, in Chapter 4 we will consider  𝑘2 as a function of 𝜏. Note that the aforementioned 

ranges of 𝑡∗ and 𝜏 imply that 0.017 < 𝑘2 < 0.042 h
−1. 

 Rate of death of viruses (𝒌𝟑) 
   In a viral infection system, the concentration of free viruses can decrease not only as a result of the 

infection process, but also because of natural death, which is characterized by the death rate of viruses 

𝑘3.  

   𝒌𝟑 of T7. In the models describing the plaque growth problem of virus T7, parameter 𝑘3 is never 

included (see, e.g., Eqs. (1.19)-(1.26)) [14, 4, 21], because the death rate is substantially lower than 

the growth rate. For example, the growth rate of the wild T7 viruses considered in Chapter 3 would 

be 𝑘2𝑌 = 0.25 · 34.5 = 8.63 min-1 (see Secs. 2.1.3 and 2.1.5), which is much higher than the death 

rate reported by Arnold et al. [157] for a T7 virus, namely 𝑘3 = 0.014 min-1. Accordingly, in Chapter 3 

we will assume that 𝑘3 ≈ 0. 

   𝒌𝟑 of VSV. Also in the study of oncolytic treatments, the virus death rate is sometimes low. However, 

previous authors have included the effect of 𝑘3 in their models, see Eq. (1.29). Similarly, in Chapter 4 

we also include the natural death of VSVs. To estimate the value of 𝑘3, we need data on the evolution 

of the concentration over time from an experiment in which viruses cannot replicate. Such data are 

available from Fig. 4 in Ref. [25], which refer to two replication-restricted VSV variants (i.e., the same 

plots that we have used in Sec. 2.1.3 to estimate [𝑉]0). Under these conditions, the equation which 

rules the dynamics of the virus population is  

𝑑𝑉 = −𝑘3𝑉𝑑𝑡, (2.8) 

which after integration yields 

𝑉(𝑡) = 𝑉0𝑒
−𝑘3(𝑡−𝑡0). (2.9) 

   In agreement with Eq. (2.9), we can estimate the value of 𝑘3 from the slope of the linear regression  

of ln 𝑉 versus 𝑡. In this way, using the data mentioned above, we obtain the range 0.014 < 𝑘3 <

0.028 h−1. 

 Burst size of viruses (𝒀) 
When a virus adsorbs to a host cell, it infuses the cell with its nucleic acid and replicates within. 

Eventually, the new progeny leaves the cell. The number of viruses ejected from a single cell is called 

the yield or burst size, 𝑌. Therefore, since 𝑘2[𝐼] is the number of cells that die per unit time (see Eq. 
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(1.19)), the number of viruses appearing per unit time is given by 𝑘2𝑌[𝐼] (see Eq. (1.20)). Thus, 

knowing 𝑌 is very important to describe the virus infection dynamics in the problems studies in 

Chapters 3 and 4. As we detail below, the burst size can be estimated from the same experiments 

used in Sec. 2.1.3 to estimate the death rate 𝑘2 of infected cells. 

   𝒀 for T7 infecting E. coli. Numerical values of this parameter will be applied in Chapter 3. The value 

of 𝑌 can be easily estimated from the one-step growth experiment described in Sec. 2.1.3, thus we 

use the same experimental data in Fig. 2.2 (obtained from Ref. [15]) to estimate the burst size of T7 

replicating on E. coli. At the end of the one-step growth experiment, the concentration of viruses 𝑉𝑚𝑎𝑥 

corresponds to the global yield of the initially infected cells 𝐼0, all of which have lysed. Therefore, from 

the definition of 𝑌 above it follows that 𝑌 =
𝑉𝑚𝑎𝑥

𝐼0
. At the beginning of the experiment there are no 

free viruses, and the experimental points in Fig. 2.2 before the start of the growth process correspond 

to the concentration of infected cells [10, 4]. Thus we can estimate the yield or burst size from the 

data in Fig. 2.2 as 𝑌 =
𝑉𝑚𝑎𝑥

𝑉0
. In this way, we obtain for the three T7 strains in Fig. 2.2 that 𝑌(𝑤𝑖𝑙𝑑) =

34.5 [4], 𝑌(𝑝001) = 56.5 and 𝑌(𝑝005) = 65.  

     𝒀 for VSVs infecting GBMs. We will need this parameter in Chapter 4. As mentioned in Sec. 2.1.3, 

there is no available data on any one-step growth experiment performed for VSVs infecting GBM cells. 

However, as in Sec. 2.1.3, we can use as a proxy the data on VSV replication in GBM cells published in 

Ref. [25], Fig. 4 therein. Several VSV variants were reported in Ref. [25]. However, recall that we are 

interested in the G/GFP variant because the front speed can be estimated for this one (this is done in 

Sec. 2.1.9 below). As already explained in Sec. 2.1.3, we have estimated the initial concentration to be 

in the range 10 < [𝑉]0 < 100 PFU/ml, and the maximum concentration of viruses (after all initially 

infected cells have lysed) 108 < [𝑉]𝑚𝑎𝑥 < 10
9 PFU/ml. Assuming that all viruses infect a cell, and 

applying that 𝑌 =
𝑉𝑚𝑎𝑥

𝑉0
, we obtain the range 106 < 𝑌 < 108 for the burst size of VSVs replicating in 

GBM tumor cells. This range is similar to that measured for VSVs infecting hamster kidney cells [158] 

(Ref. [159] also includes some one-step curves for that system, but those in Ref. [158] are substantially 

more precise because they contain more data points). 

 Proliferation rate of cells (𝒂) 
Tumor cells reproduce very fast [160]. Their dynamics usually follows logistic growth [45, 34], Eq. (1.8), 

characterized by the proliferation rate 𝑎 (see, e.g., Eq. (1.27)). This process refers to the net 

reproduction of tumor cells, i.e., it includes the effects of their fast multiplication and also the natural 

death of cells or apoptosis. The proliferation rate 𝑎 is necessary in our models in Chapter 4 to estimate 

the predicted speed of tumor growth. 

   𝒂 of GBM tumors. The proliferation rate 𝑎 of GBM tumor cells has been measured in vitro [153] and 

in vivo [161]. We next summarize both kinds of data. 

   Based on in vitro data, cell doubling times can be estimated, and Stein et al. used them to suggest 

the range 0.04 < 𝑎 < 0.3 day-1 [153]. They also conducted experiments with GBM spheroids in a 

collagen gel supplemented with a minimum essential medium and fetal bovine serum (the latter is 

necessary for cells to reproduce, whereas the former is not and is thus called minimum essential, or 

serum free medium). In this way, Stein et al. could compare observed tumor front rates and profiles 
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to those predicted by a reaction-diffusion model of tumor growth. This comparison confirmed the in 

vitro range 0.04 < 𝑎 < 0.3 day-1 [153].  

   It could be argued that, if an experiment were performed in vitro so that we could simultaneously 

observe the virus front and the tumor cell front (as depicted in Fig. 4.1), the presence of growth 

supplement (fetal bovine serum) might perhaps lead to a different value of 𝐷𝑉𝑆𝑉 than those reported 

in Sec. 2.1.1 above, and also to a different front speed than that reported in Sec. 2.1.9 below (because 

the latter measurements were made in serum free medium [24]). However, concerning the front 

speed (Sec. 2.1.9), the difference is likely to be small because the virus front propagates in a region 

with tumor cells at carrying capacity, i.e. in which most (if not all) of the growth medium has been 

already consumed by tumor cells. For the same reason, the effect of the growth serum on the value 

of 𝐷𝑉𝑆𝑉 (Sec. 2.1.1) is likely to be negligible (recall also that in Sec. 2.1.1 we have had to approximate 

the value of 𝐷𝑉𝑆𝑉 to its values in the few media in which it has been directly measured).  

   Concerning in vivo data, Rockne et al. [161] applied a simple biologically-based reaction-diffusion 

model to describe the observed growth of gliomas in human patients. The proliferation rate was 

estimated by fitting the model to actual in vivo data from nine patients diagnosed with GBM, yielding 

a range of in vivo values 0.01 < 𝑎 < 0.14 day-1 [161].  

  Combining both results, in Chapter 4 we use the range 0.01 < 𝑎 < 0.3 day-1, and assume that 𝑎 =

0.1 day-1 is a reasonable mean value. 

 Saturation cell density (𝒌) 
The saturation cell density 𝑘 is the maximum concentration of cells attainable in a culture vessel, under 

specified conditions, i.e. the maximum number of cells per unit of volume that a system can support 

(this value is equivalent to the concept of carrying capacity in ecological dynamics). The saturation cell 

density 𝑘 is necessary to set a limiting bound for the cell growth when it follows logistic dynamics, as 

usual for growing tumors [45, 34]. Therefore, parameter 𝑘 appears in the models describing oncolytic 

dynamics, e.g. in Eq. (1.27). Since the models in Chapter 4 describe the oncolytic effect of VSVs on a 

growing GBM tumor, we will need to know the value of 𝑘 for GBM cells.  

   In contrast, in Chapter 3 we consider T7 viruses infecting E. coli bacteria which have depleted their 

nutrient and, therefore, cannot grow in number [12]. Thus, for the T7-E. coli system (Chapter 3) there 

is no cell reproduction, and we do not need to estimate the saturation density 𝑘 (this is why the logistic 

term does not appear in, e.g., Eq. (1.21)). Remember that (as explained in Sec. 1.1.1), unlike other 

viruses, T7 infections do not cease when bacteria exhaust their nutrient, which facilitates the 

observation plaque growth and front speed measurements [12]. 

   𝒌 of GBM cells. This information was not measured in the specific oncolytic experiments to which 

we apply our models [25, 24, 155]. Therefore, in Chapter 4 we use the value 𝑘 = 106 cells/cm3, which 

has been previously measured [162] for GBM cells and used in reaction-diffusion modelling studies 

[163, 162]. 
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 Delay time (𝝉) 
When mathematically modelling virus infections, the delay time 𝜏 explicitly accounts for the time 

interval during which viruses are replicating inside the cell, i.e., the time elapsed between the moment 

a virus adsorbs on a cell and the moment it releases the new progeny. During this interval, neither the 

original virus nor its progeny diffuses, so 𝜏 has an important effect on the reaction-diffusion dynamics 

of an infection front, as discussed in Sec. 1.2.2. The first models developed to describe growing plaque 

dynamics did not include this effect (see Eqs. (1.19)-(1.21)). Therefore, we will base our models in 

Chapters 3 and 4 on the time-delayed model by Amor and Fort [21], i.e. Eqs. (1.22)-(1.26), which 

include the effect of 𝜏 explicitly. 

   𝝉 of T7 infecting E. coli. We will need the value of the delay time 𝜏 for this system in Chapter 3. We 

can estimate it by resorting again to the one-step experiment in Fig. 2.2 [4], which has been already 

used above to estimate the values of 𝑘2 and 𝑌. In this experiment, the delay time 𝜏 can be measured 

directly from the data as the time elapsed between adsorption (𝑡 = 0) and the first release of viruses 

(i.e., the beginning of the rise in the virus concentration). The values of the delay time used in Chapter 

3 for the three different strains in Fig. 2.2 thus obtained are 𝜏(𝑤𝑖𝑙𝑑) = 16 min and 𝜏(𝑝001) =

𝜏(𝑝005) = 14 min. 

   𝝉 of VSV infecting GBM. This parameter will be used in Chapter 4. Estimating the time delay for the 

VSV infecting GBM tumor cells is not as straightforward as for T7 infecting E. coli, because no data on 

one-step growth experiments is available. However, we can estimate upper and lower bounds for 𝜏 

from two results obtained by Wollman et al. [24] when studying the oncolytic potential of several 

viruses, including VSV. Firstly, the death of infected cells starts about 6 hours after the inoculation of 

viruses, but it takes 4 h since the inoculation and the first evidence of infection (which is visible 

because they use fluorescence altered virus strains). Therefore, 𝜏 > 2 h. Secondly, in another 

experiment infected cells are added directly (rather than free viruses) and newly infected cells appear 

about 12 h later. Thus 𝜏 < 12 h. Combining both results we obtain a wide range for the delay time in 

the VSV-GBM system, 2 < 𝜏 < 12 h. For this reason, the results in Chapter 4 will be presented as a 

function of 𝜏 (Fig. 4.2).  

 Front speeds of viral infections (𝒄) 
After inoculating viruses in a small area of a medium containing susceptible cells, an infection front is 

formed which expands outwards with a constant front speed, which can be measured experimentally. 

In this thesis we aim to develop realistic reaction-diffusion models that can estimate the observed 

speeds of the infection fronts of T7 viruses on E. coli (Chapter 3) and of VSV on GBM tumoral 

formations (Chapter 4). Therefore, we need to have experimental measurements of the front speed 

that we want to explain. 

   𝒄 of T7 fronts on E. coli. Bacteriophages are viruses that infect bacterial cells. In Chapter 3 we will 

analyze bacteriophage T7 infecting E. coli bacteria. Yin [15] took screenshots of growing plaques of Y7 

infecting E. coli at different times (Fig. 1 in Ref. [15]). As time passes, the plaque diameter increases 

and, by measuring the diameter at different times (13, 18 and 23h post-inoculation), Yin could 

estimate average speed of the infection front [15] for three different strains of T7 (namely wild, p001 

and p005, i.e. the same strains in Fig. 2.2). In this way, he obtained 𝑐𝑤𝑖𝑙𝑑 = 0.195 ± 0.012 mm/h, 
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𝑐𝑝001 = 0.253 ± 0.009 mm/h and 𝑐𝑝005 = 0.249 ± 0.009 mm/h. These are the speeds that we aim 

to explain with the models developed in Chapter 3. 

      𝒄 of VSV fronts infecting GBM tumors. VSVs infect mammalian cells, not bacteria. The oncolytic 

properties of VSVs against tumors have been studied in many scientific contributions, e.g. in Refs. 

[159, 25, 24, 26, 164, 23]. We will contribute to this topic in Chapter 4. However, in contrast to the T7-

E. coli system, the speed of VSVs infecting a GBM tumor has not yet been measured using experiments 

specifically designed to this end. However, Wollman et al. [24] developed an experiment to assess 

viral replication and spread of VSVs (among other oncolytic viruses) targeting GBM cells, from which 

we can estimate the speed of the infection front. This experiment is essentially a transfer of infected 

cells grown on a glass chip to a non-infected culture of GBM cells in serum-free medium. Then, it is 

possible to track the spread of the infection front because viruses have been altered so that the 

infected cells emit fluorescence. A screenshot of this experiment was taken at 24 hours post-infection, 

which is shown in Fig. 2.3 (adapted from Fig. 3A in Ref. [24]). From this image we know that at 𝑡 = 0 

the infection front is delimited by the glass chip (red lines in Fig. 2.3), and that the infection has spread 

at 𝑡 = 24 h approximately up to the green circle highlighted in Fig. 2.3. From the distances between 

the position of the front at these two different instants, we can estimate a range of experimental 

values for the front velocity. In this way, we obtain that 𝑐𝑉𝑆𝑉 = (4 − 5.4 ) ∙ 10
−3 cm/h, which is the 

range of speeds we aim to explain with our models in Chapter 4.  

 
Figure 2.3 A fluorescent protein expressed by GBM cells infected by the variant of VSV called G/GFP makes it 
possible to track infections in a culture dish using a fluorescence microscope. White arrows and red lines show 
the location of the small glass chip carrying the initially infected cells, i.e. the origin of the infection. The green 
curve shows the average displacement for viruses 24 h after the start of the infection. Original image extracted 
from Fig. 3A in Ref. [24], on which we have added the red and green lines. 
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2.2. Data on pre-industrial human populations 

 Ancient DNA data 
Ancient DNA (aDNA) is DNA isolated from ancient biological material. A genetic cline is a gradual 

spatial variation in the frequency of a genetic marker. Chapter 5 notes the existence, and seeks an 

explanation, for a human aDNA cline in Neolithic populations through Syria, Anatolia (present-day 

Turkey) and Europe. To this purpose, in Chapter 5 we develop demographic and genetic simulations 

in space and time. We have detected the cline using a genetic database that we have gathered from 

various aDNA studies, e.g. Refs. [78, 165, 166, 76, 83, 167, 168]. In those works, samples were 

recollected from skeletal human archaeological material (usually bone and teeth). Chapter 5 performs 

the simulations at the continental scale, because aDNA data are not yet numerous enough to study 

local geographic regions. When geneticists analyze aDNA from human remains, they often report the 

mitochondrial DNA (mtDNA), which is inherited through the maternal route and is found in both males 

and females. Fewer studies deal with the Y chromosome (which is inherited paternally and found only 

in male individuals). Chapter 5 considers mtDNA because there are more data for it, and this will make 

it possible to attain better statistics (i.e., narrower error bars). In the future, we hope that our 

approach will be applied not only to other mtDNA clines, but also to Y-chromosome clines. 

   As explained in Sec. 1.1.3, an haplogroup is a group of several DNA sequences (haplotypes) with a 

common ancestor. With regard to Chapter 5, it is important to mention that the mtDNA of European 

hunter-gatherers is composed mainly of U lineages (haplogroups U, U4, U5, and U8), which are absent 

in the early Neolithic (i.e., farmer) populations in Europe. In contrast, haplogroups N1a, T2, K, J, HV, 

V, W, and X have been found in early Neolithic European farmers [78, 169]. This set of mtDNA 

haplogroups (together with some Y-chromosome haplogroups) is sometimes called the Neolithic 

'genetic package' [78], in analogy to the Neolithic 'archaeological package' (i.e., cereals, sheep, 

ceramics, etc.) [170]. 

   An exhaustive search has been necessary to compile the database used in Chapter 5 (which is 

included as Appendix A to this thesis), because there was so far no such an exhaustive database 

available, and new data were being continuously published. In this way, we have been able to gatherer 

the information of 513 Neolithic individuals from remarkable scientific reports (mtDNA haplogroup, 

date, latitude, longitude…) and grouped them into 26 regional cultures according to their geographical 

and cultural closeness (plus five individuals which could not be grouped in regional cultures of more 

than two individuals). Figure 2.4 shows the 26 regions (used in Chapter 5) on a map of Europe and the 

Middle East. 
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Figure 2.4 Location of the 26 regional cultures with ancient mtDNA data used in the study of Chapter 5. 
Squares correspond to the oldest regional Neolithic cultures (first arrival wave of farmer settlers to that area), 
namely 1 Syria PPNB, 2 Anatolia, 3 Hungary-Croatia Starčevo, 4 Eastern Germany LBK, 5 Western Germany 
LBK, 6 Northeastern Spain Cardial, 7 Spain Navarre, 8 Portugal coastal Early Neolithic, 9 Romania Starčevo, 10 
Southern Germany LBK, and 11 Sweden (circle). Triangles correspond to more recent regional cultures, 
namely 12 Romania Middle Neolithic, 13 Romania Late-Middle Neolithic, 14 Hungary LBK, 15 Eastern 
Germany RSC, 16 Eastern Germany SCG/BAC, 17 Eastern Germany SMC, 18 Western Germany BAC, 19 
Western Germany BEC, 20 Western France Prissé, 21 South-Eastern France Treilles, 22 Catalonia Epicardial, 
23 Catalonia Late Epicardial, 24 Spain Basque country, 25 Portugal coastal Late Neolithic and 26 Portugal 
inland Late Neolithic. 

   For each of the 26 regions in Fig. 2.4, the percentage of haplogroup K is calculated by dividing the 

number of individuals with haplogroup K by the total number of individuals whose mtDNA haplogroup 

is known. For the individuals of each of the 26 regions, we also find their average date, as well as their 

average great-circle distance to the site of Ras Shamra, Syria (this is the oldest Neolithic Syrian site in 

previous work [47], and we therefore consider it as a reasonable origin for the Neolithic wave of 

advance). Of these 26 regions, we select 9 for our quantitative study. Firstly, because they are the 

oldest Neolithic regional cultures for which there are genetic data available, so they are the best ones 

to analyze the result of the Neolithic spread before other processes could affect the genetic pattern 

(e.g., further interbreeding between farmers and hunter-gatherers, population movements, etc.). And 

secondly, because each of these regions includes at least 8 individuals (regions with fewer individuals 

are ignored to avoid large error bars). These 9 regions are 1. Syria PPNB [165], 2. Anatolia (current 

Turkey) [80, 171], 3. Hungary and Croatia Starčevo [172, 83], 4 and 5: Germany LBK (Eastern and 

Western) [78, 80, 169, 83, 76], 6. North-Eastern Spain Cardial [83, 166, 173], 7. Navarre (Northern 

Spain) [78, 167], 8. Portugal [78, 173, 174, 175] and 11. Sweden TRB [176, 177]. A more detailed 

discussion will be given in Chapter 5 (Secs. 5.8.2 and 5.8.10).  

   As mentioned above, the database used in Chapter 5 is included as Appendix A Data S1 to this thesis. 

Table 2.1 shows, as an example, one individual and some of its important features for each of the 9 

regions used in the quantitative study in Chapter 5. 
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iD Location Lat., Long. BCE y mtDNA Archaeol. context Ref. 

H25 Tell Halula (Syria) 36.416, 38.166 7400 K Middle PPNB [165] 

BAR26 Bartin (Turkey) 40.3, 29.5666 6300 N1a1a1 Anatolia Neo [80] 

BAM14 
Alsónyék-Bátaszék, 

(Hungary) 
46.205, 18.705 5685 J1c Starčevo [172] 

KAR7 Karsdorf (Germany) 51.273, 11.656 5137.5 K1a LBK [78] 

HAL21 
Halberstadt-
Sonntagsfeld 

(Germany) 
51.89, 11.04 5137.5 T2b LBK [78] 

CSA26 
Can Sadurni, 

Barcelona (Spain) 
41.334, 1.922 5390 X1 Cardial culture [166] 

CAS204 
Los Cascajos, 

Navarra (Spain) 
42.559, -2.188 4932.5 U5 Early Iberian Neo [167] 

F19 
Almonda cave 

(Portugal) 
39.505, -8.615 5265 H4a1a Early Neolithic [173] 

Res15 Resmo (Sweden) 56.538, 16.446 2651 J1d5 TRB [176] 

Table 2.1 Some individuals of the Neolithic mtDNA database gathered for the study in Chapter 5 (the complete 
database is included as Appendix A to this thesis).  

 

 Persistence (𝒑𝒆) 
Let the persistence 𝑝𝑒  of a population stand for the proportion of individuals that reproduce at the 

same location where they were born. Then, (1 − 𝑝𝑒) indicates the probability to move from the 

birthplace to other places. The persistence  𝑝𝑒  is an important parameter in some population dispersal 

models, e.g. Eq. (1.33). An ethnographic study of the Majangir people, which are pre-industrial 

agriculturalists in Ethiopia, provides the persistence of 3 groups, namely 0.54, 0.40 and 0.19 [178]. As 

in previous work [139, 179, 94, 47], in Chapter 5 we will use the average of these 3 values, namely 

𝑝𝑒 = 0.38,  as a representative value to model the spread of the Neolithic. The main difference to 

those earlier works is that, besides the population density, we will also model the genetics. 

 Mobility (𝒎) 
   Let the mobility 𝑚 of a population stand for the mean squared displacement per generation, i.e. 

𝑚 =
〈∆2〉

𝑇
, (2.10) 

where ∆2 is the square of the distance between the birthplace of a parent and that of one of her/his 

children, the mean squared displacement 〈∆2〉 is the average of ∆2 over all individuals of the 

population considered, and 𝑇 is the generation time (defined as the age difference between the 

parent and her/his child, see Sec. 2.2.5). The interest of the mobility in Neolithic spread models is that 

the first such mathematical models were based on diffusion equations, e.g. on the Fisher equation 

(1.9). In that framework, we know from Secs. 1.2.1 and 1.2.2 that, in two-dimensional space, the 
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diffusion coefficient 𝐷 is simply related to the mobility 𝑚 as 𝐷 =
𝑚

4
 (note that here we use the symbol 

𝑇 rather than 𝜏, which has been used in Secs. 1.2.1.2, because 𝑇 is the usual notation for human 

populations [139, 179, 94, 47, 9], whereas 𝜏 is used in virus studies [4, 115, 21, 7, 8]). Ammerman and 

Cavalli-Sforza [52] estimated the mean squared displacement per generation for the three groups of 

pre-industrial farmers mentioned above [178], obtaining 𝑚1 = 1115.7 km2/gen, 𝑚2 = 1325.6 

km2/gen and 𝑚3 = 2153.0 km2/gen. Fort and Méndez [51] made an statistical analysis of a set of 

values (including those three) and obtained 𝑚 = 1544 ± 368 km2/generation (80% confidence-level 

interval). This range has been also used in further Neolithic transition studies [139, 179, 94, 47]. 

Similarly, here we will also use the average value 𝑚 = 1544 km2/generation (or 〈∆2〉 = 1544 km2). 

   As already mentioned in Sec. 1.3.3, the computational model in Chapter 5 uses a grid of square cells 

to subdivide the map of Europe and Near East. In that model, the dispersion of farmers in each 

iteration (generation) of the simulation takes place towards the four nearest neighboring cells (i.e., to 

the nearest ones to the north, south, east and west) of the original cell. This simple computational 

model makes simulations substantially faster, and we expect that more complicated dispersal models 

(with several distances and probabilities) would not change our conclusions. Then, since a fraction 𝑝𝑒  

of the population does not move and the remaining fraction, (1 − 𝑝𝑒), moves a distance 𝑟 (which is 

the length of a side of the square cells), we can obtain a reasonable estimate of 𝑟 by requiring that the 

mean squared distance moved per generation is 

(1 − 𝑝𝑒)𝑟
2 = 〈∆2〉, (2.11) 

where, as seen above, 𝑝𝑒 = 0.38 is the persistence (Sec. 2.2.2) and 〈∆2〉 = 1544 km2. From Eq. (2.11), 

we obtain that 𝑟 ≈ 50 km. This is the length of the sides of the square cells in our computational 

model in Chapter 5. Thus, our simulation grid is made of cells with area 50 × 50 = 2500 km2. 

Interestingly, a previous genetic simulation study (which did not perform the detailed estimation 

above for 𝑟) also used a square grid of cells with side 𝑟 = 50 km [89].  

 Maximum population densities of farmers (𝒑𝑭 𝒎𝒂𝒙) and hunter-

gatherers (𝒑𝑯𝑮 𝒎𝒂𝒙) 
In the simulations we need to limit the number of individuals present in a cell after population 
dispersion or growth [see Eq. (1.32)]. For this reason, we need estimates for the maximum population 
densities of farmers (𝑝𝐹 𝑚𝑎𝑥) and hunter-gatherers (𝑝𝐻𝐺 𝑚𝑎𝑥), which are also called carrying capacities 
or saturation densities. The transition from hunting and gathering to farming and stockbreeding led 
to significant increases in the population density [52, 49]. Ethnographical estimations of population 
densities for hunter-gatherers (HG) vary widely (for a table of ranges in different habitats see, e.g., 
Ref. [180]). Based on such data [180, 181], a representative value that has been used in previous 
simulations (already cited in the previous paragraph) of the spread of the Neolithic across Europe [89] 
is 𝑝𝐻𝐺 𝑚𝑎𝑥 = 0.064 HGs/km2. The population density of pre-industrial farmers is substantially higher. 
For example, the value that was used in those previous simulations [89] is 20 times that for hunter-
gatherers, i.e. 𝑝𝐹 𝑚𝑎𝑥 = 1.28 farmers/km2. We shall apply these values as reasonable estimates of the 
saturation density, which we shall use to compute the maximum cell population. As explained in Sec. 
2.2.3, each cell of the grid in the computational model (Chapter 5) covers an area of 50 × 50 km2, 
which means that cells that can be inhabited (i.e., those not located on the sea) have a maximum 

population number of 𝑃𝐹 𝑚𝑎𝑥 = 3,200 farmers/cell and 𝑃𝐻𝐺 𝑚𝑎𝑥 = 160 HGs/cell (for farmer and 
hunter-gatherer populations, respectively).  
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 Generation time (𝑻) 
In simulations of human range expansions, the generation time 𝑇 is defined as the mean time interval 

between the migration of an individual and one of her/his children. Note that we do not consider the 

oldest child but the average over all of them, because this is the relevant quantity driving the dynamics 

of front propagation (for a detailed analysis, see Ref. [182]). In the absence of ethnographic data that 

allow a direct estimation of this time interval for pre-industrial populations, the mean age difference 

between an individual and her/his child is used instead [182, 47]. In the computational model used in 

Chapter 5, each iteration includes the dispersal, cultural interaction and reproduction of individuals 

belonging to the same generation. Therefore, the time interval between two successive interactions 

is equal to the generation time 𝑇. Ethnographic observations of preindustrial farmer populations [178] 

lead to the probabilities 𝑝1 = 0.46 for 𝑇1 = 27 yr, 𝑝2 = 0.51 for 𝑇2 = 35.5 yr, 𝑝3 = 0.02 for  𝑇3 =

45.5 yr and 𝑝4 = 0.01 for 𝑇4 = 55.5 yr [182], so the average generation time can be estimated as   

〈𝑇〉 =∑𝑝𝑖𝑇𝑖

𝑁

𝑖=1

, (2.12) 

and this leads to the generation time that will be used in the simulations of Chapter 5, namely 〈𝑇〉 ≈

32 yr [182]. The average generation time for hunter-gatherers is presumably similar to this value, so 

we will use it for both farmers and hunter-gatherers (using a different value for each of both 

populations would require more complicated simulations, and we do not expect that they would lead 

to substantial changes in the results). 

 Net fecundities of farmers (𝑹𝟎,𝑭) and hunter-gatherers (𝑹𝟎,𝑯𝑮) 
When dealing with differential equations, such as the Fisher Eq. (1.9), net reproduction (i.e., the effect 

of births minus deaths) is usually logistic, 

𝜕𝑝𝐹(𝑥, 𝑦, 𝑡)

𝜕𝑡
|
𝑔

= 𝐹(𝑝𝐹) = 𝑎𝐹𝑝𝐹(𝑥, 𝑦, 𝑡) (1 −
𝑝𝐹(𝑥, 𝑦, 𝑡)

𝑝𝐹 𝑚𝑎𝑥
), (2.13) 

where subscript 𝐹 denotes farmers, 𝑔 denotes population growth (i.e., net reproduction), 𝑎𝐹 is the 

initial growth rate of farmers, and 𝑝𝐹 𝑚𝑎𝑥 is their maximum population density (also called saturation 

density or carrying capacity). Ethnographic values of the initial growth rate 𝑎𝐹 for 3 pre-industrial 

populations that settled in empty space have been reported in Refs. [51, 183], as follows.  

   (i) The island of Pitcairn, which is located 4,000 miles West of Chile and 1,400 miles Southeast of 

Haiti, during years 1790-1856 [184]. Those data yield 𝑎𝐹 𝑃𝑖𝑡𝑐𝑎𝑖𝑟𝑛 = 0.02995 ± 0.00119 yr-1 [183]. 

   (ii) The Bass Strait islands (between Australia and Tasmania) during years 1820-1945 [184]. The 

corresponding data yield 𝑎𝐹 𝐵𝑎𝑠𝑠 = 0.02626 ± 0.00052 yr-1 [183]. 

   (iii) The islands of Tristan da Cunha (in the middle of the South Atlantic Ocean) during years 1892-

1946  [185]. Those data yield 𝑎𝐹 𝑇𝑟𝑖𝑠𝑡𝑎𝑛 = 0.02527 ± 0.00032 yr-1 [183].  

   Moreover, for the United States population during the 19th century, data reported by Lotka [186] 

yield 𝑎𝐹 𝑈𝑆 = 0.03135 ± 0.00063 yr-1 [183] (the  effect of immigration from Europe was not 

subtracted, so it can be argued that the intrinsic rate could be somewhat lower). 
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   Isern et al. [183] calculated that these 4 ranges yield an 80%-confidence level average of 𝑎𝐹 =

0.028 ± 0.005 yr-1. 

   Now note that for low values of the population density 𝑝, i.e. at the conditions of the leading edge 

of the expansion front, Eq. (2.13) becomes 𝐹(𝑝𝐹) ≈ 𝑎𝐹𝑝𝐹(𝑥, 𝑦, 𝑡). Then 

𝜕𝑝𝐹(𝑥, 𝑦, 𝑡)

𝜕𝑡
≈ 𝑎𝐹𝑝𝐹(𝑥, 𝑦, 𝑡),        (2.14) 

and therefore 

𝑝𝐹(𝑥, 𝑦, 𝑡 + 𝑇) ≈ 𝑝𝐹(𝑥, 𝑦, 𝑡)𝑒
𝑎𝐹𝑇 . (2.15) 

   As mentioned in Sec. 1.2.5, in Chapter 5 we use a very simple model in which, following previous 

work [47, 139], net reproduction is given by 

𝑝𝐹(𝑥, 𝑦, 𝑡 + 𝑇) = 𝑅0,𝐹𝑝𝐹(𝑥, 𝑦, 𝑡), (2.16) 

where 𝑅0,𝐹 is the net fecundity of farmers, until the carrying capacity is reached, see the second line 

in Eq. (1.32). It is true that we could apply the solution to the logistic Eq. (2.13) instead of (2.16), but 

since we require that [47, 139] 

𝑅0,𝐹 = 𝑒
𝑎𝐹𝑇 , (2.17) 

the front speed is the same for both models [139], and we therefore expect similar results. Thus, in 

the simulations in Chapter 5 we use the simpler Eq. (2.16).  

   Using the average value of 𝑎𝐹 above (𝑎𝐹 = 0.028 yr-1), and the mean value in Sec. 2.2.5 for the 

generation time (𝑇 = 32 yr), we obtain that 𝑅0,𝐹 = 2.45 for farmers. In the simulations in Chapter 5, 

we assume that hunter-gatherers do not experience net growth (i.e., 𝑅0,𝐻𝐺 = 1) because initially they 

are at their maximum density in all inhabitable cells and, even if some of them become farmers, they 

will still need space [9]. 

2.3. Fronts from reaction-diffusion models 
Chapters 3-4 in this thesis use reaction-diffusion differential equations. A very simple example is the 

Fisher Eq. (1.9). We use two methods to determine wave-of-advance speeds from reaction-diffusion 

equations, namely analytical calculations and numerical integrations. We summarize both approaches 

in Secs. 2.3.1 and 2.3.2 below, respectively.  

   Finally, in Sec. 2.3.3 we describe the computational model used in Chapter 5. In contrast to Chapters 

3-4, the model in Chapter 5 is not based on differential equations. Indeed, it is a discrete-time model, 

i.e.,  the relevant quantities are computed every time step equal to one generation. The reason for 

this difference is the following. If the diffusion approximation were valid, for a population initially in a 

small region, at later times a Gaussian distribution for the population density (or concentration) versus 

distance would be observed. This is a very well-known result from basic diffusion theory (see, e.g., Fig. 

2.1 in Ref. [101]). Whereas for viruses (Chapters 3-4) this result has been never questioned, and virus 

diffusion coefficients have been measured in many experimental studies (see Sec. 2.1.1), for pre-
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industrial human populations (Chapter 5) it has been observed that the mobility data (sometimes 

called dispersal kernels) do not fit to a Gaussian [187, 183]. Thus, the diffusion approximation beaks 

down for pre-industrial human dispersals. But diffusion is only an approximation to more precise 

equations (see Sec. 1.2.2), which are called integro-difference equations (they have the form of Eqs. 

(1.12)-(1.13)). Indeed, the front speeds for humans obtained from reaction-diffusion equations make 

substantial errors, relative to the corresponding integro-difference equations [183]. Thus, in Chapter 

5 we do not use differential equations but simple simulations that mathematically correspond to 

integro-difference equations [139], i.e. equations similar to Eqs. (1.12)-(1.13). More details are given 

in Sec. 2.3.3 below. 

 Analytical calculations 
In contrast to the Fisher Eq. (1.9), which describes a single population, we will deal with sets of 

differential equations that describe 3 populations, namely viruses, uninfected and infected bacteria 

(in Chapter 3) or viruses, uninfected and infected tumor cells (in Chapter 4). We have already seen 

some examples of such equations in Sec. 1.2, e.g. Eqs. (1.19)-(1.21) or Eqs. (1.22)-(1.24). A front or 

travelling wave is defined as a population profile that travels with constant shape and speed. In order 

to accomplish an analytical solution for the front speed, three assumptions are made. (i) The 

population density 𝑝 of the expanding species at the leading edge of the front is very small, therefore 

the equation describing its dynamics can be linearized (an example of this has been already given 

above, namely Eq. (2.14) is the linearized version of Eq. (2.13)). (ii) For 𝑡 → ∞ and 𝑟 → ∞ (where 𝑟 =

√𝑥2 + 𝑦2 is the radial coordinate), the front of the expansion can be assumed planar at the local scale, 

which implies that the only non-vanishing spatial derivative is that along the radial direction, thus 
𝜕2𝑝

𝜕𝑥2
+
𝜕2𝑝

𝜕𝑦2
≈
𝜕2𝑝

𝜕𝑟2
. (iii) In the leading edge of the front, i.e. for 𝑧 → ∞ (where 𝑧 = 𝑟 − 𝑐𝑡 is the co-moving 

coordinate and 𝑐 is the front speed), the ansatz 𝑝(𝑧) = 𝑝̃𝑒−𝜆𝑧 for the population that expands its 

range (e.g., viruses) is assumed. Similarly, for a population that contracts its range (e.g., uninfected 

cells) or that has the shape of a pulse (e.g., infected cells) we assume that 𝑞(𝑧) = 𝑞̃(1 − 𝑒−𝜆𝑧) [188]. 

For an example of the shapes of travelling waves in these three cases, see Fig. 1.1, right. 

   The Fisher Eq. (1.9), the HRD Eq. (1.16), sets of reaction-diffusion equations such as (1.19)-(1.21) due 

to Yin and McCaskill, etc., can be solved by applying the three assumptions (i)-(iii) in the previous 

paragraph, although not always explicitly. We can derive the following equations from assumption (iii) 

above,  

𝜕𝑝

𝜕𝑡
= 𝜆𝑐𝑝(𝑟, 𝑡), 

𝜕2𝑝

𝜕𝑡2
= (𝜆𝑐)2𝑝(𝑟, 𝑡), 

(2.18) 
𝜕𝑝

𝜕𝑟
= −𝜆𝑝(𝑟, 𝑡), 

𝜕2𝑝

𝜕𝑟2
= 𝜆2𝑝(𝑟, 𝑡). 

 

   Then, according to marginal stability analysis [189], the front speed is given by 

𝑐 = 𝑚𝑖𝑛𝜆>0[𝑐(𝜆)], (2.19) 

where 𝑐(𝜆) is the so-called characteristic equation.  
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   We illustrate this procedure for a simple example, namely the Fisher Eq. (1.9). First, applying 

assumption (i) above, we linearize Eq. (1.9). As explained in Sec. 2.2.6, the logistic Eq. (2.13) is 

linearized into Eq. (2.14). Thus, the Fisher Eq. (1.9) is linearized into Eq. (1.11). Next, we apply 

assumption (ii) so that we can replace the first term in the right-hand side of Eq. (1.11) by 𝐷
𝜕2𝑝

𝜕𝑟2
. Finally, 

we apply assumption (iii), i.e. Eqs. (2.18) and obtain 𝐷𝜆2 − 𝑐𝜆 + 𝑎 = 0. This is the characteristic 

equation for this simple case (i.e., for the Fisher Eq. (1.9)). Finally, we solve this second-order equation 

and require that 𝜆 is real, which immediately leads us to 𝑐 > 2√𝑎𝐷. Thus, the minimum speed is 2√𝑎𝐷 

and, finally, Eq. (2.19) implies that the speed of the front is 𝑐 = 2√𝑎𝐷. This is the derivation of the 

Fisher speed, Eq. (1.10). The Fisher speed is applied in Chapter 4, Eq. (4.24).  

   Chapters 3 and 4 apply this method to more complicated cases, namely to derive the speed of virus 

infections from their respective sets of differential equations. In these cases, however, it is not 

possible to obtain an explicit result as for the Fisher equation above, but we can still find the speed 

(given by the minimum of a function) numerically. 

 Numerical integration 
Numerical integration makes it possible to obtain the speed of reaction-diffusion fronts, but only for 

specific numerical values of all of the parameters appearing in the reaction-diffusion equations. This 

approach is very useful to check the analytical calculations of the front speed described in the previous 

subsection. Moreover, numerical integrations make it possible to visualize the shape of travelling 

waves (for which seldom analytical equations can be derived). The so-called finite-difference method 

is usually applied to solve partial differential equations. It is based on approximating them to discrete 

finite-difference equations. In this approach, the following  approximation for the first derivative of 

an arbitrary function 𝑓 is used, 

𝑓′(𝑥0) ≈
𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
. (2.20) 

   Using superscripts for time and subscripts for space, we have for the population density 𝑝 

𝜕𝑝

𝜕𝑡
≈
𝑝
𝑗
𝑛+1 − 𝑝

𝑗
𝑛

∆𝑡
, 

𝜕2𝑝

𝜕𝑡2
≈
𝑝
𝑗
𝑛+1 − 2𝑝

𝑗
𝑛 + 𝑝

𝑗
𝑛−1

(∆𝑡)2
, 

(2.21) 

𝜕𝑝

𝜕𝑟
≈
𝑝
𝑗+1
𝑛+1 − 𝑝

𝑗
𝑛+1

∆𝑟
, 

𝜕2𝑝

𝜕𝑟2
≈
𝑝
𝑗+1
𝑛+1 − 2𝑝

𝑗
𝑛+1 + 𝑝

𝑗−1
𝑛+1

(∆𝑟)2
. 

Note that we evaluate the spatial derivatives at time 𝑛 + 1, rather than 𝑛. This is called the implicit 

procedure, and it leads to correct results withouth need to use so small space and time intervals as 

the explicit procedure (in which the spatial derivative would be evaluated at time 𝑛) [190]. When the 

implicit procedure is applied to a reaction-diffusion equation, generally we obtain, for each time step 

𝑛 + 1, a set of linear equations that have the so-called tridiagonal form [190], 
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[
 
 
 
 
𝑏1
𝑎2

𝑐1
𝑏2

0

𝑎3

𝑐2
𝑏3
⋱

⋱
⋱
𝑎𝐽

0

𝑐𝐽−1
𝑏𝐽 ]
 
 
 
 

[
 
 
 
 
 
𝑝1
𝑛+1

𝑝2
𝑛+1

𝑝3
𝑛+1

⋮
𝑝𝐽
𝑛+1
]
 
 
 
 
 

=

[
 
 
 
 
𝑑1
𝑑2
𝑑3
⋮
𝑑𝐽 ]
 
 
 
 

, (2.22) 

where 𝑝𝑖
𝑛+1 is the population density at distance 𝑟𝑖 = 𝑖 ∆𝑟 from the origin (𝑖 =1,2,3,..., 𝐽), and the 

spatial upper bound 𝐽 is related to the size of the system 𝐿 as 𝐽 =
𝐿

∆𝑟
. The coefficients 𝑑1, 𝑑2, … , 𝑑𝐽 

depend on the population density at the two previous times, namely 𝑝1
𝑛 and 𝑝1

𝑛−1. When dealing with 

an HRD equation (such as Eq. (1.16)) for a single population we apply, as initial conditions, that 

𝑝𝑗
1 = 𝑝𝑗

0 is different from zero only in a central region (namely, that from which the population 

expands its range). If there are several species (e.g. viruses, uninfected cells and infected cells), we 

have a set of differential equations, one for each species. For each of them, we have a matrix with the 

form of Eq. (2.22) and the coefficients 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 , 𝑑𝑖  also depend on the concentrations of the other 

species (at times 𝑛 − 1 and 𝑛). When dealing with several species, their initial conditions are those 

appropriate for the experimental setup. For example, for virus plaques we can assume the following 

initial conditions: (i) there are viruses only in a central region (where they have been inoculated); there 

are uninfected cells everywhere; and (iii) there are not infected cells anywhere [21].  

   Sets of linear equations of the form (2.22) can be easily solved with the Tridag routine in Fortran 

[190], and we have done so in our software codes. In this way, for each value of time (𝑛 + 1), we 

obtain the population density 𝑝𝑖
𝑛+1 at consecutive distances from the origin (𝑖 =1,2,3,..., 𝐽). Thus, 

numerical integration allows us to visualize the shape of travelling waves. An example can be seen in 

Fig. 1.1, right. Also, with this method we can calculate the front propagation speed easily, because by 

linear interpolation we can easily find the position where each travelling wave attains any given value, 

at each time step. For example, if a population attains, e.g., half of its maximum possible density at 

points 𝑖 and 𝑗 (with distances 𝑟𝑖 = 𝑖 ∆𝑟 and 𝑟𝑗 = 𝑗 ∆𝑟 to the origin) at times 𝑡𝑖  and 𝑡𝑗, respectively, a 

rough estimate of the front speed is simply 
𝑟𝑗−𝑟𝑖

𝑡𝑗− 𝑡𝑖
. In our software codes, we obtain more precise 

estimates by fitting a linear regression to the values of the distances (𝑟) versus times (𝑡) at which the 

population density is, e.g., half the maximum possible value (i.e., half the carrying capacity). Since the 

shape of travelling waves is constant (at large enough times), the speed would be the same if we 

considered, e.g., a quarter or a tenth of the carrying capacity. 

 Computational simulations 
As explained at the beginning of Sec. 2.3 (paragraph 2), reaction-diffusion equations do not provide 

an accurate description for human populations (Chapter 5). The reason is that in contrast to, e.g., 

viruses or tumor cells (Chapters 3-4), diffusion theory breaks down for humans (Chapter 5). This is 

because, contrary to the predictions of diffusion theory [101], for humans the number density of a 

population (initially in a small region) as a function of distance is given by a function (called the 

dispersal kernel) which does not have the shape of a Gaussian [187]. Therefore, using the diffusion 

approximation leads to substantial errors for the speed of fronts, of up to about 50% [183]. This is why 

for human populations (Chapter 5) we prefer to use integro-difference equations (i.e., equations with 

the form of Eqs. (1.12)-(1.13)). We stress that the reaction-diffusion approximation is obtained from 

integro-difference equations assuming small enough dispersal distances and times (Sec. 1.2.2), so 
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integro-difference equations provide a more precise description than differential equations. Another 

difference is that in Chapter 5 (human populations) we will perform computational simulations on a 

real map of Europe (i.e., including seas and mountains), whereas in Chapters 3 and 4 (virus systems) 

we consider homogeneous space.  

   In Chapter 5 we use computational simulations, rather than integro-differential equations, although 

both approaches are equivalent, because we are interested in the shape of a genetic cline (i.e., in the 

frequency of a genetic marker as a function of position), and this problem cannot be solved analytically 

but only numerically. 

   The details of the simulation applied in Chapter 5 are given within the same Chapter (Sec. 5.8.5), and 

therefore this section only summarizes its main features. 

   We run our simulations on a Cartesian grid of square cells of 50 × 50 km2 each. They are classified 

as inland, coastal, mountain, or sea cells. The entire grid covers the whole European continent and the 

Near East. The cell side is 50 km, because this is the characteristic distance moved by preindustrial 

farmers per generation, as estimated from observed mobility and persistence data (in Sec. 2.2.2). This 

model follows a dispersion-interaction-reproduction scheme, which allows us to study the evolution 

of a genetic haplogroup associated with early farmers. In agreement with archaeological evidence, we 

initially set the Neolithic population (farmers) in the Near East (as a representative origin of the spread, 

we use the cell in Syria with the oldest Neolithic site of the culture that spread into Europe). Initially, 

the rest of the inhabitable cells are populated by Mesolithic hunter-gatherers at their saturation 

density (see Sec. 2.2.4 for population density values). In agreement with ancient DNA data (Chapter 

5), some of the initial farmers have the mitochondrial haplogroup K, but none of the HGs has 

haplogroup K. At each iteration (or generation), the computational model of Chapter 5 performs three 

sequential steps: population dispersal, population interaction and population growth. The three 

mechanisms are summarized below (see Sec. 5.8.5 for a more extended description). 

   Population dispersal: at each iteration, and for each inhabited cell, a fraction 𝑝𝑒 = 0.38 (see Sec. 

2.2.2) of the Neolithic population remains in the same cell. The rest of the farmers, (1 − 𝑝𝑒), will 

migrate to other cells. If the origin cells is an inland cell, the remaining individuals are equally 

distributed among the four nearest neighboring cells, all of which are located at a distance of 50 km 

(mountain cells are not inhabitable, therefore if one neighbor is a mountain cell, the population that 

moves is distributed equally among the other three cells). If the origin cell corresponds to a coast cell, 

at least one of its neighboring cells will be a sea cell, thus the corresponding fraction of Neolithic 

individuals can travel across the sea and relocate with equal probability in other coast cells within a 

certain range (150 km, see Sec. 5.8.6). For a practical example of how dispersion works, see Fig. 2.5. 

In this example, initially we have 𝑃𝐹,0 = 100 farmers at the source coast cell (marked by a red dot) 

surrounded by one cell of each type (mountain cell at the top, inland cell at right, coast cell at left, and 

sea cell at the bottom), as shown in Fig. 2.5, left. Of these 𝑃𝐹,0 = 100 farmers, a constant portion 𝑝𝑒  

will remain at the site, i.e. 𝑝𝑒𝑃𝐹,0 = 38 farmers, see Fig. 2.5 right.  

   Then, the rules above imply that the rest of the farmers (1 − 𝑝𝑒) will migrate to three neighboring 

cells, since the fourth cell (to the top) is a mountain cell, and thus not inhabitable. The three possible 

travel directions are to the right and to the left (by land travel) and to the bottom (by sea travel). Thus, 

we obtain that (1 − 𝑝𝑒)𝑃𝐹,0 3⁄ = 20. 6̂ ≈ 21 farmers will move to the left cell and 21 farmers will 
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move to the right cell (see Fig. 2.5, right). Because the sea cell cannot be inhabited, the population 

that would travel there is equally distributed into all possible destinations according to the rules of 

sea travel. In this case we assumed a maximum sea travel range of 150 km, and thus there are 5 coast 

cells that can be reached by sea. Each of the 5 coast destinations reached by sea travel will receive 

20. 6̂ 5⁄ ≈ 4 farmers in this example. Note that the cell to the left of the origin cell will receive 25 

individuals, 21 through land travel and 4 through sea travel. Note as well that the number of farmers 

travelling to the bottom (20 farmers, which travel by sea) is different to that travelling to the left or to 

the right (21 farmers). However, in Chapter 5 we will use population densities rather than numbers, 

i.e. we will compute using non-integer numbers (20. 6̂ in this case). In future work, it would be of 

interest to perform simulations using integer numbers, so that the effects of stochasticity could be 

analyzed. 

 
 

Figure 2.5 Left: Example of the model used in Chapter 5. The population in the initial coast cell (red) can travel 
(i) by land to the right (inland cell) and to the left (coast cell), but no to the top (mountain cells are not 
inhabitable), (ii) by sea because the bottom cell corresponds to a sea cell (four possible destinations are at 
distances equal or lower than 150 km, which is the maximum sea travel distance, see Sec. 5.8.6). Right: 
Distribution of the 100 individuals at the initial coast cell (red) one iteration later: 38 individuals remain at the 
same spot and 62 individuals migrate (42 by land and 20 by sea travel). 

 
 

   Population interaction: the computational model in Chapter 5 considers that the Neolithic transition 

could have been a mix of demic and cultural diffusion processes. Vertical cultural transmission, i.e. 

cross-mating between farmers and hunter-gatherers, is computed at each iteration and inhabited cell 

using Eqs. (1.34)-(1.35). Those equations show that a fraction (ruled by the interbreeding parameter 

𝜂) of the Mesolithic hunter-gatherer (HGs) population will mate with farmers (Fs) and become part of 

the Neolithic community (ethnographic data indicate that HGs often become Fs, but in contrast Fs 

very rarely become HGs [52]). This incorporation of HGs into populations of Fs is an important feature 

of the model, because their children can inherit HG genetic markers and this leads to a decrease of 

the Neolithic haplogroup K in populations of Fs with increasing distance from the origin of the Neolithic 

spread (i.e., to a genetic cline). 
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   Population growth: unless the farmer population density (in a given cell) has reached its saturation 

value, it will increase by a factor 𝑅0,𝐹 (see Sec. 2.2.6). For simplicity, we assume that hunter-gatherers 

will not increase their population density, even if it has diminished due to cultural transmission. This 

seems a reasonable approximation, because cultural transmission yields new farmers which will use 

part of the cell space. In a more complicated model, we could include hunter-gatherer net 

reproduction, but we consider it likely that this would yield similar results, because the increase in 

farmer density due to cultural transmission is presumably small, compared to farmer net 

reproduction. For example, in Chapter 5 we will find that only about 2% of farmers interbred with 

hunter-gatherers (or acculturated them). This means that cultural transmission leads, for 100 initial 

farmers, to 102 farmers a generation later. But ethnographic data indicate a net reproduction rate of 

about 𝑅0,𝐹 = 2.45 (Sec. 2.2.6). Thus, net reproduction leads, for 100 initial farmers, to 245 farmers a 

generation later. Therefore, the effect of population growth (on population number) is surely larger 

than that of cultural transmission. 
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3. Front propagation speeds of T7 virus mutants2  

 

Abstract We propose a new reaction-diffusion model with an eclipse time to study the spread 

of viruses on bacterial populations. This new model is both biologically and physically sound, unlike 

previous ones. We determine important parameter values from experimental data, such as the one-

step growth. We verify the proposed model by comparing theoretical and experimental data of the 

front propagation speed for several T7 virus strains. 

 

Keywords biophysics, front propagation, mathematical model 

 

3.1. Introduction 
Bacterial viruses or bacteriophages (literally `eaters of bacteria') infect and replicate within bacteria. 

Right after their discovery, phages were used as an early form of biotechnology to fight bacterial 

pathogens. Nowadays, drug-resistant strains for many bacteria have appeared and this has led to a 

revived interest in this kind of therapy [191]. Moreover, these viruses are among the most common 

and diverse entities in the biosphere, so it is important to attain a better and more accurate knowledge 

of their dynamics. Understanding the speed of virus infection fronts is also important in the context 

of cancer treatment [45]. 

   It is possible to see with the naked eye how the spreading dynamics of viruses works in a medium of 

susceptible host bacteria. When a small quantity of phages is inoculated into a tiny, central region of 

liquid agar with host cells (bacteria in our case), the continuous replication and diffusion of viruses 

lead to an enlarging dark region, composed of dead cells. Such a region of lysed (i.e. dead) cells, 

surrounded by unlysed cells, is called a plaque. The growth process starts when a free virus diffuses 

into a host bacterium, adsorbs on its surface, injects its DNA into it, replicates within and finally (after 

a certain time) the bacterium dies and expels a new generation of viruses. The progeny viruses diffuse 

to surrounding host cells, and the cycle repeats again. The propagating front has a well-characterized 

speed, typically less than a millimeter per hour, which has been measured experimentally, and for 

which we try below to get a realistic and accurate reaction-diffusion model. 

    Numerous models of phage plaque enlargement have been proposed. The oldest and simplest one 

is due to Koch [13], who suggested that the diffusion speed was proportional to √
𝐷

𝜏
, where 𝐷 is the 

diffusion coefficient and 𝜏 the phage latent period (i.e., the time during which bacteriophages are 

inside cells, and thus not moving). By incorporating additional kinetic parameters, Yin and McCaskill 

                                                           
2 This Chapter is an exact transcription of the contents of the following paper (please find a copy of the published 

version in Appendix B): de Rioja VL, Fort J, Isern N. Front propagation speeds of T7 virus mutants. Journal of 

Theoretical Biology 385, 112–118 (2015). DOI: 10.1016/j.jtbi.2015.08.005. 
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[14] constructed a reaction-diffusion system and obtained the speed of travelling-wave solutions. 

Later You and Yin [144] supported the previous idea of an existing travelling-wave solution through 

numerical simulations of the same problem. However, the models due to Yin and co-workers [14, 144] 

lead, for parameter values derived from independent experiments, to speeds much faster than the 

experimental ones [14, 19]. It was then realized that the delay time or latent period (i.e., the time 

interval during which a virus is inside a cell and thus does not move) delays virus diffusion, and that 

this important effect could explain the slowness of the experimental speeds [4]. By solving the 

problem numerically, good agreement with experiment was attained (without fitting any parameter 

values) [4]. However, the equations were not fully understood from a biological viewpoint, as we shall 

explain below. Later Ortega-Cejas et al. [115] obtained some approximate but explicit formulas for the 

front speed based on the model in Ref. [4]. Amongst more recent models, Amor and Fort [21] 

proposed a new improved set of equations which satisfactorily explained the observed speeds of VSV 

(Vesicular Stomatitis Virus) infections, but still with some terms lacking a clear biological 

interpretation. 

   Using various bacteriophage T7 mutants in a growing plaque on E. coli host bacteria, Yin measured 

experimentally [15] the radial propagation speed for plaques of three mutant T7 virus strains (namely, 

p001, p005 and the wild type), finding different speeds depending on the type of mutant. These are 

the experiments that we want to explain. 

   On the basis of the model for VSV infections [21], we rewrite the equations carefully, so that they 

acquire full biological and mathematical meaning, and we apply them to T7 strains. With this new 

model we obtain a good agreement with the experimental results in Ref. [15], without requiring the 

use of any free or adjustable parameters. 

    In this paper, we introduce a new reaction-diffusion set of equations to explain the existing 

experimental data on the growth of T7 plaques on bacteria. In Sec. 3.2 we present the new time-

delayed model and we discuss why our modifications are reasonable. Section 3.3 is devoted to 

estimations of the necessary parameter values from independent experiments. In Sec. 3.4, the results 

are compared with experimental data for the propagation speed of three strains of the T7 virus, and 

Sec. 3.5 presents a simplification of the model yielding similar results. In Sec. 3.6 we compare to other 

time-delayed models. Finally, Sec. 3.7 is devoted to final conclusions, with particular attention to the 

model features and how the results are improved over previous models. 

3.2. Reaction-diffusion model 
We model the spatial dynamics of T7 mutants infecting host cells by considering interactions between 

three species: viruses (𝑉), uninfected bacteria (𝐵) and infected bacteria (𝐼). Those processes can be 

described schematically as 

𝑉 + 𝐵
𝑘1
→ 𝐼

𝑘2
→ 𝑌 ∙ 𝑉, (3.1) 

    where 𝑘1 is the adsorption rate, 𝑘2 the death rate of infected bacteria, and Y (yield or burst size) is 

the number of new viruses released per lysed host bacteria. These three parameters (𝑘1, 𝑘2 and Y) 

depend on the mutant strain considered. 
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    The experiment on which this theoretical work is focused [15] was conducted in agar (so that host 

bacteria are immobilized) and cells were initially in the stationary phase, i.e. with bacterial growth and 

death in balance (so that the number density of live bacteria does not change appreciably before 

viruses arrive). Viruses can move and adsorb on host bacteria, infecting cells and producing new 

viruses. 

    Some previous models have the drawback of assuming logistic dynamics, namely [4, 21, 115] 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= −𝑘2[𝐼](𝑟, 𝑡) {1 −

[𝐼](𝑟, 𝑡)

[𝐼]𝑚𝑎𝑥
} , (3.2) 

    in the absence of uninfected cells (i.e., if all cells are initially infected). [𝐼] in Eq. (3.2) is the 

concentration of infected hosts, [𝐼]𝑚𝑎𝑥 their maximum concentration, 𝑟 the distance from the 

inoculation point, and 𝑡 the time. 

    Let us define “free space” as the fraction of space not occupied by infected cells, relative to the 

maximum possible value that can be occupied by them, i.e. 1 −
[𝐼](𝑟,𝑡)

[𝐼]𝑚𝑎𝑥
. Equation (3.2) describes well 

the one-step growth experiment (see Fig. 1 in [19]) but has no biological meaning. Indeed, it assumes 

that the death rate of infected cell is proportional not only to the concentration of infected cells [𝐼] 

(which is reasonable), but also to the free space (term within brackets). Thus, we propose to replace 

this equation by taking into account the eclipse time 𝜏 between adsorption and the onset of the 

release of the virus progeny. Therefore, in the absence of adsorption we propose to replace Eq. (3.2) 

by 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= −𝑘2[𝐼](𝑟, 𝑡 − 𝜏). (3.3) 

    Note that we do not assume that all cells die at the same time after infection. That assumption is 

made in the perfect delay model [147], which makes use of [𝑉](𝑟, 𝑡 − 𝜏)[𝐵](𝑟, 𝑡 − 𝜏) instead of 

𝑘2[𝐼](𝑟, 𝑡 − 𝜏) (as we will see in Sec. 3.6 in detail). But the perfect delay model disagrees with 

biological experiments (because one-step experiments do not display a vertical step, see Fig. 3.1). In 

contrast, Eq. (3.3) does not represent a perfect vertical step, but a gradual increase after an eclipse 

time 𝜏. The model we present below is an alternative to the exponential, non-delayed model [i.e., a 

term 𝑘2[𝐼](𝑟, 𝑡)] and the perfect delay model [i.e., a term [𝑉](𝑟, 𝑡 − 𝜏)[𝐵](𝑟, 𝑡 − 𝜏)] and is more 

realistic than both extreme models.  

    In the presence of adsorption, the model we propose is thus described by (see Sec. 3.9): 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) − 𝑘2[𝐼](𝑟, 𝑡 − 𝜏), (3.4) 

𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
+
𝜏

2

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑡2

= 𝐷𝑒𝑓𝑓
𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑟2
+ 𝐹(𝑟, 𝑡) −

𝜏

2
𝑘1[𝑉](𝑟, 𝑡)

𝜕[𝐵](𝑟, 𝑡)

𝜕𝑡

−
𝜏

2
𝑘1[𝐵](𝑟, 𝑡)𝐹(𝑟, 𝑡) +

𝜏

2
𝑘2𝑌

𝜕

𝜕𝑡
{[𝐼](𝑟, 𝑡 − 𝜏)}, 

(3.5) 
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𝜕[𝐵](𝑟, 𝑡)

𝜕𝑡
= −𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡), (3.6) 

   where [𝑉] and [𝐵] are the concentration of viruses and uninfected bacteria respectively, and 𝐷𝑒𝑓𝑓 

is the effective diffusion coefficient of viruses (see next section). Bacteria do not diffuse because they 

are immobilized by the agar in this experiment. The virus growth function, 𝐹(𝑟, 𝑡), in Eq. (3.5) is 

𝐹(𝑟, 𝑡) = −𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) + 𝑘2𝑌[𝐼](𝑟, 𝑡 − 𝜏). (3.7) 

   In this model [Eqs. (3.4)-(3.7)], the time derivative 
𝜕

𝜕𝑡
 represents the change of the population 

number over time and the second space derivative 
𝜕2

𝜕𝑟2
 is related to the diffusion through space. Terms 

proportional to 𝑘1 account for the decay of viruses [Eqs. (3.5) and (3.7)] and host bacteria [Eq. (3.6)] 

and the creation of infected cells [Eq. (3.4)], as a result of the infection process (note that these terms 

are the same as Eqs. (9) and (11)-(13) in Ref. [21]). Infected cells also decay following their own rate 

of death 𝑘2 [Eq. (3.4)], and as shown by Eq. (3.1), for each dead cell the viruses increase their number 

Y times [Eqs. (3.5) and (3.7)]. The terms proportional to 𝜏 in Eq. (3.5) are second-order corrections (see 

Sec. 3.9), they were applied already in Ref. [21], and they take care of the time delay due to the fact 

that viruses spend a time 𝜏 inside cells before the new generation disperses away [4]. As mentioned 

above, the main drawback of Ref. [21] is studying the death of the infected cells from a logistic 

equation, which has no biological sense. 

    Therefore, here we present a new model with two main effects: (i) the second-order correction that 

has been shown to be fundamental to describe time-delayed biological fronts  [4, 21, 51]  [i.e., the 

terms proportional to 𝜏 in Eq. (3.5)], and also (ii) a biologically meaningful description of the death 

process, Eq. (3.3) [instead of logistic growth dynamics, Eq. (3.2)]. 

    Other authors have also described the death process through including an eclipse time with terms 

proportional to concentrations at 𝑡 − 𝜏, rather than a logistic function [147, 146]. However, those 

models do not include any second-order terms, i.e. any diffusive delay (effect (i) in the previous 

paragraph), which is necessary to take proper account of the fact that viruses do not move during a 

time interval τ, because they are inside the infected cells. The death of infected cells is also described 

in Refs. [147, 146] differently than in our model (in Sec. 3.6 we discuss this in more detail and compare 

the models and experiments). 
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Figure 3.1 One-step growth curves of T7 mutants adapted to the model in this paper. Experimental data (□ 
for the wild T7, ○ for the p001 mutant and △ for the p005 mutant) have been obtained from Fig. 3 in Ref. [15]. 
Full, dashed and dotted lines correspond to the fits for the wild type and p001 and p005 mutants, respectively. 

 

    We introduce dimensionless variables to simplify the analysis. Let 𝐵0 be the initial concentration of 

bacteria, then 𝐵̅ ≡ [𝐵] 𝐵0⁄ , 𝑉̅ ≡ [𝑉] 𝐵0⁄ , 𝐼 ̅ ≡ [𝐼] 𝐵0⁄ , 𝑡̅ ≡ 𝑘2𝑡 and 𝑟̅ ≡ 𝑟√𝑘2 𝐷𝑒𝑓𝑓⁄  are the new 

dimensionless variables, and 𝜏̅ ≡ 𝑘2𝜏 and 𝜅 ≡ 𝑘1𝐵0 𝑘2⁄  the new dimensionless parameters. The aim 

is to find the speed of travelling-wave solutions which satisfies the set of differential equations (3.4)-

(3.6). These become single-variable differential equations by using the co-moving coordinate 𝑧̅ = 𝑟̅ −

𝑐̅𝑡̅. 𝑐̅ (positive) is the dimensionless wave front speed and is related to the dimensional speed c by 𝑐̅ =

𝑐 √𝑘2𝐷𝑒𝑓𝑓⁄ . Following previous work [4, 14, 21], we assume that the concentrations at the leading 

edge of the propagation front (𝑧 → ∞) are (𝑉̅, 𝐵̅, 𝐼)̅ = (𝜖𝑉 , 1 − 𝜖𝐵, 𝜖𝐼) ≈ (0,1,0), where 𝜖 =

(𝜖𝑉 , 𝜖𝐵, 𝜖𝐼) = 𝜖0 ∙ 𝑒
−𝜆𝑧̅. For non-trivial solutions to exist, the determinant of the matrix corresponding 

to the linearized model must be zero. This leads us to the following characteristic equation 

(1 −
𝜏̅𝑐̅2

2
) 𝑐̅𝜆3 + [𝑒−𝜆𝑐𝜏̅̅ − 𝑐̅2 (1 +

𝜏̅

2
𝑒−𝜆𝑐𝜏̅̅)] 𝜆2 + [𝜅 (

𝜏̅

2
𝜅 − 1 +

𝜏̅

2
𝑌𝑒−𝜆𝑐𝜏̅̅) − 𝑒−𝜆𝑐𝜏̅̅] 𝑐̅𝜆

+ 𝜅𝑒−𝜆𝑐𝜏̅̅ [
𝜏̅

2
𝜅 − 1 − 𝑌 (

𝜏̅

2
𝜅 − 1)] = 0. 

(3.8) 

   It is known that, according to marginal stability analysis [189], the propagation front moves with the 

minimum possible speed. Therefore, 

𝑐̅ = 𝑚𝑖𝑛𝜆>0[𝑐̅(𝜆)], (3.9) 

   where 𝑐̅(𝜆) is given implicitly by equation (3.8). 
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3.3. Parameter values 
We have a new time-delayed model which depends on various parameters. It is necessary to estimate 

their values from experiments different from the front-speed experiments that we want to explain. 

The front propagation speed depends on the viral diffusivity 𝐷𝑒𝑓𝑓, the average yield Y, the kinetic 

parameters 𝑘1 and 𝑘2, the host concentration 𝐵0 and the eclipse time 𝜏. Since we aim to explain the 

experimental data in Ref. [14], these parameters must be determined for strains of the T7 virus and 

E. coli bacteria. 

    Yin and co-workers noted that the diffusion coefficient D of viruses in agar must be corrected by the 

fact that host bacteria adsorb the viruses, and this leads to more tortuous paths for the viruses at high 

bacterial concentrations. As noted in previous work, the effective coefficient 𝐷𝑒𝑓𝑓 is therefore given 

by Fricke's law [4], 

𝐷𝑒𝑓𝑓 =
1 − 𝑓

1 +
𝑓
𝑥

𝐷, (3.10) 

    where f is the initial concentration of bacteria relative to its maximum, i.e. 𝑓 = 𝐵0 𝐵𝑚𝑎𝑥⁄ , and x 

stands as an approximation of the cells' shape. For spherical particles 𝑥 = 2, while for E. coli it is more 

accurate to use 𝑥 = 1.67 [4]. Note that the diffusivity coefficient D corresponds to viruses moving 

through agar in absence of bacteria (𝑓 = 0). T7 viruses are very similar to phage P22 in shape and size, 

thus we use the corresponding value 𝐷 = 4 × 10−8 cm2/s [4]. 

    The rate of adsorption of viruses, 𝑘1, was estimated from a separate experiment conducted in KCN, 

a substance that prevents viruses from reproducing. We have only one experimental value for the T7 

virus, 𝑘1 = (1.29 ± 0.59) × 10
−9 ml/min [4], corresponding to the wild strains. For the other 

mutants, we have not been able to find any reliable experimental value, thus we will use the same 

value of 𝑘1 for all three strains. We will return to discuss this parameter in the next section. 

    Finally, the parameters 𝜏, Y and 𝑘2 are obtained from the so-called one-step growth experiments. 

They consist in measuring the concentration of viruses as a function of time for a given initial, 

homogeneous population of infected bacteria. Depending on the T7 mutant, the curves are different 

(see Fig. 3.1) and so will be the parameter values. Figure 3.1 allows us to obtain the necessary 

information from each mutant to estimate its value of 𝜏, Y and 𝑘2, as we next explain. 

    The eclipse phase of the one-step growth Fig. 3.1 corresponds to the stage between adsorption (𝑡 =

0) and the first release of viruses (i.e., the beginning of the rise in virus density). This interval of time 

(the eclipse time) is 16 minutes for the wild type and 14 minutes for the p001 and p005 mutants. Note 

that if we used higher values for 𝜏, e.g. 𝜏 = 18 min for the wild strain, for 𝜏 = 17 min we would have 
𝜕[𝐼](𝑟,𝑡)

𝜕𝑡
= 0 according to Eq. (3.3), whereas we must have 

𝜕[𝐼](𝑟,𝑡)

𝜕𝑡
≠ 0 according to Fig. 3.1. 

    The average burst sizes Y differ significantly for the three mutants. They can be calculated as the 

quotient between the maximum and the initial concentration of viruses, i.e. 𝑌 =
𝑉𝑚𝑎𝑥

𝑉0
, where 

according to Fig. 3.1 𝑉0 = 2 × 10
8 ml-1 for the three kinds of mutants. Inserting the data in Fig. 3.1, 

we obtain the yields 𝑌 = 34.5 for the wild type, 𝑌 = 56.5 for the p001mutant, and 𝑌 = 65 for the 

p005 mutant. As we shall see, these higher productivities of new generations for the two mutants 
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result in faster infections (relative to the wild type). The three yields above have been obtained for 

cells in agar-immobilized microcolonies containing many cells. As noted by Yin and McCaskill [14], such 

yields are substantially lower than the typical yield for an isolated cell under optimal conditions (𝑌 ≈

200). Yin and McCaskill suggested that this difference may be due to a number of factors, such as 

inherently lower yields per cell when immobilized in agar, premature lysis or inhibition due to the 

death of adjacent cells, high multiplicities of adsorption required for host infection, readsorption of 

newly released viruses on cell fragments, etc. [14]. If we used the yield for an isolated cell, we would 

have to incorporate additional terms to include other possible kinds of death and interactions in our 

mathematical model. However, the measured experimental values of the burst size quoted above (for 

cells in agar-immobilized microcolonies containing many cells) implicitly include these possible 

interactions. 

    The rate of death of infected bacteria 𝑘2 may be understood as the reproduction of viruses, because 

viruses replicate as bacteria die. For 𝑡 < 𝜏 there are no new viruses (see Fig. 3.1), so no infected cells 

have died yet and thus [𝐼](𝑡) = 𝐼0. For 𝑡 ≥ 𝜏 Eq. (3.3) yields 𝑑[𝐼] = −𝑘2𝐼0𝑑𝑡. Because each infected 

cell produces Y viruses, 𝑑[𝑉] = −𝑌𝑑[𝐼] = 𝑘2𝑌𝐼0𝑑𝑡 = 𝑘2𝑉𝑚𝑎𝑥𝑑𝑡. Therefore, the slope of each straight 

line in Fig. 3.1 is 𝑘2𝑉𝑚𝑎𝑥, and 𝑘2 =
𝑉𝑚𝑎𝑥−𝑉0

∆𝑡∙𝑉𝑚𝑎𝑥
≈

1

∆𝑡
, where ∆𝑡 is the time interval during which [𝑉] 

increases, also known as the rise period 
1

𝑘2
. It is straightforward to estimate the values of 𝑘2 from the 

figure, and they turn out to be 1/4 min-1 for the wild type and 1/6 min-1 for the p001 and p005 mutants. 

    It is important to remember that all of these parameters are known a priori, thus we do not use any 

free or adjustable parameters in our predictions. 

    Accordingly to Fig. 3.1, the average latent period is 𝜏 +
1

2𝑘2
, where 𝜏 is the eclipse time. 

    For clarity, we mention that when all infected cells have died, no more viruses are produced to (Fig. 

3.1, right side) and Eq. (3.3) obviously breaks down. Thus the general evolution equation we propose 

is 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
=   {

  −𝑘2[𝐼](𝑟, 𝑡 − 𝜏) if  [𝑉] = 𝑉max

  0    if  [𝑉] = 𝑉max
 , (3.11) 

    where the second line is analogous to some approaches to single-species systems (see Eq. (9) in Ref. 

[139]). However this point is, in fact, unnecessary for the purposes of the present paper because the 

front speed is computed at the leading edge of the infection front, where [𝑉] ≈ 0 (Sec. 3.2). Obviously, 

in Eq. (3.11) the condition [𝑉] < 𝑉𝑚𝑎𝑥 is equivalent to [𝐼] ≠ 0, and the condition [𝑉] = 𝑉𝑚𝑎𝑥 is 

equivalent to [𝐼] = 0. 

3.4. Theory versus experiment 
In this section we study the spatial dynamics of different T7 virus strains. The experimental data (black 

squares in Fig. 3.2) and their error bars were obtained in Ref. [15] for plaques where the concentration 

of nutrient was 10 g/l, which corresponds to 𝑓 = 0.2 (see Ref. [14], pp. 1543-1544) and 𝐵𝑚𝑎𝑥 = 10
7 

ml-1 (see Ref. [14], Fig. 3a) thus 𝐵0 = 2 × 10
6 ml-1. 
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    The theoretical results will be calculated below with the parameters Y, 𝑘2 and 𝜏 for each strain 

extracted from Fig. 3.1 (as detailed in Sec. 3.3), and the mean values of 𝑘1 and 𝐷𝑒𝑓𝑓. Because the value 

of 𝑘1 is substantially more uncertain than those of other parameters [4], the corresponding error bars 

are obtained from the experimental range of 𝑘1, namely 𝑘1 = (1.29 ± 0.59) × 10
−9 ml/min [4]. 

    The classical approach with no delay or eclipse time, due to Yin and McCaskill (triangles in Fig. 3.2), 

predicts speeds much faster than the experimental ones (black squares). This model by Yin and 

McCaskill [14] (with 𝑘−1 = 0, as noted in Ref. [192]) is the same as our model [Eqs. (3.4)-(3.7)] with 

𝜏 = 0, i.e. 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) − 𝑘2[𝐼](𝑟, 𝑡), (3.12) 

𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝑒𝑓𝑓

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑟2
− 𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) + 𝑘2[𝐼](𝑟, 𝑡), (3.13) 

𝜕[𝐵](𝑟, 𝑡)

𝜕𝑡
= −𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡). (3.14) 

   The new model introduced in this paper (circles in Fig. 3.2) agrees better to the experimental data 

than the classical model Yin and McCaskill, for all three mutants. This improvement is clearly visible in 

Fig. 3.2, where we see that the results from the new model lie much closer to the experimental data 

than the classical model [14]. If we calculate the errors of the models versus the experimental data, 

the classical model by Yin and McCaskill has an average error of 75%, compared to only 10% for the 

new model presented here. 

 
Figure 3.2 Front propagation speeds for T7 mutants (wild, p001 and p005). Black squares refer to 
experimental data and white symbols to the theoretical models: triangles for the classical Yin et al. model, 
circles for the new model, stars for the simplified model explained in Sec. 3.5, rhombuses for the model by 
Jones et al. (2012), and white squares for the model by Gourley et al. (2005) both from Sec. 3.6. 
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3.5. Simplified mathematical model 
Our new model, Eqs. (3.4)-(3.7), yields a rather complex characteristic equation, Eq. (3.8), from which 

we compute the front speeds. In this section we derive a simplified expression leading to similar 

results. We proceed by removing each term and evaluating its contribution to the front speed, in order 

to ultimately keep only those terms that have a major contribution on the model results. 

    In this way, it is easy to see that all of the terms in Eqs. (3.4) and (3.6) are important to achieve a 

good result, but some terms in Eq. (3.5) are not. Hence, we just modify this equation. 

    On one hand, the expansion of 𝐹(𝑟, 𝑡) to second-order [the three last terms in Eq. (3.5)] introduces 

a small change on the results. We can neglect all reaction terms proportional to τ in this equation. 

    On the other hand, if we understand the right side of Eq. (3.5) as the diffusion term, plus the reaction 

term (plus second-order approximations), we can also neglect the adsorption of virus into bacteria, 

i.e. the term with 𝑘1 in Eq. (3.7). Diffusion and creation of new viruses are thus the terms with major 

contributions to the front speed. 

    In this simplified model we can therefore replace Eq. (3.5) in our set by 

𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
+
𝜏

2

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑡2
= 𝐷𝑒𝑓𝑓

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑟2
+ 𝑘2[𝐼](𝑟, 𝑡 − 𝜏), (3.15) 

    Considering now the set composed by Eqs. (3.4), (3.6) and (3.15) we obtain a new characteristic 

equation, 

[𝜆𝑐̅ + 𝜆2 (
𝜏̅𝑐̅2

2
− 1)] (𝜆𝑐̅ + 𝑒−𝜆𝑐𝜏̅̅) − 𝜅𝑌𝑒−𝜆𝑐𝜏̅̅ = 0, (3.16) 

much simpler than the previous Eq. (3.8). The results of this model are shown as stars in Fig. 3.2. As it 

can be seen, the front speeds of the simplified model (stars) are always slightly slower than those 

found by the main model (circles). But the difference between the two models is only about 4% in all 

three cases. By comparing with the experimental data (black squares in Fig. 3.2, we see that the 

simplified model in this section [stars, Eq. (3.16)] is still much better than the classical one (triangles) 

in spite of being much simpler than the complete model in Sec. 3.2 [circles, Eq. (3.8)]. 

3.6. Comparison to other time-delayed models 
Some other authors have also described the death process by considering concentrations at 𝑡 − 𝜏, 

rather than a logistic function [147, 146]. However, as mentioned above, those models do not include 

the diffusive delay (i.e., second-order corrections), which is necessary because viruses do not diffuse 

when they are inside the infected cells. Another difference between our model and that in Ref. [147] 

is that the term 𝑘2[𝐼](𝑟, 𝑡 − 𝜏) in our model is replaced by 𝑘1[𝐵](𝑟, 𝑡 − 𝜏)[𝑉](𝑟, 𝑡 − 𝜏). From a 

conceptual point of view, in our model the infected cells present at the system at time 𝑡 − 𝜏 begin to 

die at time t, and do so gradually thereafter (with rate 𝑘2). Thus not all cells die exactly at time t in our 

model, in agreement with the experimental data (Fig. 3.1). In contrast, according to the model in Ref. 

[147] all cells infected at time 𝑡 − 𝜏 die exactly at time t, thus in the one-step experiment their model 

predicts a perfect step-like result, in disagreement with experimental data (Fig. 3.1). Thus we expect 
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the model by Jones et al. [147] to yield faster speeds than our model for two reasons: (i) they neglect 

the diffusive delay; and (ii) they neglect the fact that the death of some cells takes longer than τ after 

infection. Replacing 𝐷 by 𝐷𝑒𝑓𝑓 (as explained in Sec. 3.3), the model by Jones et al. is (see Eqs. (2.2) in 

Ref. [147]) 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) − 𝑘1[𝑉](𝑟, 𝑡 − 𝜏)[𝐵](𝑟, 𝑡 − 𝜏), (3.17) 

𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝑒𝑓𝑓

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑟2
− 𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) + 𝑌𝑘1[𝑉](𝑟, 𝑡 − 𝜏)[𝐵](𝑟, 𝑡 − 𝜏), (3.18) 

𝜕[𝐵](𝑟, 𝑡)

𝜕𝑡
= −𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡). (3.19) 

    Note that this is the same as the model by Yin et al. [Eqs. (3.12)-(3.14)], with 𝑘2[𝐼](𝑟, 𝑡) replaced by 

𝑘1[𝐵](𝑟, 𝑡 − 𝜏)[𝑉](𝑟, 𝑡 − 𝜏). By following again the same method as in Sec. 3.2, we find that the 

characteristic equation for the model due to Jones et al. [147] is 

𝜆2 − 𝜆𝑐̅ + 𝜅(𝑌𝑒−𝜆𝑐𝜏̅̅ − 1) = 0. (3.20) 

    Note that, in fact, the equation for 
𝜕[𝐼](𝑟,𝑡)

𝜕𝑡
 above is not necessary to compute this speed, since [𝐼] 

does not appear in the other two equations of the model by Jones et al. [147]. 

    In Fig. 3.2 (rhombuses) we have also included the predictions of the model by Jones et al., for the 

same parameter values used in our model. We see in Fig. 3.2 that their model [147] predicts faster 

speeds than our model, as expected. Moreover, they are faster than the experimental speeds. For the 

wild strain, our model is consistent with the experimental range. For the mutants p001 and p005, the 

mean speeds predicted by our model are also closer to the experimental means (although the error 

bars are larger for the model by Jones et al. [147], because the speed depends strongly on 𝑘1). 

    There is one more time-delayed model of virus front spread, due to Gourley et al. [146]. It is very 

similar to that by Jones et al. [147], discussed above, but it assumes an additional, natural death 

process only for infected cells (with rate 𝜇𝐼 and unrelated to virus infection) that decreases the number 

density of infected cells after time 𝜏 by a factor 𝑒−𝜇𝐼𝜏 [146]. Although no biological reason was given 

in Ref. [146] why an additional death process might affect only the infected cells (and not the 

uninfected ones), for completeness we next explore whether this model by Gourley et al. [146] 

changes the results of the model by Jones et al. [147] or not. Since this model by Gourley et al. [146] 

includes an additional death process for the infected cells, intuitively we expect that it could yield 

slower speeds than the model due to Jones et al. [147]. For the experimental conditions corresponding 

to the speeds that we analyze in the present paper (Fig. 3.2), the model proposed by Gourley et al. is 

(see Eqs. (1.1), (2.1) and (4.1) in Ref. [146]) 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡) − 𝑒

−𝜇𝐼𝜏𝑘1[𝑉](𝑟, 𝑡 − 𝜏)[𝐵](𝑟, 𝑡 − 𝜏), (3.21) 

𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝑒𝑓𝑓

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑟2
− 𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡)

+ 𝑌𝑒−𝜇𝐼𝜏𝑘1[𝑉](𝑟, 𝑡 − 𝜏)[𝐵](𝑟, 𝑡 − 𝜏), 

(3.22) 
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𝜕[𝐵](𝑟, 𝑡)

𝜕𝑡
= −𝑘1[𝑉](𝑟, 𝑡)[𝐵](𝑟, 𝑡), (3.23) 

    where we have neglected cell reproduction because in the experiments we want to explain, the cells 

were in the stationary growth phase before the arrival of viruses (as explained in Sec. 3.2). We have 

also neglected virus death because it is negligible [193]. We do not include diffusion of uninfected or 

infected cells because bacteria are immobilized in agar in these experiments (as mentioned in Sec. 

3.2). By following again the same method, the characteristic equation in the model due to Gourley et 

al. is 

𝜆2 − 𝜆𝑐̅ + 𝜅(𝑌𝑒−𝜆𝑐𝜏̅̅𝑒−𝜇𝐼𝜏 − 1) = 0. (3.24) 

    Again, in fact the equation for 
𝜕[𝐼](𝑟,𝑡)

𝜕𝑡
 above is not necessary to compute this speed, since [𝐼] does 

not appear in the other two equations of the set. In Fig. 3.2 (plotted as white squares) we have also 

included the predictions of this model by Gourley et al. [146] using the experimental value 𝜇 = 0.4h-1 

(from Fig. 7 in Ref. [194]). It is seen that its predictions are slower (as expected) but almost the same 

as those of the model by Jones et al. [147]. The speeds from both models are faster than the 

experimental ones. 

    Finally, it is worth to note that, in situations where infected cells exit that class due to some other 

form of interaction, it would be necessary to modify our model. For example, for an additional, natural 

death process with exponential dynamics for infected cells, the right-hand side in Eq. (3.4) would 

include an additional term −𝜇𝐼[𝐼](𝑟, 𝑡) and Eq. (3.5) should be modified accordingly. 

3.7. Conclusions 
We have proposed a new reaction-diffusion model with an eclipse time that satisfactorily explains the 

experimental results of T7 virus plaques on E. coli. This improvement over previous models have been 

attained by means of the careful modification of one of the evolution equations, which lacked 

biological significance. 

    Indeed, some previous models [4, 21, 115] assumed that the death rate of infected cells is 

proportional not only to their density, but also to the free space [Eq. (3.2)], which is not biologically 

reasonable. In contrast, the new model assumes that the death rate is proportional only to the density 

of infected cells, Eq. (3.3), which begin to die after a time lag 𝜏, corresponding to the eclipse phase of 

Fig. 3.1. Thus our new model is more reasonable biologically. Moreover, our new model agrees 

reasonably well with experimental data, in contrast to the classical model without delay or eclipse 

time due to Yin and et al. [14, 144]. It is important to stress that Yin and co-workers already noted that 

their model was too fast for realistic parameter values, and only by fitting three parameters could it 

yield sufficiently slow speeds to agree with the experimental ones (Fig. 3 in Ref. [14]). In contrast, here 

we have not fitted any parameter but used realistic values, i.e. all parameter values we have applied 

have been obtained from independent experiments. 

    Other authors took into account the role of the eclipse or delay time 𝜏, but only in the reactive and 

not in the diffusive process [147, 146], and they assumed the same eclipse time for all viruses. Those 

models yield faster speeds than the experimental ones. Also, we stress the importance of using 
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realistic terms to modelized the interactions, e.g. the death process of infected cells (i.e. the release 

of viral progeny). 

    Since the propagation of viruses is an active field of study in biophysics and medicine, having an 

underlying theory that is both mathematically and biologically sound is of special relevance. 

Furthermore, we have found that the results agree with experiments. 

    By means of the detailed analysis of a simple mathematical model, we have aimed to demonstrate 

that such physical models are able to explain the spatial dynamics of virus infections. Certainly, in 

order to have a more comprehensive understanding of the problem, extensive data gathering for 

several viruses and environments should be undertaken.     
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3.9. Time-delayed diffusion 
In order to make this paper as self-contained as possible, here we include a brief derivation of Eq. 

(3.5). The derivation below (see Refs. [117, 51] for details) was originally proposed for human 

populations [51] and later applied to viruses [4, 21, 115]. 

    During a time interval equal to the eclipse time 𝜏 (estimated from Fig. 3.1 in our case), the virus 

concentration changes both due to the reactive processes (3.1) and to dispersal. We first calculate the 

former change by using a Taylor series, 

|[𝑉](𝑥, 𝑦, 𝑡 + 𝜏) − [𝑉](𝑥, 𝑦, 𝑡)|𝑟 = 𝜏
𝜕[𝑉]

𝜕𝑡
|
𝑟

+
𝜏2

2

𝜕2[𝑉]

𝜕𝑡2
|
𝑟

+⋯ = 𝜏𝐹 +
𝜏2

2

𝜕2[𝑉]

𝜕𝑡
|
𝑟

+⋯ (3.25) 

   where the subscript r denotes reactive processes, and 𝐹([𝑉]) =
𝜕[𝑉]

𝜕𝑡
|
𝑟
 is given by Eq. (3.7) according 

to the corresponding experiments (see Sec. 3.2 and Ref. [4]). 

    Secondly, the change due to dispersal can be calculated by defining the dispersal kernel 𝜙(Δ𝑥, Δ𝑦) 

as the probability per unit area that a virus initially placed at (𝑥 + Δ𝑥, 𝑦 + Δ𝑦) has moved to (𝑥, 𝑦) 

after a time interval 𝜏. Thus, 

|[𝑉](𝑥, 𝑦, 𝑡 + 𝜏) − [𝑉](𝑥, 𝑦, 𝑡)|𝑑

= ∫∫[𝑉](𝑥 + Δ𝑥 , 𝑦 + Δ𝑦, 𝑡)𝜙(Δ𝑥, Δ𝑦) dΔ𝑥dΔ𝑦 − [𝑉](𝑥, 𝑦, 𝑡). 
(3.26) 

    In a system involving both reactive and dispersal processes, we add up their contributions 

[𝑉](𝑥, 𝑦, 𝑡 + 𝜏) − [𝑉](𝑥, 𝑦, 𝑡)

= ∫∫[𝑉](𝑥 + Δ𝑥, 𝑦 + Δ𝑦, 𝑡)𝜙(Δ𝑥 , Δ𝑦)dΔ𝑥dΔ𝑦 − [𝑉](𝑥, 𝑦, 𝑡)

+ 𝜏𝐹(𝑥, 𝑦, 𝑡) +
𝜏2

2

𝜕𝐹(𝑥, 𝑦, 𝑡)

𝜕𝑡
|
𝑟

+⋯ 

(3.27) 
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    Assuming that the kernel is isotropic, i.e., 𝜙(Δ𝑥 , Δ𝑦) = 𝜙(Δ), with Δ = √Δ𝑥
2 + Δ𝑦

2 ,and Taylor-

expanding Eq. (3.27) up to second order in time and space, 

𝜕[𝑉]

𝜕𝑡
+
𝜏

2

𝜕2[𝑉]

𝜕𝑡2
= 𝐷(

𝜕2[𝑉]

𝜕𝑥2
+
𝜕2[𝑉]

𝜕𝑦2
) + 𝐹 +

𝜏

2

𝜕𝐹

𝜕𝑡
|
𝑟
, (3.28) 

    where 𝐷 =
〈Δ2〉

4𝜏
=
〈Δ𝑥
2〉

2𝜏
=
〈Δ𝑦
2 〉

2𝜏
 is the diffusion coefficient. 

    For large distances 𝑟 = √𝑥2 + 𝑦2 from the inoculation point of viruses (𝑥, 𝑦) = (0,0), 
𝜕2[𝑉]

𝜕𝑥2
+

𝜕2[𝑉]

𝜕𝑦2
≈
𝜕2[𝑉]

𝜕𝑟2
 and Eq. (3.28) is the same as Eq. (3.5), with F given by Eq. (3.7) and D replaced  by 𝐷𝑒𝑓𝑓 

(the reason for the latter change is explained in Sec. 3.3). Thus the terms proportional to 𝜏 in Eq. (3.5) 

arise simply from a second-order Taylor expansion. If the role of the eclipse time is neglected (𝜏), Eq. 

(3.28) reduces to the non-delayed or classical model used by Yin and co-workers [14, 144], namely 

[see Eq. (3.13)] 

𝜕[𝑉]

𝜕𝑡
= 𝐷(

𝜕2[𝑉]

𝜕𝑥2
+
𝜕2[𝑉]

𝜕𝑦2
) + 𝐹. (3.29) 

    In general, adding up the reactive and diffusive contributions [as done in Eq. (3.27)] may not be 

exact [3, 145, 139, 183, 188] and this point is taken into account by the so-called sequential or 

cohabitation models (see especially Ref. [139], Fig. 1 of Ref. [183] and Fig. 17 of Ref. [188]). However, 

for virus infections cohabitation models yield almost the same results as non-cohabitation (or additive) 

models [145]. Thus in the present paper, we do not take the cohabitation effect into account for 

mathematical simplicity (the predicted speeds in Fig. 3.2 would be the same, so there is no need to 

use more complicated equations). Let us mention that, in contrast to virus infections, for human waves 

of advance the cohabitation effect is not negligible (and a more important effect still is due to the 

shape of dispersal kernels) [95, 183]. Such more precise models lead to the ballistic speed for fast 

reproduction [3, 179], as they should [3, 179, 139]. However, for virus infections those corrections are 

not necessary. In conclusion, the reaction-diffusion Eq. (3.5) has the microscopic derivation above and 

recent criticisms [139] are irrelevant. For 𝜏 and 𝐹 = 0, this also provides a valid derivation of Fickian 

diffusion (Eq. (3.29) for 𝐹 = 0). It is very important to stress that mathematical arguments [139] are 

not enough to establish whether a given equation is valid or not, because this depends on the system 

considered, and must thus be checked by using reactive functions, parameter values and initial 

conditions appropriate to the experimental setup (for example, to describe the growth of virus 

plaques, a model with only a pure death process is not realistic, and therefore irrelevant). As another 

example of this, reaction-diffusion with Fickian diffusion [Eq. (3.29)] can be applied if the delay time 

is negligible, which may be justified for some biological species but not for viruses. This is clearly seen 

in Fig. 3.2, by comparing our model to the classical or non-delayed one (3.12)-(3.14) used by Yin et al. 

[14, 144], which is based on Eq. (3.29). At the other extreme, the second-order approximation would 

obviously fail for large 𝜏 [4, 195, 139] and, if this happened, additional terms in the Taylor expansions 

above would be necessary. However, this is not our case (Sec. 3.10). Finally, Fickian diffusion [Eq. (3.29) 

with 𝐹 = 0] can be applied if the diffusive delay time is sufficiently small and is useful in many 

situations (not in our case). Thus parameter values must be examined to choose the appropriate 
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equation for each experiment. Mathematical arguments are not enough, because an equation may be 

useful to describe some experiments but not others. 

    For completeness, in Sec. 3.10 we extend the derivation above to infinite order and find that the 

results are similar to those above and in the main paper (second order). 

3.10.  Full time-delayed equation 
As shown in Sec. 3.9, Eq. (3.5) is in fact an approximation, because it includes only terms up to second 

order from the Taylor expansions. The virus density [𝑉] rapidly changes on a scale of time smaller than 

𝜏 ≈ 15 min (because the increase in Fig. 3.1 take 6 minutes or less). This could therefore lead to errors 

in the front speeds obtained in Secs. 3.4 and 3.5. In this subsection we prove that this is not a problem 

by considering the full time-delayed equation [see Ref. [195], Eqs. (16) and (21)], 

∑
𝜏𝑛

𝑛!

𝜕𝑛[𝑉](𝑟, 𝑡)

𝜕𝑡𝑛

∞

𝑛=1

= ∑
(2𝐷𝑒𝑓𝑓𝜏)

𝑛

(2𝑛)!

𝜕2𝑛[𝑉](𝑟, 𝑡)

𝜕𝑟2𝑛

∞

𝑛=1

+∑
𝜏𝑛

𝑛!

𝜕𝑛−1𝐹(𝑟, 𝑡)

𝜕𝑡𝑛−1
|
𝑟

∞

𝑛=1

, (3.30) 

    instead of its approximation, Eq. (3.5), together with Eq. (3.6) and our new Eq. (3.4). Then, repeating 

the same steps as in Sec. 3.2 we get the following characteristic equation (which replaces Eq. (3.8)), 

(𝑒𝜆𝑐𝜏̅̅ − cosh(𝜆√2𝜏) − 𝑒−𝜅𝜏̅ + 1)(𝜆𝑐̅ + 𝑒−𝜆𝑐𝜏̅̅) =
𝜅𝑌

𝜆𝑐̅ + 𝜅
(1 − 𝑒−𝜅𝜏̅−𝜆𝑐𝜏̅̅). (3.31) 

    Repeating the calculations leading to Fig. 3.2, but using Eq. (3.31), we obtain that the differences 

are very small. Indeed, the error between the second-order approximation and full time-delay 

equation is lower than 3% for the three strains of the T7 virus. Thus, the use of the second-order 

approximation in Secs. 3.2-3.5 is valid. 
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4. A mathematical approach to virus therapy of 

glioblastomas3 

 

Background It is widely believed that the treatment of glioblastomas (GBM) could benefit from 

oncolytic virus therapy. Clinical research has shown that Vesicular Stomatitis Virus (VSV) has strong 

oncolytic properties. In addition, mathematical models of virus treatment of tumors have been 

developed in recent years. Some experiments in vitro and in vivo have been done and shown promising 

results, but have been never compared quantitatively with mathematical models. We use in vitro data 

of this virus applied to glioblastoma. 

Results We describe three increasingly realistic mathematical models for the VSV-GBM in vitro 

experiment with progressive incorporation of time-delay effects. For the virus dynamics, we obtain 

results consistent with the in vitro experimental speed data only when applying the more complex 

and comprehensive model, with time-delay effects both in the reactive and diffusive terms. The tumor 

speed is described by a very simple equation that nonetheless yields results within the experimental 

measured range. 

Conclusions We have improved a previous model with new ideas and carefully incorporated 

concepts from experimental results. We have shown that the delay time τ is the crucial parameter in 

this kind of models. We have demonstrated that our new model can satisfactorily predict the front 

speed for the lytic action of oncolytic VSV on glioblastoma observed in vitro. We provide a basis that 

can be applied in the near future to realistically simulate in vivo virus treatments of several cancers. 

 

Keywords biophysics, front propagation, mathematical model 

 

4.1. Background 
Since early last century, viruses have been studied as experimental agents for cancer treatment. The 

medical interest in the field has fluctuated during this period, reaching a fever pitch in the past two 

decades. It was in the early 1990s, when recombinant DNA technology became standard, that virus 

engineering could provide scientific furtherance to virotherapy. Then, oncolytic viruses appeared to 

be a treatment of tremendous potential and scientists started manipulating them to target cancerous 

cells more specifically. This culminated in the first marketing approval of an oncolytic virus, granted 

by the Chinese government in November of 2005 [29]. Very recently, improvements in patient survival 

have led to endorsements of other oncolytic virus in Europe and the US [30]. In parallel, mathematical 

                                                           
3 This Chapter is an exact transcription of the contents of the following paper (please find a copy of the published 

version in Appendix B): de Rioja VL, Isern N, Fort J. A mathematical approach to virus therapy of glioblastomas. 

Biology Direct 11 1-12 (2016). DOI: 10.1186/s13062-015-0100-7. 
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models of virus treatment of tumors have been developed [45, 126, 127]. However, even with this 

new ability to engineer viral genomes, a realistic therapeutic frontrunner has yet to emerge. 

 Experimental background 
Among a variety of aggressive and deadly brain tumors we could highlight the glioblastoma. GBM is 

the most common and malignant brain cancer. Usually, treatment relies on chemotherapy, radiation 

and surgery. However these treatments are ineffective and the median survival time of a patient is no 

longer than 15 months (4 to 5 months without health care), due to multifocality of the disease, 

infiltrative growth and substantial tumor genotypic variability, among other factors [34, 23]. So, 

nowadays there are no known medical or surgical approaches that constitute an effective treatment 

of GBM, and for this reason it is widely considered that the treatment of GBM is likely to benefit from 

oncolytic virus therapy. 

    Oncolytic viruses –including retroviruses, herpesviruses and adenoviruses– are an emerging therapy 

tool for cancers that currently lack effective treatment [26]. The efficiency of different viruses against 

various tumor cell lines has been studied with in vitro and in vivo experiments [24, 196]. Of these, 

Vesicular Stomatitis Virus (VSV) has been shown in laboratory studies to have excellent capabilities to 

become one of the most valuable candidates for virotherapy, due to its very fast lytic cycle and its 

rapid oncolytic action. In addition, VSV is an enveloped, negative-strand RNA rhabdovirus that can 

infect a wide variety of species including mice and humans, though it is usually asymptomatic for 

human beings [25]. Therefore, the anticancer activity of mouse models can be transferable to human 

trials [118]. This fact makes VSV a strong oncolytic candidate and it has been used in preclinical studies 

of numerous cancer types, like glioblastomas. 

    Hence, we focus our attention on the development of a mathematical model of the VSV-GBM virus-

tumor system. In the absence of in vivo data, all of the parameter values that we will introduce in the 

model are extracted from in vitro VSV-GBM experiments. Our main objective is to develop a simple 

model that can reproduce the VSV-GBM dynamics and explain satisfactorily the experimental in vitro 

propagation speeds. 

 Previous mathematical approaches 
The most basic mathematical model of the competition between populations was constructed by 

Alfred J. Lotka and Vito Volterra in 1925 and 1926 independently [197]. For years their model was 

improved and adapted to different parasite-host systems, including virus infections [13, 14, 21, 159]. 

Nevertheless, we are interested in a specific model which studies the dynamics of an oncolytic virus 

through a tumor cell population. 

    In Ref. [45], Wodarz et al. noted that the few previous reaction-diffusion models of oncolytic virus 

spread [42, 43] include, in addition to basic spatial dynamics, one or more additional assumptions that 

introduce further complexity. In contrast, they opt for a very simple approach to the infection process 

with spatial dynamics. The process of adsorption of a virus V by a susceptible tumoral cell T (with rate 

k₁), and replication of Y viruses that leave each infected cell I (with rate k₂), is essentially described by 

the reactions 



71 

 

𝑉 + 𝑇
𝑘1
→ 𝐼

𝑘2
→𝑌 ∙ 𝑉. (4.1) 

    Wodarz et al. study the behavior of an in vitro adenovirus in human embryonic kidney epithelial 

cells, experimentally and computationally, developing a simple model with two equations (see Eqs. 

(4.5) and (4.6) below), one for susceptible tumoral cells and one for infected cells. They make use of 

partial differential equations (PDEs) to model the virus-tumor system, because PDEs provide efficient 

information on the spatial and reactive mechanisms affecting the wave propagating fronts and PDEs 

can be used to compute their speeds. 

    The model by Wodarz et al. [45] is a two-equation system that was derived from a three-equation 

model due to Nowak and May [35]. Including diffusion and logistic growth, the Nowak-May model is 

𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝑉

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑟2
+ 𝑘2𝑌[𝐼](𝑟, 𝑡) − 𝑘3[𝑉](𝑟, 𝑡), (4.2) 

𝜕[𝑇](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝑇

𝜕2[𝑇](𝑟, 𝑡)

𝜕𝑟2
+ 𝑎[𝑇](𝑟, 𝑡) {1 −

[𝐼](𝑟, 𝑡) + [𝑇](𝑟, 𝑡)

𝑘
} − 𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡), (4.3) 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝐼

𝜕2[𝐼](𝑟, 𝑡)

𝜕𝑟2
− 𝑘2[𝐼](𝑟, 𝑡) + 𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡), (4.4) 

   where [𝑇], [𝐼] and [𝑉] are the concentrations of susceptible tumoral cells, infected tumoral cells and 

viruses, respectively; 𝐷𝑇, 𝐷𝐼 and 𝐷𝑉 are their diffusion coefficients, 𝑎 the tumor growth rate, 𝑘 its 

carrying capacity, 𝑘3 the decay rate of free viruses, 𝑡 the time and 𝑟 the radial coordinate (assuming 

radial symmetry, as explained in detail below). Some authors [35] have argued that, in some situations, 

it may be assumed that 
𝜕[𝑉]

𝜕𝑡
= 0 and therefore, in homogeneous systems (

𝜕2[𝑉]

𝜕𝑟2
= 0), Eq. (4.2) implies 

that [𝑉](𝑟, 𝑡) =
𝑘2𝑌

𝑘3
[𝐼](𝑟, 𝑡). However, this assumption (free virus in steady-state) could only be 

applied if the decay rate of virus 𝑘3 is much larger than the decay rate of the infected cell population 

𝑘2 [35]. From these arguments, they obtain the two-equation system used by Wodarz et al. [45], 

namely 

𝜕[𝑇](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝑇

𝜕2[𝑇](𝑟, 𝑡)

𝜕𝑟2
+ 𝑎[𝑇](𝑟, 𝑡) {1 −

[𝐼](𝑟, 𝑡) + [𝑇](𝑟, 𝑡)

𝑘
} − 𝑏[𝐼](𝑟, 𝑡)[𝑇](𝑟, 𝑡), (4.5) 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝐼

𝜕2[𝐼](𝑟, 𝑡)

𝜕𝑟2
− 𝑘2[𝐼](𝑟, 𝑡) + 𝑏[𝐼](𝑟, 𝑡)[𝑇](𝑟, 𝑡), (4.6) 

    where 𝑏 =
𝑘1𝑘2𝑌

𝑘3
. 

    However, we find two drawbacks in the model (4.5)-(4.6) to explain our VSV-GBM system. First, 

Wodarz assumes 
𝜕[𝑉]

𝜕𝑡
= 0, and thus [𝑉] ∝ [𝐼]. As said before, this may be valid when 𝑘3 ≫ 𝑘2 and in 

some non-spatial models [35] but this is in general not valid for the spatial propagation of virus 

infections. In such cases, at points located far away from the initially infected area, before the arrival 

of the infection front we have [𝑉] = 0, when the infection arrives [𝑉] ≠ 0, and after all viruses (and 

infected cells) have decayed, we have again [𝑉] = 0. Therefore, when dealing with spatial infection 
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fronts we have 
𝜕[𝑉]

𝜕𝑡
= 0 only at early and late times, but 

𝜕[𝑉]

𝜕𝑡
> 0 when the first viruses arrive and 

𝜕[𝑉]

𝜕𝑡
< 0 after the passage of the infected front. Moreover, our experimental data (see Sec. 4.3) 

suggest that in our system 𝑘3 is very close to 𝑘2 and therefore, the assumption 𝑘3 ≫ 𝑘2 is not satisfied 

here either. Therefore, in contrast to Ref. [45], we cannot assume 
𝜕[𝑉]

𝜕𝑡
= 0, thus we deal with three 

differential equations (for viruses, susceptible tumoral cells, and infected tumoral cells). 

    Our second objection to the model (4.2)-(4.4) [and its simplification (4.5)-(4.6)] is that, according to 

the first reaction in Eq. (4.1), virus adsorption causes not only the same decrease in susceptible tumor 

cells [last term in Eq. (4.3)] as the increase in infected cells [last term in Eq. (4.4)], but also the same 

decrease in viruses. Thus a term −𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡) is missing in the right side of Eq. (4.2), in 

agreement with many previous works on virus infections [14, 21, 159, 130].  

    In the next section we develop a model which takes both points into account, as well as other 

important effects (namely, time-delay effects). 

4.2. Methods 

 Mathematical models 
Here we want to develop a simple, but complete model to understand the dynamics of a virus-tumor 

system. The theoretical model should be able to explain an in vitro experiment where a virus injected 

into the center of a tumor spreads through the tumor cell population in a basically two-dimensional 

geometry. Therefore, we can think of the virus-tumor system as formed by two fronts of propagation, 

which could be represented as two concentric circles if we assume radial symmetry. The diagram in 

Fig. 4.1 illustrates this idea. The outer circle represents the tumor cells, which spread to the outside 

through a non-specific medium. The inner circle represents the viruses spreading within the tumor. 

Viruses diffuse through the medium before infecting tumor cells. When infected cells die, a new 

generation of viruses is created and the process begins anew. 

    The main idea and experimental laboratory data come from Ref. [24], where Wollmann et al. 

compare nine types of viruses with strong oncolytic potential and conclude that four of them, VSV 

included, would be worthy of more rigorous studies. Because in subsequent papers [25, 155] they 

worked with VSV and its recombinant variants or strains, we decided to focus solely on VSV and use 

these data as experimental basis. 

    Below we present three increasingly complete (and complicated) models. 
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Figure 4.1 Two circles representing the two propagation fronts of VSV and GBM. A front of tumor cells spreads 
radially (large circle). After some time, viruses are inoculated at the center, and a virus front spreads (inner 
circle). If the inner circle expands faster than the outer one (𝒄𝑽𝑺𝑽 > 𝒄𝑮𝑩𝑴), the viruses will eliminate the 
tumor. 

 
Model 1 

As a first approach, we adapt the model by Wodarz et al. [45] to the conditions in our VSV-GBM 

systems, i.e., we do not assume 
𝑑𝑉

𝑑𝑡
= 0, and therefore [𝑉] is not proportional to [𝐼] and we need to 

include the virus dynamics explicitly in the model. 

    Now the evolution of the virus-tumor system is described by  

𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝑉𝑆𝑉

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑟2
+ 𝐹(𝑟, 𝑡), (4.7) 

𝜕[𝑇](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝐺𝐵𝑀

𝜕2[𝑇](𝑟, 𝑡)

𝜕𝑟2
+ 𝑎[𝑇](𝑟, 𝑡) {1 −

[𝐼](𝑟, 𝑡) + [𝑇](𝑟, 𝑡)

𝑘
}

− 𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡), 

(4.8) 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡) − 𝑘2[𝐼](𝑟, 𝑡). (4.9) 

    The first equation describes the evolution of the virus population over time. The viruses can spread 

ruled by the diffusion coefficient 𝐷𝑉𝑆𝑉 and the Laplacian (or second space derivative). The function 

𝐹(𝑟, 𝑡) in Eq. (4.7) incorporates all processes of infection, replication and death and is defined by 

𝐹(𝑟, 𝑡) = −𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡) + 𝑘2𝑌[𝐼](𝑟, 𝑡) − 𝑘3[𝑉](𝑟, 𝑡). (4.10) 

    Note that the first term was not included in the models by Nowak-May and Wodarz [Eq. (4.2)] (see 

our second objection in Sec. 4.1.2). 

    Eq. (4.8) describes the change in the number of tumor cells over time. Similarly to viruses, 

glioblastoma cells can also move, characterized by their own diffusion coefficient 𝐷𝐺𝐵𝑀. 
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    Finally, Eq. (4.9) represents the evolution of infected tumoral cells. We assume that these cells do 

not move, in agreement Fig. 3D of Ref. [24], where the experiment shows how the infected cells (U-

87 MG glioblastoma cells) initially introduced do not move through the host layer throughout the 

observation period. 

Model 2 

    As we shall see in Sec. 4.4, model 1 needs further improvements. In model 2 we take into account 

that infected tumoral cells do not die instantaneously, instead there is a time delay before the cell dies 

and releases the new progeny of viruses. We will denote this delay or eclipse time as 𝜏 and include it 

into the terms related to the death of infected cells. Thus infected cells will not die proportionally to 

the density of infected cells at the present time, 𝑘2[𝐼](𝑟, 𝑡), but proportionally to the density of 

infected cells at a previous instant 𝑡 − 𝜏, 𝑘2[𝐼](𝑟, 𝑡 − 𝜏), to properly include this time delay effect on 

the decay process. It has been shown that the term −𝑘2[𝐼](𝑟, 𝑡 − 𝜏) agrees well with experimental 

data in a different context (infections of non-tumor cells) [7]. Other reaction-diffusion models do also 

apply 𝑡 − 𝜏, although in an alternative way [147, 146]. The differences between their approach and 

ours are analyzed in Ref. [7]. 

    Therefore, when introducing the delay in the death of infected cells, Eqs. (4.9) and (4.10) are 

modified directly and Eq. (4.7) changes because the function 𝐹(𝑟, 𝑡), Eq. (4.14), is also modified. We 

do not modify the growth term in Eq. (4.8) because the reproduction of tumoral cells depends on the 

total number of tumor cells (infected and susceptible) at that precise instant 𝑡. So, we consider the 

model 

𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝑉𝑆𝑉

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑟2
+ 𝐹(𝑟, 𝑡), (4.11) 

𝜕[𝑇](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝐺𝐵𝑀

𝜕2[𝑇](𝑟, 𝑡)

𝜕𝑟2
+ 𝑎[𝑇](𝑟, 𝑡) {1 −

[𝐼](𝑟, 𝑡) + [𝑇](𝑟, 𝑡)

𝑘
}

− 𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡), 

(4.12) 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡) − 𝑘2[𝐼](𝑟, 𝑡 − 𝜏), (4.13) 

   where now 

𝐹(𝑟, 𝑡) = −𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡) + 𝑘2𝑌[𝐼](𝑟, 𝑡 − 𝜏) − 𝑘3[𝑉](𝑟, 𝑡). (4.14) 

   This second model is, actually, an approximation of our next model (see model 3 below). 

Model 3 

    Model 2 takes into account a delay time in the reactive process 𝐼 → 𝑌 ∙ 𝑉, but here we shall see that 

the delay time also has a very important diffusive effect. The diffusion dynamics of the virus 

concentration in Eq. (4.11) is Fickian, which means that it does not take into account the effect of the 

time delay 𝜏. In year 2002 it was shown [4] that it is very important to take into account that 𝜏 is the 

time interval during which a virus does not move in space (because it is inside an infected cell), thus 

the delay time should affect the model by slowing down the spread of viruses. Therefore it is necessary 
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to incorporate also this effect to reach a realistic model. For this reason, Eq. (4.11) must be replaced 

by an equation with second-order terms to include this diffusive time-delay effect [4, 21, 117]. 

    Thus, finally we describe the spatial-time dynamics of the whole system with the following 

equations: 

𝜕[𝑉](𝑟, 𝑡)

𝜕𝑡
+
𝜏

2

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑡2
= 𝐷𝑉𝑆𝑉

𝜕2[𝑉](𝑟, 𝑡)

𝜕𝑟2
+ 𝐹(𝑟, 𝑡) +

𝜏

2

𝜕𝐹(𝑟, 𝑡)

𝜕𝑡
|
𝑔

, (4.15) 

𝜕[𝑇](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝐺𝐵𝑀

𝜕2[𝑇](𝑟, 𝑡)

𝜕𝑟2
+ 𝑎[𝑇](𝑟, 𝑡) {1 −

[𝐼](𝑟, 𝑡) + [𝑇](𝑟, 𝑡)

𝑘
}

− 𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡), 

(4.16) 

𝜕[𝐼](𝑟, 𝑡)

𝜕𝑡
= 𝑘1[𝑉](𝑟, 𝑡)[𝑇](𝑟, 𝑡) − 𝑘2[𝐼](𝑟, 𝑡 − 𝜏), (4.17) 

    where the terms proportional to 𝜏 in Eq. (4.15) are the new, second-order terms. A self-contained 

derivation of Eq. (4.15) can be found in Ref. [7], Appendix A. 

    In Eq. (4.15) 𝐹(𝑟, 𝑡) is again given by Eq. (4.14), and Eqs. (4.12) and (4.13) from model 2 remain 

unchanged [Eqs. (4.16) and (4.17), respectively]. 

    Note that 𝐹(𝑟, 𝑡) can be understood as the variation of [𝑉] over time due to all reactive processes, 

but not to diffusive processes, i.e. 𝐹(𝑟, 𝑡) =
𝜕[𝑉](𝑟,𝑡)

𝜕𝑡
|
𝑔

. This allows the proper calculation of the first 

time derivative as [21, 117] 

𝜕𝐹(𝑟, 𝑡)

𝜕𝑡
|
𝑔

= −𝑘1𝐹(𝑟, 𝑡)[𝑇](𝑟, 𝑡) − 𝑘1[𝑉](𝑟, 𝑡)
𝜕[𝑇](𝑟, 𝑡)

𝜕𝑡
+ 𝑘2𝑌

𝜕[𝐼](𝑟, 𝑡 − 𝜏)

𝜕𝑡

− 𝑘3𝐹(𝑟, 𝑡). 

(4.18) 

    For systems in which the infected cells diffuse appreciably (not our case, see the last paragraph in 

the model 1 section), an age-structure model with this additional diffusive-delay effect has been 

proposed by Gourley and Kuang in Ref. [146], p. 558. 

    In the equation describing the virus dynamics, Eq. (4.15), we include corrections only up to second 

order [21, 117]. It has been shown in previous work [4] that the divergence between second-order 

approximation and full time-delayed equations is small, and thus we can exclude terms of higher 

orders. 

 Front speeds 
Virus front 

    Using models 1-3 above, we look for realistic travelling-wave speeds for both the propagation front 

of viruses (inner front, Fig. 4.1) and the propagation front of tumor cells (outer front, Fig. 4.1). Finding 

the propagation speeds will allow us to compare to the in vitro experiments in order to validate our 

approach. 

    In all models 1-3, we can transform the problem into a single-variable system by using the co-moving 

coordinate 𝑧 = 𝑟 − 𝑐𝑡. Like in previous works [4, 14], we assume the concentration of the three 
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populations at the leading edge of the moving front (𝑧 → ∞) can be written as [𝑇] = 𝑘 − 𝜖𝑇 ∙ 𝑒
−𝜆𝑧, 

[𝐼] = 𝜖𝐼 ∙ 𝑒
−𝜆𝑧 and [𝑉] = 𝜖𝑉 ∙ 𝑒

−𝜆𝑧, thus we assume that tumoral cells are nearly at maximum 

concentration at large distances from the inoculation point of the viruses, while viruses and infected 

cells are barely present. We make use of this transformation because beyond the edge of the front of 

infected cells and viruses, there is only a continuous medium of tumor cells. For non-trivial solutions 

to exist, the determinant of the matrix corresponding to the linearized model must be zero. The 

characteristic equations for model 1, model 2 and model 3 are, respectively, 

(𝜆𝑐 + 𝑘2)(𝜆𝑐 − 𝐷𝑉𝑆𝑉𝜆
2 + 𝑘𝑘1 + 𝑘3) − 𝑘𝑘1𝑘2𝑌 = 0, (4.19) 

(𝜆𝑐 + 𝑘2𝑒
−𝜆𝑐𝜏)(𝜆𝑐 − 𝐷𝑉𝑆𝑉𝜆

2 + 𝑘𝑘1 + 𝑘3) − 𝑘𝑘1𝑘2𝑌𝑒
−𝜆𝑐𝜏 = 0, (4.20) 

(𝜆𝑐 + 𝑘2𝑒
−𝜆𝑐𝜏) [𝜆𝑐 − 𝐷𝑉𝑆𝑉𝜆

2 + 𝑘𝑘1 + 𝑘3 +
𝜏

2
(𝜆2𝑐2 − 𝑘2𝑘1

2 − 2𝑘𝑘1𝑘3 − 𝑘3
2)]

− 𝑘𝑘1𝑘2𝑌𝑒
−𝜆𝑐𝜏 [1 +

𝜏

2
(𝜆𝑐 − 𝑘𝑘1 − 𝑘3)] = 0, 

(4.21) 

   According to marginal stability analysis [189], the propagation front moves with the minimum 

possible speed. Therefore, 

𝑐𝑉𝑆𝑉 = 𝑚𝑖𝑛𝜆>0[𝑐(𝜆)], (4.22) 

    where 𝑐(𝜆) is given implicitly by Eqs. (4.19), (4.20) and (4.21). From Eq. (4.22) we can numerically 

estimate the speed of VSV infection. 

    The resulting propagation speeds for models 1-3 will be calculated and plotted in Sec. 4.4. 

    We also solve the third model by numerical integration and find the front speed from the position 

of the virus front wave in successive steps of time. 

Glioblastoma front 

    Under the hypothesis of two propagation fronts, as shown in Fig. 4.1, the outermost front would 

corresponds the tumor cells, [𝑇] (GBM in our case of study). In the conditions near this front, all 

models can be greatly simplified since here the populations of viruses and infected cells are zero (see 

the outer circle in Fig. 4.1 for a better understanding), so [𝑉](𝑟, 𝑡) = 0 and [𝐼](𝑟, 𝑡) = 0. Hence, it is 

only necessary to work with the equation for the tumoral cells, Eq. (4.16) for example, but 

remembering that [𝑉](𝑟, 𝑡) = [𝐼](𝑟, 𝑡) = 0, 

𝜕[𝑇](𝑟, 𝑡)

𝜕𝑡
= 𝐷𝐺𝐵𝑀

𝜕2[𝑇](𝑟, 𝑡)

𝜕𝑟2
+ 𝑎[𝑇](𝑟, 𝑡) {1 −

[𝑇](𝑟, 𝑡)

𝑘
}. (4.23) 

    At the leading edge of this front, we assume that [𝑇](𝑟, 𝑡) = 𝜖𝑇 ∙ 𝑒
−𝜆𝑧, and after some algebra we 

easily obtain the speed of the glioblastoma front, 

𝑐𝐺𝐵𝑀 = 2√𝐷𝐺𝐵𝑀𝑎, (4.24) 

    where 𝐷𝐺𝐵𝑀 is the glioblastoma diffusion coefficient and 𝑎 the growth rate, both estimated in the 

next subsection. Note that Eq. (4.24) is the well-known Fisher propagation speed [96]. Some recent 
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extensions have been proposed [34, 198], but they are not necessary for the purposes of the present 

paper. 

4.3. Parameter values 
We estimate most of our parameters from in vitro experiments on VSV applied to GBM [25, 24, 155]. 

The parameters that we could not draw from such experiments have been obtained from other 

rigorous studies on VSV or glioblastoma. 

    We use two different values of 𝐷𝑉𝑆𝑉 because the diffusion coefficient of VSV has not been measured 

in gliomas. The only value of VSV available (measured in an specific water solution) is 𝐷𝑉𝑆𝑉 = 8.37 ∙

10−5 cm2/h [151]. Another value measured in agar of VSV-similar viruses is 𝐷𝑉𝑆𝑉 = 1.44 ∙ 10
−4 cm2/h 

[21]. 

    Concerning 𝐷𝐺𝐵𝑀, Stein et al. [152] performed an in vitro experiment in which a GBM tumor 

spheroid is implanted into a collagen gel. The diffusion coefficient is measured by tracking individual 

cells on the first day, calculating their motion and averaging over many cells. Stein and co-workers 

measure diffusion coefficients in the radial and angular directions, which lead to the value 𝐷𝐺𝐵𝑀 =

3.75 ∙ 10−6 cm2/h [34]. 

    Besides spreading, the number of cells also increases. The parameter 𝑎 is the corresponding 

proliferation rate. In vitro measurements provide ample scope for this parameter, 0.04 < 𝑎 < 0.3 

day-1 [153], and similarly in vivo studies yield 0.01 < 𝑎 < 0.14 day-1 [161]. 

    The saturation cell density, 𝑘, measures the maximum concentration of tumor cells (susceptible and 

infected) per unit volume that the system can support, and its usual value is 𝑘 = 106 cells/cm3 (e.g., 

Refs. [163, 162]). 

    We next analyze the rest of parameters, which are calculated from the experimental studies by 

Wollmann et al. [25, 24, 155]. 

    The yield or burst size 𝑌 represents the total amount of viruses produced by the death of a single 

infected cell. There is no accurate numerical value calculated for the case of VSV infecting GBM. 

However, by studying Fig. 4 in Ref. [25] we can obtain an estimation. The burst size can be understood 

as the ratio between the maximum and initial number of viruses, i.e. 𝑌 =
𝑉𝑚𝑎𝑥

𝑉0
. From that figure, 𝑉0 is 

between 10-100 PFU/ml (last two plots in Fig. 4 in [25]) and 𝑉𝑚𝑎𝑥 between 108 – 109 PFU/ml (the 

maximum is reached between 1 and 2 days post-infection), so we conclude that 106 < 𝑌 < 108. This 

also agrees with the value measured in Ref. [158], although in that case VSV infects BHK-21 cells (not 

GBM cells). 

    We have seen that there is a time lapse between a cell being infected by a virus and that cell dying 

(and therefore, adding more viruses to the system). This time lapse is called the delay time, 𝜏. It plays 

a main role in the virus propagation speed, but has not been accurately measured. From the in vitro 

experiments described in Ref. [24] we can try to estimate the value of 𝜏. On one hand, we know that 

the death of infected cells begins about 6 hours post-infection (hpi) of the virus to susceptible tumoral 

cells. We also know that infected cells can be seen as early as 4 hpi (they are tracked down using GFP 

fluorescence). From both data, we conclude that viruses leave infected cells at least 2 h after infection. 
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On the other hand, in a different experiment infected cells are added directly (rather than infecting 

viruses) and new infected cells were detected after 12 h. This period includes the time needed for the 

viruses to multiply within the infected cells, leave the cell and infect new tumoral cells. So we can also 

assume that τ must be lower than 12 h. In summary, we will work with the range 2 < 𝜏 < 12 h. 

    The adsorption rate, 𝑘1, describes the efficacy of the whole infection process (rate of virus entry 

and probability of successful infection). The value of 𝑘1 could be measured in an experiment where 

the reproduction of viruses and host cells were prevented. Such an experiment has been performed 

for other viruses [154] but not for VSV infecting GBM. Since we do not have the ideal conditions in the 

experiments cited before [25, 24, 155], we will use the earliest data post-inoculation available in the 

experimental data in Ref. [25] to minimize the effect of reproduction and thus obtain the best possible 

estimation for 𝑘1. 

    Eqs. (4.7) and (4.8) are simplified in the absence of reproduction and natural death, and when the 

population is studied as a whole (i.e. ignoring diffusion terms) we have 

𝑑[𝑉](𝑡)

𝑑𝑡
=
𝑑[𝑇](𝑡)

𝑑𝑡
= −𝑘1[𝑉](𝑡)[𝑇](𝑡). (4.25) 

     Obviously, integrating we get [𝑇](𝑡) = [𝑉](𝑡) + 𝜉, where 𝜉 is the constant of integration. Note that 

𝜉 is the difference between the concentrations of tumor cells and viruses. In order to estimate 𝑘1, we 

can rewrite the previous Eq. (4.25) as 
𝑑[𝑇](𝑡)

𝑑𝑡
= −𝑘1[𝑇](𝑡)([𝑇](𝑡) − 𝜉) and making the necessary 

algebra we obtain the final formula for calculating the adsorption rate, 

𝑘1 =
1

𝜉(𝑡 − 𝑡0)
[ln (

𝑇

𝑇 − 𝜉
) − ln (

𝑇0
𝑇0 − 𝜉

)]. (4.26) 

    It is difficult to know the exact concentration of cells at the beginning of the experiment or at certain 

time 𝑡, because only relative concentrations were reported. However, extrapolating data provided in 

the previous cited papers by Wollmann et al. (Fig. 3C Control in [25], bar G/GFP), we believe it is correct 

to assume that the values of initial tumor cells lie in the range 𝑇0 = 10
6 − 108 cells/cm3, and that 𝑇 =

0.65𝑇0 cells/cm3, 𝑡 − 𝑡0 = 36 h. This allows the calculation of the adsorption rate, as 5 ∙ 10−10 <

𝑘1 < 5 ∙ 10
−8 cm3/h. This is a rather wide range, but we show in Sec. 4.4.2 that 𝑘1 (as well as 𝑌) does 

not overly affect the propagation front speed of VSV. 

    Finally, parameters 𝑘2 and 𝑘3 correspond to the rates of death of infected cells and virus, 

respectively. Therefore, the average life-time of an infected cell and a virus are 1 𝑘2⁄  and 1 𝑘3⁄ , 

respectively. 

    The rate of death of infected cells 𝑘2 could be also understood as the growth of viruses. Thus, for 

𝑡 < 𝜏 no new virus are seen in the corresponding experiment (because no infected cell has died yet), 

but for 𝑡 ≥ 𝜏 the infected cells start to die ruled by 𝑑𝐼 = −𝑘2𝐼0𝑑𝑡. The death of each infected cell 

produces 𝑌 virus, thus 𝑑𝑉 = −𝑌𝑑𝐼 = 𝑘2𝑌𝐼0𝑑𝑡 = 𝑘2𝑉𝑚𝑎𝑥𝑑𝑡. Integrating, we get 𝑘2 =
𝑉𝑚𝑎𝑥−𝑉0

∆𝑡∙𝑉𝑚𝑎𝑥
≈

1

∆𝑡
=

1

𝑡∗−𝜏
, where 𝑡∗ represents the time when the virus population reaches its maximum. According to Fig. 

4B in Ref. [25], experimental data (labeled as VSV-G/GFP) show that the maximum is reached at 𝑡∗ =

48 ± 12 h. Nevertheless, the final result of 𝑘2 will depend on 𝜏 and we have a range rather than a 

single value for 𝜏 (see above). Note, however, that for model 1 there is no time delay, so 𝑘2 is 



79 

 

calculated straightforwardly as the inverse of time 𝑡∗ at which the concentration of viruses reaches its 

maximum, 𝑘2 =
1

𝑡∗
 h-1. Models 2 and 3 are dealt with in Sec. 4.4. 

    The evolution of the viruses over time in an environment where they die but cannot reproduce is 

ruled by 𝑑𝑉 = −𝑘3𝑉𝑑𝑡. Through simple integration we get 𝑉(𝑡) = 𝑉0𝑒
−𝑘3(𝑡−𝑡0). In the same 

experiment as before, Fig. 4B in Ref. [25], we now have two cases where these conditions are exactly 

reproduced (because VSV-dG-GFP and VSV-dG-RFP are replication-restricted virus variants, so they 

basically die). We can estimate both values of 𝑘3 from the experimental data, namely 𝑉(𝑡 = 24h) =

30 PFU/cm3, 𝑉(𝑡 = 48h) = 20 PFU/cm3 and 𝑉(𝑡 = 72h) = 8 PFU/cm3 for the mutant dG-GFP and 

𝑉(𝑡 = 24h) = 12 PFU/cm3, 𝑉(𝑡 = 48h) = 8 PFU/cm3 and 𝑉(𝑡 = 72h) = 6 PFU/cm3 for dG-RFP. 

Performing linear fits to ln 𝑉 versus 𝑡, we obtain that 0.014 < 𝑘3 < 0.028 h-1. 

4.4. Results and discussion 

 GBM and VSV front speeds: theory versus experiment 
Our main objective is to obtain realistic values for the propagation speeds in an in vitro virus-tumor 

system, providing positive results from a biophysical point of view for the realization of these 

treatments. 

    In Sec. 4.2 we have described three possible models for our VSV-GBM system and the necessary 

experimental parameter values. Here we present the speeds predicted by these models. 

    The case of tumor expansion has a single, simple solution for all models, Eq. (4.24), since the 

infection does not play a role here. Substituting the values of 𝐷𝐺𝐵𝑀 and 𝑎 we obtain that 𝑐𝐺𝐵𝑀 = 2.5 ∙

10−4 cm/h, with 𝑎 = 0.1 day-1, which we think is a reasonable mean value. Indeed, the range of 

measurements of the proliferation rate is 0.01 < 𝑎 < 0.3 day-1, which yields a range of speeds 7.9 ∙

10−5 < 𝑐𝐺𝐵𝑀 < 4.33 ∙ 10
−4 cm/h). Stein and co-workers measured an experimental in vitro speed 

range of 2.37 ∙ 10−4 < 𝑐𝐺𝐵𝑀 < 5.54 ∙ 10
−4 cm/h [153], which is consistent with our model, despite 

the simplicity of Eq. (4.24). 

    The case of the virus front is less straightforward. As we have already discussed in Sec. 4.3, a very 

important but not strictly well-measured parameter is the delay time 𝜏. Therefore, the speed results 

have been calculated in terms of this parameter, 𝑐(𝜏). The death rate of infected cells 𝑘2 also changes, 

because it depends directly on 𝜏. 

    The infection front speed, 𝑐𝑉𝑆𝑉, can be seen in Fig. 4.2. For each of the 3 models we have plotted 

the results from typical parameter values (bold lines). To compute these results we have chosen the 

parameter values that seem to be the most representative and accepted for this experiment: average 

values of 𝑘2 and 𝑘3, the value of 𝐷𝑉𝑆𝑉 calculated for VSV in an specific water solution and the larger 

values of 𝑘1 and 𝑌. However we have also computed 𝑐𝑉𝑆𝑉 by varying each of the parameters of Eqs. 

(4.19)-(4.21), with the exception of 𝑘 because 𝑘 = 106 cells/cm3 is a widely accepted value in research 

papers (see Sec. 4.3). In Fig. 4.2 we include the upper and lower bounds for the front speed obtained, 

for each of the 3 models, from the experimental parameter ranges (parameter values are specified at 

the caption). 
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    The hatched area in Fig. 4.2 corresponds to the experimental values of VSV speed estimated from 

the in vitro experiment by Wollmann et al. in Ref. [24], Fig. 3A. 

 
Figure 4.2 VSV front propagation speed as a function of the delay time 𝝉, for model 1 (dotted lines), model 2 
(dashed curves) and model 3 (solid curves). The hatched area shows the experimental in vitro VSV front speed 

[24]. Upper bounds are computed for: 𝒌𝟏 = 𝟓 ∙ 𝟏𝟎
−𝟖 cm3/h, 𝒌𝟐 =

𝟏

𝟑𝟔−𝝉
 h-1 (𝒌𝟐 =

𝟏

𝟑𝟔
 h-1 for model 1), 𝒌𝟑 =

𝟎. 𝟎𝟏𝟒 h-1, 𝒀 = 𝟏𝟎𝟖 and 𝑫𝑽𝑺𝑽 = 𝟏. 𝟒𝟒 ∙ 𝟏𝟎
−𝟒 cm2/h. Lower bounds are computed from: 𝒌𝟏 = 𝟓 ∙ 𝟏𝟎

−𝟏𝟎 

cm3/h, 𝒌𝟐 =
𝟏

𝟔𝟎−𝝉
 h-1 (𝒌𝟐 =

𝟏

𝟔𝟎
 h-1 for model 1), 𝒌𝟑 = 𝟎. 𝟎𝟐𝟖 h-1, 𝒀 = 𝟏𝟎𝟔 and 𝑫𝑽𝑺𝑽 = 𝟖. 𝟑𝟕 ∙ 𝟏𝟎

−𝟓 cm2/h. The 

results from typical values (bold lines) are computed from: 𝒌𝟏 = 𝟓 ∙ 𝟏𝟎
−𝟖 cm3/h, 𝒌𝟐 =

𝟏

𝟒𝟖−𝝉
 h-1 (𝒌𝟐 =

𝟏

𝟒𝟖
 h-1 

for model 1), 𝒌𝟑 = 𝟎. 𝟎𝟐 h-1, 𝒀 = 𝟏𝟎𝟖 and 𝑫𝑽𝑺𝑽 = 𝟖. 𝟑𝟕 ∙ 𝟏𝟎
−𝟓 cm2/h. In all the cases 𝒌 = 𝟏𝟎𝟔 cells/cm³. 

 
 

    Dotted lines correspond to the analytical results to model 1, Eqs. (4.7)-(4.10), i.e. the classical model 

adapted from the equations in Ref. [45]. Obviously they are horizontal lines, since they do not depend 

on 𝜏. As we can see in Fig. 4.2, model 1 yields speeds much faster than the experimental observations. 

The curves are the numerical results from our time-delayed reaction-diffusion models. Dashed curves 

correspond to model 2, given by Eqs. (4.11)-(4.14). We see that just by taking into account the eclipse 

or delay time on the death of infected cells, we obtain much better results as compared with 

experimental velocities, although not enough to satisfactorily explain the data (the minimum bound 

of model 2 in Fig. 4.2 is above the hatched area). Finally, solid curves in Fig. 4.2 correspond to model 

3 (please recall that this is extremely close to the full time-delayed equation, see Sec. 4.2). The 

equations for this main model, Eqs. (4.15)-(4.18), when considering typical parameter values, produce 

results that agree with the experimental data within a range of 𝜏 between 5.0 h and 9.3 h. 



81 

 

 
Figure 4.3 Radial profiles of [𝑽∗] and [𝑰∗] at three different times for model 3. The labels of 𝑽∗ and 𝑰∗ stand 

for the units used, defined as 
[𝑽]

[𝑽]𝒎𝒂𝒙
 and 

[𝑰]

[𝑰]𝒎𝒂𝒙
, respectively. The profiles are computed from numerical 

integration. 

 
 

    According to our best description (model 3), the entire range of speed 𝑐𝑉𝑆𝑉 in Fig. 4.2 is an order of 

magnitude faster than the speed of propagation of glioblastoma 𝑐𝐺𝐵𝑀 (see above). Therefore the virus 

front could theoretically reach the tumoral front and infect it all. We stress that this is a model 

appropriate for in vitro experiments, whereas in vivo more complex models will be necessary (as 

discussed below). 

    In Fig. 4.3 we show snapshots of the viruses and infected cells profiles as functions of the radial axis, 

computed from the computational simulations at three time instants. The simulations have been 

performed by numerical integration of model 3, which is biologically more realistic and produces 

results in agreement with the experimental data (see Fig. 4.2). We use the typical parameter values 

used in Fig. 4.2 (bold lines, see caption for the values). We can see in Fig. 4.3 that both propagation 

fronts advance at the same speed and with regular shapes. 

    From the profiles we can see that the number of infected cells grows rapidly, then there is a plateau 

of infected cells (as a result of the time delay 𝜏 before any infected cell dies), and then decay at a rate 

𝑘2. The virus profiles show an abrupt rise when infected cells start dying (end of the plateau of infected 

cells) and then keep rising up to a peak. Behind this peak, the virus death term 𝑘3 predominates over 

the virus production, and the number of viruses decays. Although Fig. 4.3 seems to indicate that the 

front of infected cells appears prior to the virus front, the opposite happens (this can be appreciated 

by enlarging the vertical scale). 

    From these simulations we can calculate the front speed by tracking the position of the edge of the 

front of the virus at successive steps of time. A simple space vs time data is generated and then, the 

front speed is directly the slope. From the simulations (parameter values are the same than typical 
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values in Fig. 4.2 with 𝜏 = 6 h) we find a front speed of 4.829 ∙ 10−3 cm/h. The relative error between 

the simulations and the analytic speed [𝑐𝑉𝑆𝑉 = 4.853 ∙ 10
−3 cm/h, from Eqs. (4.21) and (4.22)] is only 

about 0.5%. 

    An alternative way to know the front propagation speed from Fig. 4.3 is the plateau of infected cells. 

Its width is directly related with the time delay 𝜏 and the infection front speed as 𝑤𝑖𝑑𝑡ℎ = 𝜏 ⋅ 𝑐. Then, 

the result for the speed is (0.53858 − 0.51317)cm/6 h = 4.735 ∙ 10−3cm/h (distances for 𝑡 = 108 

h), and the relative error (compared with the analytical results with same parameter values than the 

simulations) is less than 2.5% (𝑐𝑉𝑆𝑉 = 4.853 ∙ 10
−3 cm/h). 

 Effects of k₁ and Y  
In Sec. 4.3 we have estimated the values of the parameters used in our mathematical models. Some 

of them, e.g. 𝐷𝑉𝑆𝑉, 𝐷𝐺𝐵𝑀 and 𝑘, have well-defined values, which are taken from the references 

indicated in the text. The delay time 𝜏 plays a very important role and therefore we have found the 

front propagation speed as a function of this parameter (remember that 𝑘2 =
1

48−𝜏
, so we could add 

𝑘2 to this argument). Other parameters like 𝑎 and 𝑘3 have a range of possible values, albeit a narrow 

one, and as such we use the mean value, or that usually accepted by other sources. Lastly, parameters 

𝑌 and 𝑘1 have very wide ranges, spanning several orders of magnitude, but as we shall show below, 

they do not have an important effect on the virus front speed. 

    In Fig. 4.4 the speed of VSV is calculated from model 2 [Eqs. (4.11)-(4.14)] and model 3 [Eqs. (4.15)-

(4.18)]. Setting the typical parameter values previously used in Fig. 4.2 (bold curves) and Fig. 4.3 for  

𝐷𝑉𝑆𝑉, 𝐷𝐺𝐵𝑀, 𝑘, 𝑘3 and the average value 𝜏 = 8 h (so 𝑘2 =
1

40
 h-1), which yields results consistent with 

the range of experimental speeds (Fig. 4.2), we have varied the values of 𝑌 and 𝑘1 for each of both 

models. 

    In model 2 (upper curves in Fig. 4.4) the speed dependence on 𝑌 and 𝑘1 is fairly important. Indeed, 

by increasing these variables by two orders of magnitude, the speed increases on average by 25% and 

18%, respectively. However, looking at the best approach, model 3 (lower curves), we note that the 

speed increases only by 3% and 2% for 𝑌 and 𝑘1, respectively. 

    Therefore, model 3 has little dependence on the parameters 𝑌 and 𝑘1 and the delay time is the 

most important parameter (Fig. 4.2). In contrast, model 2 depends more directly on both parameters, 

although 𝜏 still remains the crucial one (compare the change of the speed in Fig. 4.2 with those in Fig. 

4.4 for model 2). To obtain a speed of virus propagation similar to the observed data (𝑐 ≈ 5 ∙ 10−12 

cm/h) with model 2, we should modify 𝑌 and 𝑘1 out of the experimental ranges. Indeed, their values 

should be about 𝑌 = 104 or 𝑘1 = 5 ∙ 10
−12 cm3/h. Therefore, we could get a speed in agreement with 

the experimental data, but only using unrealistic parameter values, which do not correspond to VSV. 

This is further proof that our final model 3, the time-delayed reaction-diffusion set of equations, is a 

good mathematical tool to explain this kind of virus-tumor biological systems. 
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Figure 4.4 VSV invasion speed on GBM for various values of 𝒀 and 𝒌𝟏. The other parameter values are 𝒌 =

𝟏𝟎𝟔 cm-3, 𝒌𝟐 =
𝟏

𝟒𝟎
 h-1, 𝝉 = 𝟖 h and 𝒌𝟑 = 𝟎. 𝟎𝟐 h-1. Model 3 proves that neither 𝒀 nor 𝒌𝟏 affect much the 

speed of the front. 

 

4.5. Conclusions 
A simple set of time-delayed equations have been built to understand the dynamics of a virus-tumor 

system. We have improved a previous model with new ideas and carefully incorporated experimental 

results (especially Ref. [24]). Figure 4.2 proofs that our best framework (model 3) is in reasonable 

agreement with the experimental data. Furthermore, the figure shows that neither model 1 nor model 

2 can explain the experimental data. So it is absolutely necessary to add the second-order terms 

proportional to 𝜏 in Eq. (4.15) to properly include the time-delay effect. 

    We have shown that the delay time 𝜏 is the crucial parameter in our models (even when compared 

to other parameters that are strongly unknown, such as 𝑘1 and 𝑌). As we could have expected, as 𝜏 

increases, the speed of the virus front decreases, because viruses spend more time inside the cell, and 

therefore at rest. In spite of being of utmost importance, the role of the delay or eclipse time has not 

been taken into account in previous models of virus treatment of tumors [45, 42, 43]. 

    We have found that our new model can satisfactorily predict the front speed for the lytic action of 

oncolytic VSV on glioblastoma observed in vitro. But this is only a first step towards a deep biophysical 

understanding of the principles of virus-tumor space-time spread in a complex system. This model 

could be extended to be applied to in vivo experiments where, among other effects, the immune 

response should be also included in the model because it may play a significant role regulating the 

efficacy of the therapy. In particular, it seems that there is currently no agreement about which 

approach is better in oncolytic therapy, whether to modify oncolytic viruses to obtain the maximum 

antitumoral immune response [199], to transiently suppress the immune response [118], or to use a 
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combination of both [118]; future appropriate modeling of the three scenarios might help in tackling 

this controversy from a different perspective. 

    In this paper we have focused on GBMs because of the experimental data available, but our model 

could apply also to many non-diffusive cancers, for which viral therapy is a promising approach [42, 

43, 200], since the reaction-diffusion equations for the viruses [Eqs.(4.15)-(4.18)] will still be valid, 

even though in such cases tumor cells will not diffuse. Thus, we provide a basis that can be applied in 

the near future to realistically simulate in vivo virus treatments of several cancers. 
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5. The ancient cline of haplogroup K implies that the 

Neolithic transition in Europe was mainly demic4 

 

Abstract Using a database with the mitochondrial DNA (mtDNA) of 513 Neolithic individuals, 

we quantify the space-time variation of the frequency of haplogroup K, previously proposed as a 

relevant Neolithic marker. We compare these data to simulations, based on a mathematical model in 

which a Neolithic population spreads from Syria to Anatolia and Europe, possibly interbreeding with 

Mesolithic individuals (who lack haplogroup K) and/or teaching farming to them. Both the data and 

the simulations show that the percentage of haplogroup K (%K) decreases with increasing distance 

from Syria and that, in each region, the %K tends to decrease with increasing time after the arrival of 

farming. Both the model and the data display a local minimum of the genetic cline, and for the same 

Neolithic regional culture (Sweden). Comparing the observed ancient cline of haplogroup K to the 

simulation results reveals that about 98% of farmers were not involved in interbreeding neither 

acculturation (cultural diffusion). Therefore, cultural diffusion involved only a tiny fraction (about 2%) 

of farmers and, in this sense, the most relevant process in the spread of the Neolithic in Europe was 

demic diffusion (i.e., the dispersal of farmers), as opposed to cultural diffusion (i.e., the incorporation 

of hunter-gatherers). 

 

Keywords  genetic clines, Neolithic transition, Europe, ancient DNA, forager-farmer interaction 

 

5.1. Introduction 
The Neolithic transition was a major transformation that introduced agricultural economics, radically 
changed the environment, and led to increased population densities and new forms of social 
organization [49, 201]. The Neolithic spread from the Near East across Europe, from about 8,000 yr 
Before the Common Era (BCE) until about 3,000 yr BCE [47]. A crucial question is whether the spread 
of the Neolithic was due to a dispersal of farming populations (demic diffusion), to the learning of 
agricultural techniques by European hunter-gatherers (cultural diffusion), or to a combination of both 
mechanisms. The latter possibility is suggested by the comparison of archaeological data to 
mathematical wave-of-advance models, which indicate that demic diffusion was more important than 
cultural diffusion [3, 95]. Genome-wide studies also indicate a crucial role for demic diffusion, with 
very little cultural diffusion at the beginning of the Neolithic [80, 81]. Notwithstanding the 
unquestionable importance of genome-wide studies, it is also of interest to analyze specific genetic 
markers, for two reasons. First, genome-wide studies cannot provide any quantitative explanation for 
the observed spatial cline of a single marker. And secondly, genome-wide studies cannot yield a 
quantitative estimate for the percentage of farmers involved in cultural diffusion. In order to 
understand both limitations of genome-wide studies, consider first one marker that has not been 

                                                           
4 This Chapter is an exact transcription of the contents of the following paper (please find a copy of the published 

version in Appendix B): Isern N, Fort J, de Rioja VL. The ancient cline of haplogroup K implies that the Neolithic 

transition in Europe was mainly demic, Scientific Reports 7 11229, 1-10 (2017). 
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affected by drift neither selection. If there is admixture between the populations of incoming farmers 
and indigenous hunter-gatherers (HGs), and the latter originally lacked this marker, then it will dilute 
progressively, i.e. its frequency will decrease with increasing distance from the spatial region of origin 
of the Neolithic front. Second, consider again a maker unaffected by drift neither selection, but such 
that HGs initially had higher frequencies than farmers. Its frequency will not decrease but increase 
with distance from the Neolithic origin. Thirdly, consider a marker that increased its frequency after 
some location during the spread of the Neolithic front (due, e.g., to surfing or other drift effects). If 
HGs originally lacked this marker, its frequency will decrease (due to admixture) up to some distance 
and increase for larger distances. Fourthly, if several drift and/or selective effects took place, the cline 
can have even more complicated shapes. Thus, clearly the frequencies of different genetic markers 
have different spatiotemporal dependencies, because they are due to different processes. For this 
reason, in order to estimate the percentage of farmers involved in cultural diffusion we should not to 
include many arbitrary markers (as in genome-wide studies). Instead, we should consider very specific 
markers that satisfy the following conditions: (1) the frequency decreases with increasing distance 
from the spatial origin of the Neolithic front; (2) HGs lack the marker considered before the arrival of 
the first farmers (otherwise we would need to know the precise space-time variation of the marker 
initial frequency in HGs); (3) selection and (4) drift (including surfing) effects can be neglected. This 
makes it possible to compare the data to demic-diffusion models neglecting drift, selection, etc. (as 
done below). In the present paper we analyze mitochondrial haplogroup K because, as we shall see, 
the observed data for this marker satisfy conditions (1) and (2). In contrast, other markers that have 
been found in Early Neolithic European sites (e.g., N1a, J, T and X) have not been found in the Near 
East [165], so condition (1) does not hold. Condition (3) can be also reasonably assumed, because 
there are no data indicating the existence of any selective pressure on haplogroup K, and analysis of 
the Early Neolithic K haplotypes does not show signs of selection (Sec. 5.8.1). It is also reasonable to 
assume that condition (4) holds, because we will show that a simulated cline (neglecting drift) is 
consistent with the observed one for haplogroup K. 

   A totally independent reason why genome-wide studies cannot determine quantitatively the 

percentage of farmers involved in cultural diffusion is that, e.g., Mathieson et al. [80] assume only two 

source populations, Anatolian Neolithic and Western HG, and use f4-statistics to estimate, e.g., a 93% 

of Anatolian Neolithic ancestry and a 7% of Western HG ancestry for Early Neolithic farmers in 

Germany. But this result of 93% is not the percentage of farmers involved in cultural diffusion. Instead, 

it is the Anatolian fraction (𝛼1 = 0.93) of genetic drift (defined as a variance of allele frequencies 

[202]) of the German population considered (assuming that its drift is a linear combination of the drifts 

of the two presumed source populations). But there is no mathematical theory relating the 

proportions of genetic drift (i.e., the coefficients 𝛼1, 𝛼2, … 𝛼𝑁 of the f4-value of a test population in 

terms of the f4-values of its N presumed source populations [80, 202]) to the percentage of farmers 

involved in cultural diffusion. Similarly, in admixture analysis the fractions of the genome contributed 

by a set of presumed source populations are estimated, but again there is no theory relating them to 

the percentage of farmers involved in cultural diffusion. For totally analogous reasons, these and other 

previous methods (f4-statistics, admixture, principal components, structure analysis, D-statistics, etc.) 

can provide valuable qualitative indications on whether demic or cultural diffusion dominated the 

Neolithic spread, but they cannot yield any quantitative value for the percentage of farmers involved 

in cultural diffusion. Incidentally, we note that many such methods (e.g., f4-statistics and admixture) 

assume a few source populations, whereas here we will consider the more realistic case of populations 

distributed continuously in space (possibly with seas and mountains). If clinal patterns are not 

observed in analyses based on principal components, admixture, f3, f4, D-statistics, etc. (where, 

instead, early Neolithic individuals tend to cluster together, e.g. with modern Sardinians), the reason 

is simply that those analyses are based on many markers but, as explained above, the spatial 
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distribution of each one can be due to other processes in addition cultural diffusion (surfing, other 

kinds of drift, selection, etc.).  

   In this article we shall estimate the percentage of early farmers involved in cultural diffusion from 
an ancient DNA (aDNA) marker. We will perform our analysis at the continental scale, because aDNA 
data are not yet numerous enough to consider specific geographic regions.  As we shall see, however, 
there are already sufficient data to obtain some first estimates of general trends. We consider 
mitochondrial DNA (mtDNA), because nuclear data are known for a substantially smaller number of 
ancient individuals. Mitochondrial DNA is inherited from the mother, thus its study will be related to 
the spread of maternal lineages. As all genetic sequences, mtDNA can be inherited with mutations, 
but similar sequences (haplotypes) with a common ancestor are usually grouped into haplogroups. 
Since the aDNA data are still limited in number, we perform our analysis below at the haplogroup 
level, grouping together the different haplotypes and subclades from each lineage (in Sec. 5.8.1 we 
include analyses at the haplotype level, and they reinforce our conclusions). The mtDNA of European 
hunter-gatherers is composed mainly of U lineages (U, U4, U5, and U8), which are absent in early 
Neolithic populations [78, 203, 204]. Conversely, haplogroups N1a, T2, K, J, HV, V, W, and X have been 
proposed as potential Neolithic markers because they have been found in farmers of the 
Linearbandkeramic (LBK) culture, an early Neolithic culture in Central Europe, and are almost absent 
in neighboring hunter-gatherer samples [78, 169]. Haplogroup K has been identified in only three 
hunter-gatherers dated before the arrival of farming (two in Greece [171] and one in Georgia [204]), 
but their subclades have not been found so far in any Neolithic farmer (see Sec. 5.8.2 for a detailed 
discussion of the very few exceptions of Mesolithic individuals displaying K haplotypes). Thus 
haplogroup K was virtually absent in Europe before the arrival of farming, and condition (2) above is 
satisfied. On the other hand, as we shall see below, haplogroup K displays a cline of decreasing 
frequency with increasing distance from the spatial origin of the Neolithic expansion. Thus haplogroup 
K also satisfies condition (1) above, in contrast to other potential Neolithic markers (N1a, T2, J, HV, V, 
W, and X).  

5.2. Results and discussion 
In order to study the existence of a genetic cline for haplogroup K in early Neolithic populations and 
subsequently compare it to our simulations, we have gathered all mtDNA information of Early and 
Middle Neolithic individuals reported in the literature, and we have grouped the data into regional 
cultures according to their location, date and reported culture (Appendix A Data S1). The Neolithic 
expansion in Europe begun in the Near East, and for this reason we have used the oldest pre-pottery 
Neolithic B (PPNB) date from Syria [47], Ras Shamra, as a geographic reference for the origin of the 
spread. In Fig. 5.1 we represent, for each regional culture, the average date of its individuals whose 
mtDNA haplogroup has been determined against the distance from their average location to Ras 
Shamra. Figure 5.1 includes all regional cultures dated between the Early and the Middle Neolithic, 
such that the mtDNA haplogroup of more than two individuals is known (e.g., Greece could not be 
included; see Sec. 5.8.3). The Southern Levant is not included for reasons explained in Sec. 5.8.3. For 
each regional culture, the number of individuals whose mtDNA haplogroup has been determined is 
given in the caption to Fig. 5.1 (Appendix A Data S2 and Data S3). We distinguish 3 different groups of 
regional cultures in Fig. 5.1. The first group is composed by the 10 oldest Neolithic regional cultures 
(from Syria to western and northern Europe) for which there are genetic data (squares in Fig. 5.1). The 
second group (triangles in Fig. 5.1) corresponds to 15 regional cultures that have younger dates than 
the oldest ones (squares) and that are located at similar distances from Syria (i.e., broadly in the same 
area). Thus, the triangles in Fig. 5.1 are not representative of the earliest local Neolithic cultures. 
Finally, the circle in Fig. 5.1 corresponds to Sweden. Its date and location are those of the earliest 
Neolithic individuals in Sweden whose mtDNA is known. It would be thus legitimate to consider this 
data point (circle in Fig. 5.1) simply as one of the oldest regional cultures (squares), and we will actually 
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include it into our calculations below. But the date for Sweden is substantially delayed relative to other 
cultures located at similar distances (Fig. 5.1), so it will be useful to identify Sweden with a symbol 
(circle) different than the other oldest regional cultures (squares). 

 

Figure 5.1 Dates versus great-circle distances from Ras Shamra (Syria) for 26 regional cultures with ancient 
mtDNA data. Squares correspond to the oldest regional Neolithic cultures, namely 1 Syria PPNB (15 individuals), 
2 Anatolia (28 individuals), 3 Hungary-Croatia Starčevo (44 individuals), 4 Eastern Germany LBK (36 individuals), 
5 Western Germany LBK (56 individuals), 6 Northeastern Spain Cardial (15 individuals), 7 Spain Navarre (36 
individuals), 8 Portugal coastal Early Neolithic (10 individuals), 9 Romania Starčevo (5 individuals) and 10 
Southern Germany LBK (4 individuals). The circle stands for 11 Sweden (9 individuals), which is substantially 
delayed due to the slowdown of the Neolithic front in northern Europe. Triangles correspond to more recent 
regional cultures, namely 12 Romania Middle Neolithic (29 individuals), 13 Romania Late-Middle Neolithic (9 
individuals), 14 Hungary LBK (45 individuals), 15 Eastern Germany RSC (10 individuals), 16 Eastern Germany 
SCG/BAC (38 individuals), 17 Eastern Germany SMC (30 individuals), 18 Western Germany BAC (14 individuals), 
19 Western Germany BEC (17 individuals), 20 Western France Prissé (3 individuals), 21 South-Eastern France 
Treilles (29 individuals), 22 Catalonia Epicardial (7 individuals), 23 Catalonia Late Epicardial (3 individuals), 24 
Spain Basque country (7 individuals), 25 Portugal coastal Late Neolithic (3 individuals) and 26 Portugal inland 
Late Neolithic (7 individuals). The straight line is the regression fit to the 10 oldest regional data (squares). 

 

 Understanding the observed variations in the percentage of 

haplogroup K (%K) 
It is important to keep in mind that the oldest regional cultures displayed in Fig. 5.1 do not correspond 
to the oldest archaeological dates known for each Neolithic regional culture, but only to the oldest 
Neolithic individuals whose mtDNA haplogroup has been determined. In spite of this, those dates 
(squares in Fig. 5.1) show a highly linear dependence on distance (correlation coefficient 93.0=R ), as 
predicted for the oldest dates by wave-of-advance models [3]. In Fig. 5.2 we plot the %K as function 
of distance from Ras Shamra (Syria) for all the regional cultures in Fig. 5.1 that include at least 8 
individuals (regions with fewer individuals have been ignored to avoid very large error bars). Because 
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the total number of individuals per region is still small in many regions, in our analysis below we take 
into account the whole 80% confidence-level (80% CL) range, represented as error bars, rather than 
only mean values. Labels and symbols in Fig. 5.2 are the same as in Fig. 5.1. For the oldest Neolithic 
cultures, there is no theoretical reason to expect a linear dependency of the %K on distance (in other 
words, we should not expect a high value of 𝑃 for the regression to the squares and circle in Fig. 5.2). 
However, the slope of this regression in Fig. 5.2 is highly significantly different from zero (𝑃 = 0.001), 
and this gives statistical support to the existence of a genetic cline (similarly, low values of 𝑃 also yield 
statistical support to the existence of phonemic clines [6, 205]). Additional support to the existence of 
a cline is obtained from an interpolation map and the analysis of the %K data by means of a Moran’s I 
correlogram, included in Sec. 5.8.4. 

 

Figure 5.2 Observed percentage of mtDNA haplogroup K as a function of the great-circle distance from Ras 
Shamra (Syria). Each number denotes the same culture as in Fig. 5.1 (regions with fewer than 8 individuals have 
been ignored to avoid very large error bars). The straight line is the regression fit to the 10 oldest regional data 
(squares) and the oldest data in Sweden (circle). Error bars display 80% CL intervals (see Sec. 5.4.2). 

   As explained in the Introduction, it has been proposed that haplogroup K spread across Europe from 
the Near East with the Neolithic front [78, 165, 166, 172, 173]. We shall call this proposal the wave-
of-advance model of haplogroup K. The analysis of the Early Neolithic haplotypes in our database also 
yields support to the assumption that the population with haplogroup K underwent a recent process 
of demographic and geographic expansion (Sec. 5.8.1). Obviously demic diffusion, on its own, cannot 
explain the spatiotemporal distribution of haplogroup K (as displayed in Fig. 5.2), because purely 
demic diffusion predicts a uniform distribution (see below). Thus we ask whether cultural (in addition 
to demic) diffusion is a viable explanation. If HGs lacked haplogroup K (as justified by genetic data in 
the Introduction and Sec. 5.8.2), and other effects (selection, drift, mutation, etc.) can be neglected, 
a demic-cultural model makes two testable predictions. (i) For the earliest Neolithic cultures, we 
should observe a decrease in the percentage of farmers with haplogroup K with increasing distance 
from the Near East (because interbreeding of pioneer farmers with local hunter-gatherers, and/or 
acculturation of the latter during the front propagation, will diminish the %K). This prediction is clearly 
observed in Fig. 5.2, because the earliest regional Neolithic cultures (squares and circle) show a clear 
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decrease of the %K with increasing distance from Syria. (ii) For each region, this model also predicts 
that the earliest Neolithic regional culture will have a higher percentage of farmers with haplogroup 
K than later cultures (due to interbreeding and acculturation subsequent to the arrival of the Neolithic 
wave of advance). Prediction (ii) is also observed in Fig. 5.2, because of the 9 European cultures that 
do not correspond to the earliest Neolithic (triangles), only 1 (culture 16) has a larger %K than the 
expected regional maximum (the latter is given by the linear fit to the earliest regional Neolithic 
cultures in Fig. 5.2), and even culture 16 may be lower than the expected maximum, if the error bar is 
taken into account. However, we must caution that prediction (ii) refers to populations dated 
substantially later than the spread of the Neolithic front and it is therefore affected by population 
movements and other processes subsequent to the spread of the Neolithic. Thus, it is not reasonable 
to try to explain quantitatively prediction (ii) with a simulation model of the spread of the Neolithic. 
For this reason, although the model satisfies qualitatively both predictions, in the rest of this paper 
we shall be mainly concerned with prediction (i).  

 Ancient cline of haplogroup K 
Figure 5.3 shows (lines) the clines obtained from our wave-of-advance simulations of the Neolithic 

and haplogroup K spread (see Sec. 5.4 and Secs. 5.8.5-5.8.6), alongside the observed genetic data for 

the earliest regional Neolithic cultures (squares and circle) already depicted in Fig. 5.2. In Fig. 5.3 we 

have imposed the initial genetic conditions that all simulations predict the observed %K for Syria 

(square labelled 1; see more details on the implementation of the initial conditions in Sec. 5.4 and Sec. 

5.8.7). The simulated clines have been computed at the same 9 locations and dates as the genetic data 

(so the lines simply join the 9 data points), and for several values of the cultural diffusion intensity 𝜂.  

   We first observe that, similarly to the behavior of the data (symbols in Fig. 5.3) and in agreement 
with prediction (i) formulated above, when considering cultural diffusion (𝜂 ≠ 0), the %K from the 
simulations (lines) tends to decrease with increasing distance from the Near East. This behavior was 
to be expected, because more distance from the origin (Ras Shamra, Syria) implies more time for the 
farming populations to interact (via interbreeding or/and acculturation) with hunter-gatherers (who 
lack haplogroup K). However, we note that both the simulations and the data display a local minimum 
at region 11 (Sweden). This is due to the fact that, according to archaeology [47] and ancient genetics 
[167, 206], the spread of the Neolithic in Europe occurred following two main routes: one along the 
Mediterranean coast (corresponding to the Impressa and Cardial traditions) and the other through 
the Balkans and the Central European plains (corresponding to the Starčevo and LBK cultures). To see 
how this explains the minimum in Fig. 5.3, consider first the Neolithic front propagating along the 
Mediterranean coast. In this case, population dispersal is driven by jumps (maritime migrations) of 
about 150 km per generation (see Sec. 5.4 and Sec. 5.8.6; in agreement with previous simulation 
results [47]). Conversely, the Neolithic front propagating inland is driven by jumps of about 50 km per 
generation (Sec. 5.4). Therefore, in order for the Neolithic front to travel a given distance, a coastal 
propagation obviously implies fewer jumps, i.e., fewer generations, and therefore less time for 
interbreeding with hunter-gatherers (and/or acculturation of the latter) than an inland propagation. 
Thus a coastal route will lead, at a given distance, to a lower decrease of the %K than an inland route. 
This is why the Mediterranean route leads, in region 6 (NE Spain) in  Fig. 5.3, to higher values of the 
%K than the central-northern European route in region 11 (Sweden), in spite of the fact that the 
former is further away from Syria than the latter. This explains the minimum in the simulation curves 
(and in the observed data) in Fig. 5.3 (see Sec. 5.8.8 for a more detailed discussion, and Fig. 5.18 for a 
plot of the simulated clines along both routes). 
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Figure 5.3 Observed and simulated percentage of mtDNA haplogroup K as a function of the great-circle distance 
from Syria. The data are shown with the same error bars as in Fig. 5.2, but only for the oldest regional cultures. 
The lines are the results of the mathematical simulation for several values of the cultural diffusion intensity 𝜂. 
The lines have been plotted by joining the simulation results for each of the 9 regional cultures, obtained at the 
average location and date of the individuals whose mtDNA haplogroup has been determined for each regional 
culture (Appendix A Data S1). Therefore, the simulation result for each region has been obtained at its average 
date (Fig. 5.1 and Appendix A Data S1). Numerical labels denote the same cultures as in Figs. 5.1-5.2.  
 

 Demic versus cultural diffusion 
What does the observed cline of haplogroup K for Early Neolithic cultures (error bars in Fig. 5.3) imply 
about the importance of cultural diffusion in the spread of the Neolithic? First, let us examine how the 
intensity 𝜂 of cultural diffusion is related to the steepness of the genetic cline. Note that, in the 
absence of cultural diffusion (i.e., without interbreeding neither acculturation), the %K at all farming 
populations would remain approximately constant at the value observed for the original (PPNB) 
population in Syria (assuming that drift and other processes do not have a strong effect). Thus, in a 
purely demic model (𝜂 = 0), such a cline would not be observed. Accordingly, the simulation for 𝜂 =
0 leads to a uniform distribution in Fig. 5.3. We also expect that the stronger the intensity of cultural 
diffusion, the more important the decrease in the frequency of haplogroup K, and the steeper its 
geographic cline. This intuitive expectation agrees with the simulation results in Fig. 5.3, where for any 
given distance from the origin, a higher value of the cultural transmission intensity 𝜂 yields a lower 
%K. 

   By comparing the data (symbols) to the demic-cultural space-time simulations (lines), we observe 
that Fig. 5.3 implies that the intensity of cultural diffusion was 𝜂 ≈ 0.02 (because higher or lower 
values of 𝜂 lead to lines that are not within all of the error bars obtained from the aDNA data). The 
maximum possible value of this parameter is 𝜂 = 1 [94] [see the text below Eq. (5.2)]. Therefore, 
although the observed cline cannot be explained without cultural diffusion (𝜂 = 0, horizontal line in 
Fig. 5.3), such a low value (𝜂 ≈ 0.02) implies that cultural diffusion was remarkably weak. Indeed, the 
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cultural diffusion intensity 𝜂 can be interpreted as the proportion of pioneering farmers that mate a 
hunter-gatherer [94] or, alternatively, that teach agriculture to a hunter-gatherer [3] (Sec. 5.8.9). Thus, 
our result that 𝜂 ≈ 0.02 (Fig. 5.3) implies that cultural diffusion involved only a tiny fraction (about 
2%) of farmers and, in this sense, the most relevant process in the Neolithic spread in Europe was 
demic diffusion. Modifying the initial conditions so that the whole 80% CL for Syria is considered 
refines this estimate of the percentage of farmers involved in cultural transmission to the range 
(2 ± 1)% (Sec. 5.8.7). The primacy of demic diffusion has been noted in genome-wide studies (see, 
e.g., previous work by Mathieson et al. [80]), but those studies could not quantify the percentage of 
farmers involved in cultural diffusion (see our Introduction). In contrast, we quantify that about 98% 
of farmers did not take part in cultural diffusion.  

   Our main result, namely that a very small amount of cultural transmission is enough to produce a 
continent-wide genetic cline, agrees with previous simulations [5, 88, 89], which however did not use 
the equations of cultural transmission theory nor could compare to aDNA data (which were then also 
unavailable). Therefore, in none of those previous studies was it possible to estimate quantitatively 
the percentage of farmers involved in cultural diffusion. 

5.3. Conclusions 
In this paper we have analyzed the genetic implications of a mathematical model that combines demic 
dispersal, population growth, and cultural transmission theory. Using anthropologically realistic 
assumptions and parameter values, we have performed, to the best of our knowledge, the first 
qualitative and quantitative comparison of a mathematical model to an observed Neolithic genetic 
cline. Although the ancient genetic data currently available are still limited, especially those 
corresponding to the Early Neolithic, they cover a wide enough area (see Sec. 5.8.4, Fig. 5.10) to allow 
us to analyze the geographical cline of genetic markers at the continental level, even if regional 
variations cannot be detected. In addition, the data are numerous enough so that we can observe a 
cline, and reach conclusions valid at least at the 80% CL (error bars in Fig. 5.3 and in Sec. 5.8.7, Fig. 
5.15 and Fig. 5.17). A Moran’s I correlogram confirms the existence of the cline (Sec. 5.8.4, Fig. 5.11). 
We have focused our attention on haplogroup K, mainly because it is virtually absent in hunter-
gatherer populations and its frequency has a maximum in the Near East (specifically in Syria). Both 
points make it possible to attempt a description based on a simple mathematical model.  

   Qualitatively, the model predictions agree with the data in two ways: (i) both the data and the 
simulations show that the %K tends to decrease with increasing distance from Syria (Fig. 5.3); (ii) for 
each region, the %K tends to decrease with increasing time after the arrival of farming (Fig. 5.2).  

   Quantitatively, comparison between the model and the data shows that: (i) both the model and the 
data display a local minimum of the genetic cline, and for the same regional culture (Sweden, i.e. 
symbol 11 in Fig. 5.3); (ii) the ancient cline of haplogroup K can be explained if about 98% of farmers 
were not involved in cultural diffusion. However, we stress that the observed cline cannot be 
understood assuming that 100% of farmers were not involved in cultural diffusion. Thus, the observed 
cline implies that some farmers took part in cultural transmission (either by interbreeding or by 
teaching agriculture to hunter-gatherers). But only a tiny fraction (about 2%) of farmers were involved 
in cultural diffusion. In this sense, the most relevant process in the expansion of Neolithic culture in 
Europe was demic diffusion, i.e. the reproduction and dispersal of farmers, as opposed to the 
incorporation of hunter-gatherers (cultural diffusion).  

   Recently, the conclusion that the spread of the Neolithic in Europe was driven mainly by demic 
diffusion has been also obtained from comparing non-genetic, demic-cultural models to the spread 
rate of the Neolithic front, as estimated from archaeological data [3]. However, using only 
archaeological data has severe limitations. The reason is the following. Archaeological data make it 
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possible to estimate the spread rate of the Neolithic wave of advance, and this can be compared to 
the results of the mathematical model. But the dependence of the spread rate on the intensity of 
cultural transmission is weak [3, 94] and, for this reason, the spread rate can be used only to estimate 
an upper bound for the intensity of cultural transmission (namely 0 < 𝐶 < 2.5 [3], equivalent to 0 <
𝜂 < 2.5 here, see Sec. 5.8.9). In contrast, here we have shown that genetic data make it possible to 
know a function that depends strongly on the intensity 𝜂 of cultural transmission (Fig. 5.3), namely 
the percentage of the considered haplogroup as a function of distance (i.e., the genetic cline shown 
in Fig. 5.3). This strong dependency has made possible a much more precise estimation of the 
percentage of farmers involved in cultural diffusion, namely 𝜂 = 0.02 (Fig. 5.3), i.e. about 2%. This 
shows the tremendous potential of combining genetics, archaeology and mathematical modelling. On 
the other hand, the high number of archaeological data has allowed the identification of regional 
variations [95], something that is still not possible on the basis of ancient genetic data. 

   Our findings agree with genome-wide results, in the sense that demic diffusion was the main driver 

of the Neolithic spread in Europe (see, e.g. the results by Mathieson et al. [80]). However, genome-

wide studies cannot estimate the percentage of farmers involved in cultural diffusion (see our 

Introduction). In contrast, our methodology yields the first quantitative estimation for this percentage 

(about 2%). This is possible because, in contrast to genome-wide studies, our approach has two crucial 

features: first, we compare to cultural-demic wave-of-advance mathematical models; second, we use 

a marker that shows decreasing frequency with increasing distance from the Near East. This estimate 

arises from comparing our model to the data at the 80% CL, leading to a confidence interval for the 

importance of cultural diffusion of (2 ± 1)%. Of course, if additional such markers are identified in 

future work, they will yield more precise results and will also allow the study of regional variabilities. 

Thus the present paper is a first step, which also provides a plausible explanation for the observed 

cline of haplogroup K at a continental scale. We stress that such an explanation cannot be provided 

by genome-wide studies. For simplicity, our models assume the same dispersal behavior for males and 

females. If future studies detect ancient clines of decreasing frequency for additional genetic markers, 

and they consistently show differences between maternal and paternal markers, they could be used 

to infer different dispersal behaviors for females and males, using trivial extensions of our models. 

   Ancient DNA data indicate that cultural diffusion was more important in some specific regions, such 

as Scandinavia [177] or the Paris Basin [207]. Thus, it has been recently suggested that the effect of 

cultural diffusion increased as farmers migrated farther west in Europe [207]. This suggestion agrees 

nicely with: (i) our simulated clines (lines in Fig. 5.3); (ii) the observed cline of haplogroup K (symbols 

in Fig. 5.3); and (iii) the intuitive expectation that longer distances from the spatial origin of the 

Neolithic imply more time for interbreeding and/or acculturation and, therefore, a stronger effect of 

cultural diffusion.  

5.4. Materials and methods 

 Archaeological and genetic data 
We gathered a database of all individuals from farming cultures dated between 8,000 and 3,000 

calibrated years BCE for which the mtDNA haplogroup have been reported in the literature. For all 513 

individuals in the database, we report the haplogroup, date, latitude, longitude, bibliographical 

references and additional data (Appendix A Data S1). We grouped them into regional cultures 
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according to their geographical and cultural closeness (e.g., Syria PPNB, Anatolia, Hungary-Croatia 

Starčevo, Hungary LBK, etc.). The data from Syria are from PPNB sites, which makes them especially 

relevant because PPNB/C are the Near-Eastern Neolithic cultures that later spread into Europe [47]. 

We selected for further analysis the 26 regional cultures with more than two individuals (comprising 

508 individuals) and discarded the others (see Sec. 5.8.3 for a discussion on Neolithic individuals not 

included in the analysis). For each of the 26 selected regional cultures, we calculated the percentage 

of individuals with K haplotypes (Appendix A Data S2 and Data S3), the average date of its individuals, 

and the average great-circle distance of its individuals to the site of Ras Shamra (Appendix A Data S3). 

This is the oldest PPNB Syrian site used in previous simulations studies [47], and we therefore use it 

as origin of the Neolithic range expansion in our simulations (see below).  

 Statistical analysis 
For each of the 26 regional cultures, we estimated the error intervals of its average date and %K. The 

time error bar (Fig. 5.1) was estimated as the range of dates for all individuals in the considered 

regional culture. The error bar for the %K (Figs. 5.2-5.3) was estimated by the bootstrap method, 

computing the 80% CL interval of 10,000 replicates, except for the two regions where none of the 

sampled individuals have haplogroup K (‘Portugal coastal Early Neolithic’ and ‘Romania Late-Middle 

Neolithic’). Then the bootstrap method cannot be applied directly (because the error would be exactly 

zero, which is not reasonable), and thus we applied a different statistical method, explained in detail 

in Sec. 5.8.10. We have established the existence of the cline in 3 ways: linear regression (Fig. 5.2), 

interpolation map and Moran's I correlogram (Sec. 5.8.4). 

 Analysis of K haplotypes 
We have applied several statistical and phylogenetic analysis to the K haplotypes found in the 9 Early 

Neolithic regional cultures: we have computed Tajima’s 𝐷 and Fu’s 𝐹𝑆 neutrality tests; analyzed the 

geographical variation in the haplotype diversity, mismatch distributions, and first principal 

component; correlated genetic and geographical distances through Mantel test; performed network 

analysis; and constructed a Bayesian Skyline Plot (Sec. 5.8.1). The obtained results show clear signs of 

a recent demographic and spatial expansion, in agreement with our assumption that haplogroup K 

spread with the Neolithic wave. These analyses have also shown as that, in principle, the regions 

displaying high values of %K are not the result of sampling individuals from a single family (see Sec. 

5.8.1.2) Haplotype diversity). 

 Space-time genetic simulations 
We use a rectangular grid of square cells that covers the European continent, the Near East and part 

of Asia and Africa, with each cell classified as inland, coast, mountain or sea [47]. We use cells of 50 

km x 50 km, since 50 km is the value corresponding to the mobility per generation according to 

ethnographic data of preindustrial populations [182]. At each cell we can have individuals of three 

populations: farmers who have haplogroup K, 𝑃𝑁; farmers who do not have haplogroup K, 𝑃𝑋; and 

hunter-gatherers, 𝑃𝐻𝐺 (no hunter-gatherer has haplogroup K). Each population would in principle 

include several different haplotypes, but since we are not interested in the evolution of any individual 

haplotypes, for simplicity the model used in the main paper does not consider any lower level 
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subgroups. Below we describe the most important processes of the model, but we include a more 

detailed description in Sec. 5.8.5. 

Initial conditions. We applied the initial condition that at 8,233 yr BCE, the date of Ras Shamra (the 
oldest PPNB site in Syria from previous simulations studies [47]), all of the grid was empty of farmers 
except the cell that contains this site. In this cell, we set at 8,233 yr BCE the hunter-gatherer population 
density to zero, and the farmer population density to its saturation value (𝑃𝐹 𝑚𝑎𝑥 = 3200 
individuals/cell, from ethnographic data [47, 89]). The PPNB Syrian archaeological and genetic data 
have different times and locations (the archaeological data is dated at 8,233 yr BCE and the genetic 
data at 7,258 yr BCE). For this reason, we have to set the %K at the cell containing Ras Shamra by trial 
and error so that the simulation yields the adequate value of the %K at the time and location of the 
genetic data in Syria (see details in Sec. 5.8.7). In all grid cells (except for the initial one), the hunter-
gatherer population is initially set at its saturation value (𝑃𝐻𝐺 𝑚𝑎𝑥 = 160 individuals/cell, from 
ethnographic data [89]), assuming that none of them has haplogroup K (see the Sec. 5.1 and Sec. 
5.8.2). 

   Defining a generation as the mean age of the parents at the time one of their offspring is born (not 
necessarily the first), in simulations we use the mean value 𝑇 = 32 yr obtained from ethnographic 
data [93]. Let t stand for the number of generations elapsed since the beginning of the simulation 
(8,233 yr BCE). For 𝑡 = 1,2,3… we apply the following cycle of 3 steps (changing their order would 
yield the same results): 

1) Dispersal. At each cell, we update the values of 𝑃𝑁 and 𝑃𝑋 by computing how many farmers of both 
kinds arrive at the cell from other cells. We do this, as in previous work [47, 94, 182], with a simple 
model in which, for each cell, a fraction 𝑝𝑒  (which is called the persistence in demography) of the 
population of farmers (independently of their genes) stays at the cell, and a fraction (1 − 𝑝𝑒) relocates 
to the four nearest neighbor cells, each receiving a fraction (1 − 𝑝𝑒) 4⁄ .  We use the mean value 𝑝𝑒 =
0.38 obtained from ethnographic data [182]. We expect that including a set of distances and 
probabilities would lead to similar results [3]. If one or more of the nearest neighbors are mountain 
cells, they cannot receive population and each of the remaining neighbors receives a higher fraction. 
If one or more neighbors are sea cells, the corresponding fraction of the population (that would move 
there) travels by sea, and is equally distributed among coast cells that can be reached by sea in straight 
lines of up to 150 km (this is the adequate distance to obtain agreement with archaeological data, as 
seen in Sec. 5.8.6, and in previous work [47]). We do not update the number of HGs in each cell due 
to their dispersal, because exchange of HGs between saturated cells has no effect (since all HGs lack 
haplogroup K) and we assume that they do not disperse appreciably into cells in which their number 
has been lowered due to cultural transmission (see step 2 below). 

2) Cultural transmission. This is the only step that was not included in our previous non-genetic 
simulations on a real map of Europe [47], because they considered only purely demic models. There 
are 3 modes of cultural transmission [52]. Vertical transmission is due to interbreeding (i.e., cross-
matings between farmers and HGs). Horizontal (oblique) transmission is due to learning of agriculture 
by HGs from farmers of the same (the previous) generation. The latter two modes can be combined 
in a single mathematical model, namely horizontal/oblique transmission [3]. Here we shall consider 
only vertical transmission for simplicity, but we would reach the same conclusions if we considered, 
instead, any combination of vertical and horizontal/oblique transmission (Sec. 5.8.9). 

   After dispersal, in each cell there is a population of 𝑃𝐻𝐺  hunter-gatherers and 𝑃𝑁 + 𝑃𝑋 farmers. To 
determine the population numbers of the new generation, we have to compute the matings that take 
place between and within those 3 population groups, and then apply the reproduction step. We 
assume that children of cross matings between farmers and HGs are farmers, in agreement with 
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ethnographic observations [139]. The number of cross matings between HGs and each group of 
farmers is [94]  

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁 = 𝜂
𝑃𝐻𝐺 ∙ 𝑃𝑁

𝑃𝐻𝐺 + 𝑃𝑁 + 𝑃𝑋
, (5.1) 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋 = 𝜂
𝑃𝐻𝐺 ∙ 𝑃𝑋

𝑃𝐻𝐺 + 𝑃𝑁 + 𝑃𝑋
, (5.2) 

where 𝑃𝐻𝐺 + 𝑃𝑁 + 𝑃𝑋 is the total population present at the cell, and parameter 𝜂 is the intensity of 

interbreeding [94]. The case 𝜂 = 1 corresponds to random mating. The case 𝜂 > 1 corresponds to 

more cross matings than under random mating [94], which is not realistic for farmers and HGs 

according to ethnographic data [208, 209] (moreover, 𝜂 > 1 can lead to negative population numbers 

[94]). Therefore, in practice 0 ≤ 𝜂 ≤ 1. 

   From Eqs. (5.1)-(5.2) it is very easy to find the number of individuals 𝑃′𝐻𝐺, 𝑃′𝑁, and 𝑃′𝑋 who do not 

take part in HN neither NX matings. We can use them to compute the number of matings between 

farmer individuals of different genetic groups (i.e., between populations 𝑃′𝑁 and 𝑃′𝑋) by using again 

vertical cultural transmission theory and taking into account we have no reason to assume that 

farmers of a genetic group (i.e., with or without haplogroup K) will have a preference for (neither 

against) mating with farmers of the same genetic group. Thus we apply random mating (𝜂 = 1) [94] 

for matings between farmers, 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑁𝑋 =
𝑃′𝑁 ∙ 𝑃

′
𝑋

𝑃′𝑁 + 𝑃
′
𝑋
. (5.3) 

3) Reproduction. We apply the following rules. (i) Each couple will have 2 · 𝑅0,𝑖 children, because 𝑅0,𝑖 
(the net fecundity) is computed per parent and there are two parents per mating (𝑖 = 𝐹,𝐻𝐺). 
Ethnographic data indicate that the children of cross matings with one HG parent are farmers [139, 
208], thus we use  𝑅0,𝐻𝐺 for HH matings and 𝑅0,𝐹 for HN, HX, NN, XX and NX matings. If the number 

of individuals computed for some population group, cell, and time step is larger than its corresponding 
maximum (𝑃𝐹,𝑀𝐴𝑋 or 𝑃𝐻𝐺,𝑀𝐴𝑋), then we set it to the corresponding maximum value. We expect that 

a logistic model would yield similar results. In our simulations we use 𝑅0,𝐹 = 2.45 [183], indicating 
that after a generation, the size of the new population is 2.45 times the size of the parent population. 
We assume that 𝑅0,𝐻𝐺 = 1, i.e. that the HG populations have reached a stationary state and they do 
not grow in number (not even after some HGs mate into the farming community, because converted 
HGs will still need part of the cell space after they become farmers); we do not expect our conclusions 
to change for other reasonable values of 𝑅0,𝐻𝐺. (ii) For each kind of mixed genetic mating (HN and 
NX), in our simplest model we assume that the mother belongs to 𝑃𝑁 in 50% of the matings, whose 
children will also carry haplogroup K since mtDNA is inherited from the mother (i.e., a 50% of the total 
offspring of mixed genetic matings will belong to 𝑃𝑁). A more complicated model, assuming that 
mothers in HN and HX matings are always HGs (which is closer to ethnographic observations [208]) 
yields very similar results (Sec. 5.8.11). 

   All the steps in the model are computed using real values for the population numbers. If we used a 
stochastic procedure to approximate them to integer values (at every cell, iteration, and process step), 
we expect that in average we would obtain the same results. We run our simulation program for 200 
iterations (generations of 32 yr) for each set of parameter values, so that it covers the time from the 
start of the spread (Syria, 8,233 cal yr BCE) until the latest genetic data in the database (Sweden, 2,825 
cal yr BCE; Appendix A Data S3). At each iteration we compute the number of HG, N and X individuals 
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at each cell and record the latter two, so that we can compute the simulated %K (namely, 
𝑃𝑁

𝑃𝑁+𝑃𝑋
· 100) 

and compare it to the observed one from the reported mtDNA data at each regional culture and its 
average date (Appendix A Data). 
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5.8. Supplementary Information Texts 

 Text S1. Analysis of K haplotypes. Signs of spatial expansion 
Section 5.8.1 is devoted to independent analyses that confirm some claims made in our main paper. 

Therefore, the reader interested in detail on the data or the model used in the main paper can jump 

directly to Sec. 5.8.2 or S5, respectively. 

   As explained in the Introduction of the main paper, and as we shall see in Sec. 5.8.2 below, 

haplogroup K was virtually absent in pre-Neolithic Europe, whereas numerous Early Neolithic farmers 

carry haplotypes belonging to this haplogroup. This leads to the hypothesis that haplogroup K spread 

demically with the Neolithic wave, and we have applied this hypothesis to build the simulations 

reported in the main paper. Note that while the Neolithic spread could have been partially cultural (in 

the sense that hunter-gatherers could have contributed K individuals to farmer populations), the 

spread of haplogroup K, if absent in the local hunter-gatherer populations, must have been purely 

demic (in the sense that hunter-gatherers did not contribute K haplotypes to farmer populations). 

Therefore, if haplogroup K spread demically with the Neolithic front, one would expect to find signs 

of demographic and spatial expansion in the diversity of K haplotypes found in the Early Neolithic 

populations.  

   Our database includes 56 Early Neolithic individuals presenting mitochondrial haplotypes identified 

as belonging to haplogroup K (see Appendix A Data S1 and Data S2). For 55 of these individuals, at 

least part of the HVS-I region had been sequenced and the sequences were available in the respective 

sources cited in Appendix A Data S1 (the exception is sample deb29II, from the region ‘5 Western 

Germany LBK’, for which the sequence for the HVS-I region could not be determined [78]). The range 
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shared by all sequences spans nucleotide positions 16106-16390. Because the HVS-II region is not 

sequenced for all individuals, and different authors test different coding region SNPs, in this section 

we shall apply our analyzes over this HVS-I range (see Appendix A Data S7). 

   Therefore, in this section we shall study only the 55 Early Neolithic individuals in Appendix A Data S1 

identified as presenting haplogroup K and for which the HVS-I region has been sequenced and apply 

some statistical and phylogenetic analyses at the haplotype level to provide additional support to the 

hypothesis that haplogroup K spread demically with the Neolithic front. Our results will show clear 

signs of a recent expansion. Thus, given that haplogroup K was apparently absent from pre-Neolithic 

populations, and that there is no archeological record of other large demographic movements close 

in time to our data, the most reasonable conclusion from our results is the assumption made in our 

main paper that haplogroup K spread into Europe with the Neolithic front. 

5.8.1.1. Tajima’s D and Fu’s Fs neutrality tests 

We have analyzed the 55 sequences of Early Neolithic individuals with haplogroup K using  

Arlequin 3.5 [210], and computed the results for two neutrality tests: Tajima’s D [211] and Fu’s FS [212]. 

For nucleotide positions 16106-16390 we can identify 12 different haplotypes (see Table 5.1 below), 

and we obtain significantly negative values for both statistics, 𝐷 = −2.10171 and 𝐹𝑠 = −11.69788. 

A negative value of D can be a result of selection, but it can also be due to a recent bottleneck or a 

process of population growth [211], and a negative value of Fs is often used as indicative of population 

expansion [212, 213]. Therefore, those results would be consistent with a recent process of 

demographic expansion [169, 211, 214], which is to be expected if we assume that haplogroup K 

spread demically with the Neolithic, so that farming populations underwent a process of demographic 

expansion.  

Haplotype HVS-I polymorphisms (16106-16390) a Number of individuals Regions found b 

H01 T16224C  T16311C 37 1, 2, 3, 4, 5, 6, 7 

H02 T16311C 2 1 

H03 T16224C  T16311C  C16366T 3 1 

H04 T16224C  T16311C  G16290A 1 2 

H05 T16189C  T16224C  T16311C 4 2, 3 

H06 A16166G  T16224C  T16311C 1 3 

H07 T16172C  T16224C  T16311C 1 3 

H08 T16224C  C16261T  T16311C 1 3 

H09 T16224C  T16249C  T16311C 2 4, 5 

H10 T16209C  T16224C  T16311C 1 4 

H11 T16224C  T16311C  G16319A 1 4 

H12 T16224C  T16311C  T16362C 1 11 

Table 5.1 K haplotypes in Early Neolithic regions. aPolymorphisms relative to rCRS [215]. bRegion numbers 

correspond to the geographical region labels used in all figures and the Appendix A. 

   The mitochondrial region that we have used may in principle present a limitation as it does not 

include the polymorphic site at 16093, often used to discriminate K1a sub-haplogroups. Therefore we 

have repeated the analysis over the HVS-I range 16056-16390 for the 46 samples such that this range 

is sequenced (thus we have had to leave out of the analysis the 6 samples from ‘1 Syria PPNB’, sample 

I0727 from ‘2 Anatolia’, and samples 1CH0102 and CSA152223 from ‘6 North-Eastern Spain Cardial’). 

Using this reduced dataset we now obtain a value of Tajima’s D not significantly different from zero at 

the 95% CL, which would indicate neutrality of mutations, while Fu’s Fs is still significantly negative 
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(𝐹𝑠 = −7.90046). Because Fu’s statistic is especially sensitive to processes of population expansion 

[212, 213], and since Tajima’s D is not positive in this analysis and neither in that in the previous 

paragraph, these results reinforce the proposal in our main paper that the observed diversity is the 

result of a demographic expansion, rather than of any possible process of background selection. 

5.8.1.2. Haplotype diversity 

The analysis of the evolution of haplotype diversity [216] can also help in identifying processes of 

population expansion. Here we shall analyze the evolution of haplotype diversity over space to identify 

signs of geographical expansion, that is, a decrease in the diversity with distance from the assumed 

source (see e.g. reference [217]). 

   Because of the low number of Early Neolithic individuals with haplogroup K in our database, to 

increase the significance of the samples in this section (and in the following sections) we have pooled 

the samples from geographically close regions (namely, regions 4-5 in Germany, and 6-7 in Iberia). We 

have computed the regional haplotype diversity indices using Arlequin 3.5 [210]. The results (Fig. 5.4) 

show a general decreasing trend with distance from Syria (with the exception of Anatolia, which shows 

relatively low haplotype diversity), and are thus indicative of a geographical spread from Syria [217]. 

This reinforces the conclusion in our main paper that haplogroup K spread. 

 

Figure 5.4 Haplotype diversity versus distance for Early Neolithic regions. This index shows a global decreasing 
trend, in agreement with a process of spatial expansion. 

   The low haplotype diversity found in Anatolia is in fact consonant with the fact that most samples in 

Anatolia present haplotype H01 (Table 5.1) and could in principle indicate that the samples correspond 

to a single family unit. However, upon examining the source, this does not seem to be the case for 

three reasons: (i) the samples correspond to two different sites; (ii) the analysis of the whole mtDNA 

sequences performed by Mathieson et al. [80] does not seem to indicate that the individuals are 

directly related; and, more conclusively, (iii) they display different subclades of haplogroup K. 
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Therefore, the low Anatolian diversity is probably due to the short nucleotide range that we are able 

to analyze in this study, as well as to sampling hazards. Similarly to Fig. 5.4, we expect the data from 

Anatolia will not follow the general trend in any of the regional analyses of mtDNA sequences 

performed in the next subsections. Below we shall find that this is indeed the case. 

5.8.1.3. Mismatch distribution 

The distribution of nucleotide site differences between pairs of individuals in a population can provide 

evidence of past demographic expansions undergone by this population [218]. Likewise, population 

range expansions can also leave similar traces in the distribution of pairwise genetic differences [89, 

219, 220], with spatial signatures that can vary depending on the demic or demic-cultural nature of 

the expansion process [89]. 

   Firstly, we have plotted the distribution of genetic differences including all 55 Early Neolithic 

individuals with haplogroup K, using the shared range of the HVS-I region 16106-16390. The result is 

shown in Fig. 5.5a. Because of the limitation of the analyzed range, the maximum number of 

differences if low, but the plot shows a distribution with a maximum close to zero differences, which 

would be consistent with a recent demographic or spatial expansion of the considered population 

(early Neolithic farmers with mtDNA haplogroup K) [218, 220]. 

   As we have explained at the beginning of this section (Sec. 5.8.1), on the basis of the genetic 

evidence, in our simulations in the main paper we have assumed that haplogroup K spread demically 

with the Neolithic wave (because it was absent in European hunter-gatherer populations). In that case, 

one would in principle expect differentiated mismatch distributions of K haplotypes at different 

regions, with a maximum closer to zero in the case of populations located further away from the 

source, as shown by means of simulations by Currat and Excoffier (Fig. 4a-b in their results) [89]. In 

Fig. 5.5b-f we show the mismatch distributions for different geographical regions (to increase the 

significance of each sample, we have pooled geographically close regions 4-5 and 6-7 as in the previous 

subsection; Sweden cannot be analyzed here as it has only one individual with haplogroup K). The 

results, while clearly limited by the low number of individuals and analyzed nucleotide positions, do 

show a trend in which the maximum identified in Syria (Fig. 5.5b) moves closer to zero at 

geographically distant locations (again with the exception of Anatolia, which shows a peak closer to 0 

differences than expected for a region close to the source). We conclude that the general trend 

observed in the distributions is as expected from previous simulations [89] and can thus be interpreted 

as a result of a recent geographic expansion of individuals with haplogroup K. This agrees with our 

assumption that haplogroup K spread demically with the Neolithic front. 
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Figure 5.5 Mismatch distributions for K haplotypes identified in all Early Neolithic samples (upper left) and in 

specific regions. The distributions have been obtained from mtDNA sequences for the HVS-I region at nucleotide 

positions 16106-16390. (a) includes all 55 early Neolithic individuals with haplogroup K, whereas (b)-(f) 

correspond to regional samples. 

 

5.8.1.4. Mantel test 

It is well-known that a process of geographic expansion leads to a strong increase of genetic distance 

with increasing geographic distance [221, 222]. For this reason, we have computed the pairwise 

genetic distance FST between the Early Neolithic regional cultures (considering only K haplotypes) and 

performed a Mantel test [223, 224] to evaluate the correlation between genetic and geographic 

distance matrices [221, 225, 226]. Genetic distances and Mantel tests were computed with Arlequin 

3.5 [210] performing 10,000 permutations. In order to increase the significance of each sample we 

have pooled the 55 Early Neolithic individuals presenting haplogroup K into six geographic areas (as 

done in the previous subsection): Syria, Anatolia, Hungary-Croatia, Germany, Iberia, Sweden. 

   Surprisingly, the results of applying a Mantel test to the genetic and geographic distance shows a 

very low matrix correlation value 𝑅 = 0.15. Examining the data, the reason for this low value can be 

partially attributed to the fact that there is only a single K haplotype in Sweden, which in turn differs 

from all other K haplotypes analyzed, thus leading to a very high value of the genetic distance to other 

close regions. The sample from Sweden is also dated considerably later than the other samples (see 

Fig. 5.1 in the main paper), so the genetic distance could be due not only to geographical distance, but 

also to temporal distance (indeed, applying a Mantel test to genetic and temporal distances yields a 

much better correlation value 𝑅 = 0.67). For this reason we have computed anew a Mantel test for 

genetic and geographic distances leaving Sweden out of the analysis, which leads an increases value 

of the correlation between matrices, 𝑅 = 0.45. 

   In Fig. 5.6 we have plotted the genetic versus geographic distances to Syria, in order to visualize the 

correlation between both distances [225]. This plot shows that Anatolia diverges considerably from 

the overall behavior, similarly to the observation from the previous subsection where the mismatch 
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distribution for Anatolia also diverged from our expectations. Thus we applied a Mantel test without 

Anatolia (nor Sweden), which leads to a much higher correlation value 𝑅 = 0.88. 

   Therefore, we see that there is a spatial correlation with genetic distances, although the results when 

considering all regions are affected by the very late date for the sample in Sweden, and by the K 

samples from Anatolia, which seem to present a higher divergence than would have been expected. 

As mentioned when analyzing the haplotype diversity, this exception may be due to the low number 

of individuals and analyzed nucleotide positions in the data available at present. 

 

Figure 5.6 Genetic distances to the Syrian population versus geographic distances for Early Neolithic regions. 

The line corresponds to the linear fit without region 2 Anatolia. Note that these data correspond to the first 

column of the matrices of genetic (𝐹𝑆𝑇) and geographic distances used in the Mantel tests (Sweden is not 

included). 

 

5.8.1.5. PCA Analysis 

Alongside the Mantel test, we can also test the correlation between genetic and geographic distances 

by performing Principal Component Analysis (PCA) on the K haplotypic data. We have performed PCA 

between groups using PAST 3.15 software [227] for the different geographical regions (as in the 

previous subsections, we have pooled the data from geographically close regions). 

   We find that the first principal component (PC) explains a 63% of the variability between groups (the 

second PC explains a 22% of the variability), so below we plot the first PC against distance (Fig. 5.7). 

We see that, similarly to the results obtained above, there is a very clear spatial correlation between 

Syria, Hungary-Croatia, Germany and Iberia, while Anatolia (region 2) and Sweden (region 11) fall 

clearly out of this trend. There is a clear overall correlation between genetic differentiation and 



103 

 

distance (Fig. 5.7), and this is consistent with the involvement of haplogroup K in the Neolithic demic 

flow. 

 

Figure 5.7 Variation of the first principal component (PC1) with distance from Ras Shamra. The line corresponds 

to the linear fit obtained excluding regions 2 (Anatolia) and 11 (Sweden). 

 

5.8.1.6. Network analysis 

When a population undergoes an expansion process, it has been shown that phylogenetic network 

analysis leads to star-shaped genealogies [228]. Figure 5.8 shows the median-joining network 

obtained with Network 5 software [229] (www.fluxus-engineering.com) for the 55 Early Neolithic HVS-

I sequences (nucleotide positions 16106-16390). The obtained results are clearly star-shaped, 

although to reinforce this observation we have computed the star index introduced by Torroni et al. 

to evaluate the starness of a phylogeny [65]. This index is defined as the relative frequency of pairs of 

sequences that coalesce at the assumed root (in our case, haplotype H01), and a value >0.95 is 

considered to reflect a highly star-like group [65, 230]. From the data in Table 5.1 we obtain that only 

11 of the 1485 possible pairs of sequences do not coalesce at the root, thus the star index for the early 

Neolithic haplogroup K is 0.99. This indicates that we have indeed a very star-like phylogenetic 

network (in agreement with a process of population expansion), and that haplogroup K was involved 

in the Neolithic demic flow (as assumed in our main paper). 

   Figure 5.8 also provides a supplementary visualization to Table 5.1 above, which shows clearly that 

the most abundant haplotype is H01. This haplotype H01 is present in all regions but Sweden, while 

all of the other haplotypes are present in only one or two close regions (see Table 5.1). Therefore, 

haplotype H01 would have been carried on along the whole expansion, while other haplotypes might 

have appeared locally but not spread in the process of spatial expansion. 
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Figure 5.8 Median-joining network of K haplotypes present in Early Neolithic cultural regions. The nodes 

correspond to the haplotypes listed in Table 5.1 and their sizes are proportional to the number of individuals. 

The mutated nucleotide positions are indicated at the links. 

 

5.8.1.7. Bayesian Skyline Plot 

In this section, we have applied Bayesian coalescent inference to study the variation in time of the 

effective population of individuals bearing K haplotypes at the Early Neolithic front. We have 

generated a Bayesian skyline plot (BSP) [231] for the Early Neolithic HVS-I sequences (positions 16106-

16390) corresponding to individuals carrying K haplotypes, each one dated with its calibrated date 

(see Appendix A Data S7). The BSP was generated using BEAST 2 [232] and Tracer 1.6 [233]. The 

Markov chain Monte Carlo (MCMC) samples were based on a run of 40,000,000 generations, sampled 

every 40,000 generations, and with the first 10% discarded as burn-in. We used a JC69 substitution 

model (although using a HKY yields very similar results) and a strict clock with a mutation rate 

1.62 × 10−7, as reported by Soares et al. [234] for the HVS-I region. 

   Figure 5.9 shows the BSP obtained for the Early Neolithic individuals presenting haplogroup K. 

Because the individual with haplogroup K in Sweden is dated about 2,000 yr later than the other Early 

Neolithic data (see Appendix A Data S7), we have not included Sweden in the results shown in Fig. 5.9. 

Figure 5.9 shows that the effective population size remains mostly stationary with a decreasing trend 

throughout the considered period. Whereas the Neolithic spread is associated with a process of 

population growth, we have seen in the main text (and we shall further discuss in Sec. 5.8.4) that the 

percentage of the population carrying K haplotypes decreased at the Neolithic front, thus a stationary 

evolution of the population size of haplogroup K is a reasonable result. In addition, while rapid 

population growth processes are often related to the retention of genetic diversity [235, 236, 237], 

stationary populations (Fig. 5.9) have been related with a loss of haplotype diversity [238], in 

agreement with our observations from Fig. 5.4. 



105 

 

 

Figure 5.9 Bayesian skyline plot showing the evolution of the effective population size of K haplotypes in Early 

Neolithic groups in through time. Sweden is not included because its single date is from 2,000 yr after the 

youngest extreme of the range in this figure. The solid and dashed lines indicate, respectively, the mean and 

median population sizes, and the shaded region corresponds to the 95% credibility interval. 

 Text S2. Mesolithic samples with haplogroup K 
As explained in the main paper: (i) haplogroup K has been found in ancient farmers in many sites of 

Europe, as well as in Anatolia and the Near East; (ii) in contrast, no Western neither Central European 

hunter-gatherer has been found so far with haplogroup K before the Neolithic period; (iii) there are 

very few cases of hunter-gatherers with haplogroup K. For reasons (ii) and (iii), it is very reasonable to 

consider haplogroup K as virtually absent in pre-Neolithic Europe. Still more, there are even reasons 

to disregard the very few cases of hunter-gatherers with haplogroup K mentioned in point (iii). We 

explain these reasons in this section. Up to date, a total of 8 Mesolithic individuals with haplogroup K 

have been found. One is from Germany, four from Sweden, two from Greece and one from Georgia. 

We discuss them in turn. 

   One hunter-gatherer (OstorfSK28a) with haplogroup K (no subclade was reported by Bramanti et al. 

[203]) was found in Ostorf, a Mesolithic site in northern Germany, and dated 3,200 cal BCE. However, 

as noted by Bramanti et al. [203], it is very remarkable that Ostorf is a Mesolithic enclave surrounded 

by farmers (of the Funnel-beaker culture). Moreover, Ostorf is precisely the single hunter-gatherer 

site where individuals with non-U mtDNA haplogroups were found [203]. Thus, it is reasonable to 

consider the possibility that haplogroup K was introduced in Ostorf by interbreeding with farmers.  

   Four hunter-gatherers (Ire9, Fri28, GE76, Vis7B) have been found in Sweden (Pitted Ware culture, 

PWC) with subclades K1a and K1a1, and dated 3,200–2,400 cal BCE [168, 176]. Despite its hunter-

gatherer economy, the PWC overlapped chronologically with farmers during almost a millennium, first 
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of the Funnel-beaker culture (Trichterbecherkultur, TRB) and later of the Battle Axe complex, a variant 

of the Corded Ware culture [239, 240]. This is why some authors refer to the PWC as 'Neolithic' hunter-

gatherers [177]. Thus it is again reasonable to consider the possibility that this small sample of hunter-

gatherers with haplogroup K (4 of 32 PWC individuals) is due to interbreeding with contemporaneous 

farmers living in the same region.  

   Two hunter-gatherers (Theo1 and Theo5) displaying subclade K1c were discovered in Theopetra, a 

site in Thessaly (Greece) and dated 7,605–6,771 years BCE [171]. However, subclade K1c (as well as 

subclades K2b and K2c) has been never found among Neolithic farmers to date. Thus these two 

Mesolithic individuals do not affect the subclades of haplogroup K that were presumably introduced 

into Europe by the Neolithic population wave of advance. 

   Similarly, a hunter-gatherer (Satsurblia) from Georgia (associated with the Epigravettian culture) has 

been dated 11,380–11,130 cal BCE [204] and displays the K3 subgroup, which has been never found 

among Neolithic farmers to date. 

   In view of these considerations, current evidence makes it very reasonable to believe that 

haplogroup K or, more precisely, the subclades of haplogroup K that have been found in European 

Neolithic individuals (see Appendix A Data S1 for the complete list), were absent in Europe before the 

spread of farming, and were introduced there by incoming farmer populations of Near Eastern origin. 

 Text S3. Neolithic individuals not included in the study 
In this work, we have gathered a database of all individuals from farming cultures dated between 

8,000 and 3,000 calibrated years BCE for which the mtDNA haplogroup have been reported in the 

literature. We have grouped these individuals into regional cultures according to their geographical 

and cultural closeness, but we have only selected for further analysis (Fig. 5.1) the 26 regional cultures 

with more than 2 individuals (Appendix A Data S1). Therefore, we have discarded 5 individuals from 

the database. In particular, we discarded ‘Spain (Valencia and Alacant)’ with only two individuals [173], 

and all data from Greece, because the one Early Neolithic individual is dated about 2,000 yr earlier 

than the two Late Neolithic individuals, and therefore they cannot be considered a single group 

(Appendix A Data S1). 

   Very recently, the first mtDNA data from ancient farmers in the southern Levant (Jordan and Israel) 
have been reported [81]. As mentioned in the main paper, we have not included them. The reason is 
that haplogroup K has been found in only 23% (3 of 13) PPNB/C individuals [81], and this is 
substantially lower than the value 40% that we obtain for the Syrian PPNB sites [165]. If future studies 
(based on larger databases) confirm a low %K in the southern Levant, it may have several causes. One 
possibility is simply that, as suggested by the genetic analyses by Lazaridis et al. [81], the ancient 
farming population from the southern Levant did not lead to the Early Neolithic populations in the 
Near East and Europe. A second possibility is that a drift effect could have increased the %K during the 
spread of the Neolithic from the Southern Levant to northern Syria. This second possibility is an open 
issue and would, in any case, require a substantially more complicated model (based on additional 
assumptions), which is out of the scope of the present paper. Thus we consider ancient mtDNA data 
from Syria, Anatolia and Europe, which (as we have seen) do show a fairly gradual spatial decrease 
(i.e., a cline) in the %K, in agreement with our simple model. Admittedly, we expect that future work 
will lead to more general models that can describe more complicated clines. 
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 Text S4. Geographic cline of haplogroup K 
Similarly to Sec. 5.8.1, this section presents some analyses that are independent of the method used 

in the main paper but reinforce an important claim made in our study.  

   In the main text (Figs. 5.2-5.3) we have visualized the geographic cline of haplogroup K by 

representing its measured relative presence in different regions as a function of the great-circle 

distance to Ras Shamra (Syria), the oldest PPNB archaeological dating in reference [47] (the great-

circle distance is the shortest distance between two points on the surface of a sphere; in this case, on 

the surface of the Earth). This representation is the most effective option to take into account the 

effect of low samples (since we take into account the whole 80% CL range, plotted as error bars) and 

to compare the simulation results with the measured results (e.g., Fig. 5.3). However, it might not be 

the most intuitive way to understand the distribution of haplogroup K throughout the European 

continent. In Fig. 5.10 we have represented the locations of the 9 Early Neolithic regions used in Fig. 

5.3, labeled with the percentage of population presenting haplogroup K, which we have interpolated 

using Ordinary Kriging with the software ESRI ArcGIS 10.4. The interpolation results show clearly that 

there is a spatial gradient on the presence of K haplogroup, both along the Mediterranean as well as 

along the interior spread route. 

 

Figure 5.10 Spatial gradient of haplogroup K in Early Neolithic populations. Circles represent the location of the 

9 Early Neolithic cultural regions shown in Fig. 5.3, labeled with the %K in each of them. The kriging interpolation 

shows the spatial decrease in the presence of K haplogroups away from Syria. Map created with ArcMap 10 and 

the Spatial Analyst 10 extension (http://desktop.arcgis.com/es/desktop/). 

 

   An alternative technique to detect the presence of a spatial cline is by studying the spatial 

autocorrelation of the data through a Moran’s I correlogram [241], as has been previously done to 
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analyze geographic patterns from genetic data [242]. When the data display a spatial cline, the 

correlogram should show a decreasing behavior, with positive autocorrelation at short distances and 

negative autocorrelation at long distances [241, 242] (i.e., nearby points are similar whereas distant 

points differ). On the other hand, a random spatial distribution of observed values (i.e., a non-clinal 

pattern) would display a flat correlogram with an expected value of Moran’s I given by (see reference 

[241], Eq. (13.6)) 

 𝐸(𝐼) = −1/(𝑁 − 1),       (S1) 

   where 𝑁 is the number of data points (9 regions in our case, so 𝐸(𝐼) = −0.125). Note that, for a 

random (thus non-clinal) spatial distribution of observed values, 𝐸(𝐼) → 0 if 𝑁 → ∞ [241]. 

   Figure 5.11 shows the correlogram obtained with PASSaGE 2 [243] for the %K present at the same 9 

Early Neolithic regions as in Fig. 5.3 and Fig. 5.10. We have grouped the great-circle distances between 

pairs of regions into 6 distance classes (in agreement with Struge’s rule; equation 13.3 in reference 

[241]), chosen so that there is an equal (or nearly equal) number of observations per class. The 

correlogram is significant over the entire range of classes (P<0.005 Bonferroni corrected [241, 244]) 

and shows a clinal trend, as expected if there is a spatial gradient of the presence of haplogroup K 

[242]. Repeating the same computation but using 6 distance classes of equal width, also yields a 

significant cline (results not shown; P<0.05 Bonferroni corrected). 

 

Figure 5.11 Spatial correlogram for the presence of haplogroup K in Early Neolithic cultural regions. The dashed 

line shows the expected value of I under a random (i.e., non-clinal) spatial distribution, 𝐸(𝐼) = −0.125, from 

equation (S1) (see [241], Eq. (13.6)). Black dots correspond to class-specific significant values. The correlogram 

is significant over the entire range of classes (P<0.005 Bonferroni [241, 244]) and displays a clinal behavior. 

   Therefore, the results obtained here reinforce our conclusion from Figs. 2-3 that there is a spatial 

cline in the percentage of Early Neolithic farmers carrying haplotypes from haplogroup K. 
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 Text S5. Mathematical details of the computational model 
The Fortran code for the model used in the main paper, and described below, is available as Program 

S1 at the journal web or at http://copernic.udg.es/QuimFort/2017_08_07r__Program_S1.zip. 

   As explained in Sec. 5.4, the model runs on a grid of 50x50 km2 square cells (180x120=18,360 cells). 

Elevation data from the SRTM30 near-global elevation model were used to determine the main type 

of terrain (inland, mountain, coast or sea) of each cell [47]. For coast cells, one of the four nearest 

neighbors must be a sea cell, while inland cells cannot have a sea cell as one of its nearest neighbors. 

Neolithic and Mesolithic individuals can only inhabit inland or coast cells. Each of these cells can have 

a maximum famer population of 𝑃𝐹 𝑚𝑎𝑥 = 3,200 individuals/cell [47], which includes farmers with 

and without haplogroup K  (this value was computed from the ethnographic data on the maximum 

density [89], 1.28 individuals/km2, and the area of the cell, 2,500 km2), and a maximum hunter-

gatherer population 𝑃𝐻𝐺 𝑚𝑎𝑥 = 160 individuals/cell (obtained from the ethnographic maximum 

density [89], 0.064 individuals/km2). Here we consider areas higher than 1,750 m above sea level as 

mountain barriers. However, the results are very similar changing the value of 1,750 m by other values, 

and also if neglecting mountain effects altogether, as previously observed for non-genetic simulations 

[47]. 

   Each cell is assigned an initial population of farmers with haplogroup K, 𝑃𝑁(𝑥, 𝑦, 𝑡 = 0), farmers who 

do not have haplogroup K, 𝑃𝑋(𝑥, 𝑦, 𝑡 = 0) and hunter-gatherers 𝑃𝐻𝐺(𝑥, 𝑦, 𝑡 = 0), as follows. Initially, 

𝑃𝐻𝐺 = 0,  𝑃𝑁 + 𝑃𝑋 =  𝑃𝐹 𝑚𝑎𝑥 at the cell with coordinates (112, 31) that contains Ras Shamra, the 

oldest PPNB site in Syria (the values of 𝑃𝑁 and 𝑃𝑋 will depend on the parameters used; see details in 

Sec. 5.8.7), and 𝑃𝐻𝐺 = 𝑃𝐻𝐺 𝑚𝑎𝑥 , 𝑃𝑁 = 0 and 𝑃𝑋 = 0 at all other cells. Given these initial conditions, 

the model updates each of the three populations (N, X, HG) at every iteration (generation of 32 yr 

[182]) 𝑡 = 1,2,3…, according to three steps: dispersal, interaction, reproduction (changing the order 

of these 3 steps would yield the same results). Note that at any instant, the total farming population 

per cell is given by 𝑃𝐹(𝑥, 𝑦, 𝑡) = 𝑃𝑁(𝑥, 𝑦, 𝑡) + 𝑃𝑋(𝑥, 𝑦, 𝑡). Each of the three populations considered in 

the model would comprise several different haplotypes, but since we are only interested in their 

results at the haplogroup level, we do not further subdivide the population. All computations are 

performed using real values, though we expect that, in average, we would obtain the same results if 

we used a stochastic procedure to approximate them to integers at each of the following three steps 

of the process. 

5.8.5.1. Dispersal 

Under the reasonable assumption that farmers have the same dispersal behavior independently of 

their mtDNA haplogroup, in this step we apply the following rules to each of both subpopulations.  

Persistency. A fraction 𝑝𝑒  of the subpopulation initially present at each cell remains in it (𝑝𝑒  is called 

the persistence in demography). The rest (fraction 1 − 𝑝𝑒) moves to other cells, as follows. In the 

model we use the mean value 38.0=ep  obtained from ethnographic data [139]. 

Land travel. The farmers that move from a cell (which may be inland or coast) can travel by land to 

some of its four nearest neighbor cells. We could consider a set of more than two inland travel 

distances (0km and 50km in our model) and their corresponding probabilities, with all distances and 

probabilities estimated from ethnographic data [3, 183], but this would require substantially more 

computer time, and we expect it would lead to similar results (so we consider only the characteristic 



110 

 

distance moved per generation according to ethnographic data, namely 50 km [139]). As said above, 

Neolithic populations can only settle on inland or coast cells (mountain cells cannot be inhabited and 

act as barriers that cannot be penetrated; sea cells cannot be inhabited either but allow individuals to 

travel by sea to other locations). Therefore, if none of the four nearest neighbors to an inland cell are 

mountains, each of the 4 inland or coast neighbors receives 1/4 of the population that relocates, i.e. 

a fraction (1 − 𝑝𝑒)/4 of the population at the initial inland cell. If one of the neighbors is a mountain, 

it acts as a barrier, and no population will move to this cell; as a result, each inland or coast neighbor 

receives a fraction (1 − 𝑝𝑒)/3. Similarly, if two of the nearest neighbors are mountains, each 

remaining inland or coast cell receives a fraction (1 − 𝑝𝑒)/2. In general, the fraction of the population 

that moves to each inland or coast neighbor is given by 

(1 − 𝑝𝑒)

(4 − #𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
. (S2) 

Sea travel. Consider population leaving a coast cell. If only one of its neighbors is a sea cell, the fraction 

of the population that would travel by land to this cell (according to equation (S2)) travels by sea to 

other coast cells. If the initial coast cell has two sea neighbors, the fraction of the population that 

travels by sea is twice the value given by equation (S2), i.e. the number of individuals that would travel 

by land to both sea cells. In general, the total fraction of the population that travels by sea from a 

given cell is 

(1 − 𝑝𝑒) · #𝑠𝑒𝑎 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

(4 − #𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
. (S3) 

   For example, if a coast cell has one sea neighbor, two coast neighbors and one mountain neighbor, 

according to equation (S2) each coast neighbor would receive a fraction (1 − 𝑝𝑒)/3 of the population 

in the origin cell, and, according to equation (S3), an equal fraction (1 − 𝑝𝑒)/3 would travel by sea. As 

another example, if a coast cell has two coast and two sea neighbors, according to equation (S2) each 

coast neighbor would receive a fraction (1 − 𝑝𝑒)/4 of the population in the origin cell, while now a 

fraction (1 − 𝑝𝑒)/2 would travel by sea, according to equation (S3). 

   Sea travel takes place in straight lines across the sea to other coastal cells within a given range. We 

select as sea-travel destinations all coastal cells within the sea-travel range (measured along straight 

lines), that can be reached following a linear route that crosses only sea cells; i.e. those coastal cells 

within line of sight across the sea (and within the maximum sea travel distance). Each possible 

destination receives an equal fraction of the population that travels by sea. Therefore, if there are for 

example 5 possible destinations, each one receives 1/5 of the fraction of the population that travels 

by sea, which is given be equation (S3). In the simulation we use a sea travel range of 150 km. See Sec. 

5.8.6 for details on how we determined this range. 

   We do not update the number of HGs at each node due to their dispersal, because the exchange of 

HGs between saturated cells has no effect (since the HG population lacks haplogroup K) and we 

assume that they do not disperse appreciably into cells in which their number is lower than the 

saturation value (due to cultural transmission, see below). 
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5.8.5.2. Cultural transmission 

After dispersal, in each cell there is a population of 𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) hunter-gatherers and a population of 

𝑃𝐹(𝑥, 𝑦, 𝑡) farmers. As mentioned above, 𝑃𝐹(𝑥, 𝑦, 𝑡) = 𝑃𝑁(𝑥, 𝑦, 𝑡) + 𝑃𝑋(𝑥, 𝑦, 𝑡), with 𝑃𝑁(𝑥, 𝑦, 𝑡) the 

number of farmers who have haplogroup K and 𝑃𝑋(𝑥, 𝑦, 𝑡) the number of farmers who do not have 

haplogroup K. As mentioned in our main paper, for simplicity we consider only interbreeding (vertical 

transmission), but we would reach the same conclusions if we considered, instead, acculturation 

(horizontal/oblique transmission), or both interbreeding and acculturation (see Sec. 5.8.9 for a 

detailed justification of this point). Under vertical transmission, to determine the population that will 

conform the new generation, we have to compute the matings that take place between and within 

those 3 population groups, and then apply the reproduction step. 

Cross-matings between cultural groups. We assume that children of cross matings between farmers 

and HGs are farmers, in agreement with ethnographic observations [52, 208]. The number of cross 

matings between HGs and farmers is then given by [94] 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝐹 = 𝜂
𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) ∙ 𝑃𝐹(𝑥, 𝑦, 𝑡)

𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) + 𝑃𝐹(𝑥, 𝑦, 𝑡)
, 

(S4) 

   where 𝑃𝐻𝐺 + 𝑃𝐹 = 𝑃𝐻𝐺 + 𝑃𝑁 + 𝑃𝑋 is the total population present at the cell, and parameter 𝜂 is the 

intensity of interbreeding [94]. The value of the interbreeding parameter lies in the range 0 ≤ 𝜂 ≤ 1, 

with the case 𝜂 = 1 corresponding to random mating (𝜂 > 1 would correspond to more cross matings 

that under random mating, which is not realistic for farmers and HGs according to ethnographic data 

[208, 209] and, moreover, 𝜂 > 1 can lead to 𝑃𝐻𝐺 < 0 for 𝑃𝐻𝐺 ≪ 𝑃𝐹 [94]). 

   Here we are interested in the genetics of the offspring. In order to compute this, we need to consider 

separately the matings of HGs and farmers who have (𝑃𝑁) or not (𝑃𝑋) haplogroup K. Therefore, we 

separate the number of matings given by equation (S4) into two terms, 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁 = 𝜂
𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) ∙ 𝑃𝑁(𝑥, 𝑦, 𝑡)

𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) + 𝑃𝐹(𝑥, 𝑦, 𝑡)
, 

(S5) 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋 = 𝜂
𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) ∙ 𝑃𝑋(𝑥, 𝑦, 𝑡)

𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) + 𝑃𝐹(𝑥, 𝑦, 𝑡)
. 

(S6) 

   Note that 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝐹 = 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁 + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋, since 𝑃𝐹 = 𝑃𝑁 + 𝑃𝑋. 

   Within each population, the number of individuals who do not take part in HN neither HX matings is 

given by 

𝑃′𝐻𝐺(𝑥, 𝑦, 𝑡) = 𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁 − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠𝐻𝑋, (S7) 

𝑃′𝑁(𝑥, 𝑦, 𝑡) = 𝑃𝑁(𝑥, 𝑦, 𝑡) − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁, (S8) 

𝑃′𝑋(𝑥, 𝑦, 𝑡) = 𝑃𝑋(𝑥, 𝑦, 𝑡) − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋. (S9) 

Cross-matings between genetic groups of farmers. Let us next compute the number of matings 

between farmer individuals of different genetic groups, i.e. between populations 𝑃′𝑁 and 𝑃′𝑋. Again, 

we can compute the number of mixed genetic couples using vertical cultural transmission theory. 

However, we have no reason to assume that farmers of a genetic group will have a preference for 
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(neither against) mating with farmers of the same genetic group. Thus we apply random mating (𝜂 =

1) [94] for matings between farmers. Therefore, the number of NX matings is 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑁𝑋 =
𝑃′𝑁(𝑥, 𝑦, 𝑡) ∙ 𝑃′𝑋(𝑥, 𝑦, 𝑡)

𝑃′𝑁(𝑥, 𝑦, 𝑡) + 𝑃′𝑋(𝑥, 𝑦, 𝑡)
. 

(S10) 

   Note that we are indeed dealing with an equation equivalent to equation (S4), although now the 

total population we are considering is just the farmer population that does not mate with HGs, i.e. 

𝑃′𝑁 + 𝑃′𝑋. This completes the computation of the numbers of all possible cross-matings.  

Matings within groups. All remaining individuals, i.e. those that do not mate with individuals of a 

different group, will mate with individuals of their group (individuals that do not mate are not explicitly 

considered, since their effect is already taken into account by the net reproduction rate used in the 

next step). In these cases, obviously there are 2 individuals of the same group per mating, and the 

corresponding numbers of matings are 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝐻 = 𝑃′𝐻𝐺(𝑥, 𝑦, 𝑡)𝐻𝐺/2, (S11) 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑁𝑁 = [𝑃′𝑁(𝑥, 𝑦, 𝑡) − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑁𝑋]/2, (S12) 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑋𝑋 = [𝑃′𝑋(𝑥, 𝑦, 𝑡) − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑁𝑋]/2. (S13) 

   where we have taken into account that matings NX have 1 N individual and 1 X individual, so the 

number of individuals N (or X) in matings NX is equal to the number of couples NX. 

5.8.5.3. Reproduction 

Finally, we apply reproduction to compute the new populations at each node a generation later. To 

do so we set the following rules. (i) Each couple will have 2𝑅0,𝑖 children, because 𝑅0,𝑖 is computed per 

individual and there are two individuals per mating. However, the net growth rate 𝑅0,𝑖 is different for 

farmers than for HGs (𝑖 = 𝐹,𝐻𝐺). Ethnographic data indicate that the children of cross-matings with 

one HG parent are farmers [52, 208], thus we use  𝑅0,𝐻𝐺 for matings in which both parents are HGs, 

and 𝑅0,𝐹 for HN, HX, NN, XX and NX matings. (ii) For each kind of mixed genetic matings (HN and NX), 

in our simplest model we assume that the mother is N in 50% of matings, i.e. that 50% of the children 

from genetic mixed matings have haplogroup K (because mtDNA is inherited from the mother, and 

thus only the offspring from mothers bearing haplogroup K will have this haplogroup). Classical 

cultural transmission theory [93] assumes that 𝑅0,𝐹 = 𝑅0,𝐻𝐺 = 1 (no population growth) but this is 

not our case, because we are dealing with a population expansion of farmers, so their number 

increases and we used instead 𝑅0,𝐹 = 2.45, obtained from ethnographic data [183]. Under 

assumptions (i) and (ii), the number of individuals of each population group the next generation is 

related to the numbers of matings as 

𝑃𝐻𝐺(𝑥, 𝑦, 𝑡 + 1) = 𝑅0,𝐻𝐺[2 · 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝐻], (S14) 

𝑃𝑁(𝑥, 𝑦, 𝑡 + 1) = 𝑅0,𝐹[2 ∙ 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑁𝑁 + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑁𝑋 + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁], (S15) 

𝑃𝑋(𝑥, 𝑦, 𝑡 + 1) = 𝑅0,𝐹[2 ∙ 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑋𝑋 + 2 · 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋 + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑁𝑋 + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁]. (S16) 

   where the factor 2 before the number of couples 𝐻𝐻, 𝑁𝑁 and 𝑋𝑋 comes from the fact that each of 

those matings leads, the next generation, to 2𝑅0,𝑖 individuals of the same group as their parents. 
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Similarly, the factor 2 in front of the number of couples 𝐻𝑋 takes into account that each such mating 

leads to 2𝑅0,𝐹 farmers of genetic type X (with haplogroups different than K) the next generation. In 

contrast, each of NX or HN matings leads to 𝑅0,𝐹 farmers of genetic type N and 𝑅0,𝐹 farmers of genetic 

type X, because of assumption (ii), so the factor 2 does not appear before the number of such couples. 

Finally, although this is not necessary to perform the simulations, we can relate the population 

numbers at generation  𝑡 + 1 to those at the previous generation 𝑡 by using equations (S7)-(S9) into 

equations (S11)-(S13), and the results into equations (S14)-(S16). This yield 

𝑃𝐻𝐺(𝑥, 𝑦, 𝑡 + 1) = 𝑅0,𝐻𝐺[𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋 − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁], (S17) 

𝑃𝑁(𝑥, 𝑦, 𝑡 + 1) = 𝑅0,𝐹  𝑃𝑁(𝑥, 𝑦, 𝑡) , (S18) 

𝑃𝑋(𝑥, 𝑦, 𝑡 + 1) = 𝑅0,𝐹[𝑃𝑋(𝑥, 𝑦, 𝑡) + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋 + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁]. (S19) 

   Besides this mathematical derivation of equations (S17)-(S19), it is also important to understand 

intuitively why, e.g., the number of couples NX does not appear in equations (S18)-(S19). The reason 

is that, although each NX couple implies that, e.g., one N individual less takes part in NN couples, i.e. 

that there are 𝑅0,𝐹𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑁𝑋 individuals of type N less the next generation, this is compensated by 

the fact that 50% of the 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑁𝑋 will also lead to individuals of type N (due to assumption (ii) 

above), thus contributing 0.5(2 · 𝑅0,𝐹𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑁𝐻) = 𝑅0,𝐹𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑁𝐻 individuals of type N to the 

next generation (remember that each couple has 2𝑅0,𝐹 children). For the same reason, NX couples do 

not appear in equation (S19), nor do HN couples appear in equation (S19). The latter do appear in 

equation (S19) because a HN couple does not imply that one X individual less takes part in XX couples, 

and thus its effect is not compensated. Couples HX do not appear in Eq. (S18) because all offspring of 

HX couples are farmers without haplogroup K, i.e. they all belong to group X (not to group N). They 

appear in Eq. (S19) because, although each HX couple implies that one X individual less takes part in 

XX couples (i.e., 𝑅0,𝐹𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋 individuals less of type X the next generation), it also leads to 

2𝑅0,𝐹 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋 individuals of type X the next generation. We stress that equations (S17)-(S19) have 

been derived mathematically from equations (S11)-(S16), but we think that these explanations help 

to understand them intuitively. 

   If the number of individuals computed for some population group, cell, and time step is larger than 

its corresponding maximum (𝑃𝐹 𝑚𝑎𝑥 = 3,200 individuals/cell or 𝑃𝐻𝐺 𝑚𝑎𝑥 = 160 individuals/cell), then 

the simulation program sets it to the corresponding maximum value (this is applied, as in previous 

work [47, 139], to avoid population densities above saturation, which would not be biologically 

realistic). If 𝑃𝑁 + 𝑃𝑋 > 𝑃𝐹 𝑚𝑎𝑥 , then 𝑃𝑁 and 𝑃𝑋 are both multiplied by 
𝑃𝐹 𝑚𝑎𝑥

𝑃𝑁+𝑃𝑋
, so that the new values 

satisfy that 𝑃𝑁 + 𝑃𝑋 = 𝑃𝐹 𝑚𝑎𝑥 and the proportion 
𝑃𝑁

𝑃𝑋
 does not change. In equations (S14)-(S19), as in 

previous work [47, 139], we do not use a logistic growth function because it could lead to negative 

population numbers due to the fact that we are dealing with finite-difference equations (not with 

differential equations) [104, 139]. The solution of a logistic growth function (as applied in previous 

works [3, 183]) could be another alternative to avoid this problem, but we expect that it would yield 

similar results, so we do not apply it for mathematical simplicity. 
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 Text S6. Estimation of the characteristic sea-travel distance from 

archaeological data 
Previous work has shown the importance of long-distance sea travel in the spread of the Neolithic 

along the Mediterranean coast [47, 48, 245]. For this reason, our simulations include sea travel as a 

separate dispersal mechanism, in addition to inland travel. As in previous research by several authors 

[52, 139, 183, 51], we have estimated the characteristic distance of inland travel (50 km per 

generation) from ethnographic data for preindustrial farmers [52, 139]. Sufficiently detailed 

ethnographic data for sea travel distances of preindustrial farmers are unfortunately unavailable. In 

spite of this, we have estimated the characteristic distance of sea travel in the following way. Similarly 

to previous work [48, 246], we have required that the arrival times of the Neolithic at several regions 

along or near the Mediterranean (as predicted by our simulations) agree with that of the oldest 

archaeological data in each region, and that the spread routes correspond with those implied from 

archaeological data. In the simulations, sea travel takes place toward all coastal cells that can be 

reached in a straight line across the sea within a certain range. 

 

Figure 5.12 Estimation of the characteristic sea-travel range. Black squares: 1 oldest dates of the PPNB culture 

in Syria (Ras Shamra, 8,233 cal BCE [246], recall that PPNB is the Near-Eastern Neolithic culture that later spread 

into Europe [246]); earliest Neolithic dates in: 2 Anatolia (Hayaz Höyük, 7,361 cal BCE [246]), 3 Hungary-Croatia 

Starčevo (Gudnja, 6,044 cal BCE [246]), 4 Eastern Germany LBK (Dresden-Prohlis, 5,920 cal BCE [246]), 5 Western 

Germany LBK (Eilsleben, 5,811 cal BCE [246]), 6 North-Eastern Spain Cardial (Forcas, 5,661 cal BCE [247]), 7 Spain 

Navarre (Aizpea [at Basque Country], 5,357 cal BCE [247]), and 8 Portugal coastal Early Neolithic (Vale Pincel I, 

5,620 cal BCE [247]). White symbols show the corresponding arrival times of our simulations with no sea travel 

(circles) and with sea travel of 50 km (up triangles), 100 km (down triangles), 150 km (crosses) and 200 km 

(rhombuses). The vertical axis is the time elapsed since the start of the simulations (8,233 BCE), measured in 

generations (1 generation = 32 yr [182]).  
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   For the sake of clarity, we stress that the genetic data available (Appendix A Data S1) do not 

necessarily correspond to the earliest Neolithic sites in each region. The reason is that the genetic 

data, i.e. the individuals whose mtDNA haplogroup has been determined, have later (in some cases, 

substantially later) dates than those of the first Neolithic sites. Therefore, in order to compare to the 

arrival time obtained from our simulations, we cannot use the genetic dates. Instead, we have to use 

the observed arrival time of the Neolithic (i.e., the oldest archaeological data of Neolithic sites in the 

region considered). In Fig. 5.12, black squares correspond to the arrival dates of the Neolithic in the 

eight regions where we have the oldest genetic data. Note that in the main paper, Fig. 5.1, each square 

gives the time and distance of the oldest Neolithic genetic data in a region, whereas in Fig. 5.12 each 

square gives the time and distance of the oldest Neolithic archaeological site in that region (for this 

reason, the dates and distances in Fig. 5.1 and Fig. 5.12 are different). The information of the dates 

used in Fig. 5.12 is listed in its caption and in Appendix A Data S4. 

   We have performed our simulations with origin at Ras Shamra (oldest PPNB site in Syria) and 

different sea-travel ranges, assuming no population interaction. In Fig. 5.12 we show these results as 

white symbols, which correspond to our simulations with no sea travel (circles) and with sea travels 

up to 50 km (up triangles), 100 km (down triangles), 150 km (crosses) and 200 km (rhombuses). The 

arrival time of the Neolithic into a cell is recorded by the simulations as the generation when the 

farmer population of the cell reaches about a 10% of its maximum (this seems a reasonable 

percentage because it is unlikely that the archaeological record corresponds to the earliest farmers 

per region, and this values is close to the minimum size required for a human reproductive network 

to be viable [248]; however, changing this percentage would not change our conclusions). We can see 

in Fig. 5.12 (and in Appendix A Data S4) that apparently the best agreement between archaeological 

data (black squares) and the simulations is attained for sea travels up to 100 km (down triangles), since 

it provides a lower divergence between results. However, the results for this sea-travel range present 

two problems. (i) Simulations with sea travels up to 100 km arrive to regions 5, 6 and 8 later than the 

archaeological earliest data, which means that these results cannot really explain the earliest Neolithic 

evidences known, since the model arrives too late. (ii) A very important limitation of considering sea 

travels up to 100 km is that southern Italy is reached from the North (Fig. 5.13a), which is inconsistent 

with the archaeological dates that indicate very clearly that southern Italy was reached by sea from 

Albania or Greece (see Fig. 6 in reference [47]). In contrast, if we consider sea travels up to 150 km: (i) 

all regions are reached by the time of the earliest archeological date (see Fig. 5.12 and Appendix A 

Data S4). (ii) Crucially, southern Italy is appropriately reached before northern Italy through sea travel 

from Albania (see Fig. 5.13b). This is due simply to the fact that, in the simulation grid, the distance 

between the centers of the closest 50x50 km cells in Albania and Southern Italy is between 100 km 

and 150 km, so sea travels of at least 150 km are necessary for the front to enter Italy by this route. 

For reasons (i) and (ii) above, we consider that the best results are attained with sea travels of up to 

150 km. It is interesting that the same result (i.e., 150 km) had been obtained previously by 

comparison to hundreds of individual sites (Table 1 and Fig. 8 in reference [47]). More detailed models, 

e.g. with a different sea travel distance in the Western [48] than in the Eastern Mediterranean could 

be considered, but we expect that they would not change our main result (namely, that the cline of 

haplogroup K implies that few farmers were involved in cultural diffusion). 
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Figure 5.13 Predicted Neolithic arrival times computed with no interaction and for sea travel ranges of 100 km 

(a) and 150 km (b). White areas correspond to mountains, and the colors give the intervals of generations 

elapsed since the start of the simulations in Ras Shamra (Syria). Note that including interaction (cultural 

transmission) would not change the conclusion that the front enters Italy from the North in (a) and from the 

South in (b). Maps created with ArcMap 10 and the Spatial Analyst 10 extension 

(http://desktop.arcgis.com/es/desktop/). 

 

 Text S7. Implementation of the genetic initial conditions in the 

simulations 
In order to compare the percentages of haplogroup K (%Ks) from our simulations to those from genetic 

data, we have to compute the %Ks from the simulations at the times of the genetic data (as given in 

the caption to Fig. 5.14), i.e. at the time when the fraction of ancient farmers bearing haplogroup K is 

known for each region (not at the time when the Neolithic arrived to it, which is obviously older and 

is given in the caption to Fig. 5.12). 

   As explained in the main paper (Sec. 5.4), we began our simulations at the date and location of the 

oldest Syrian PPNB site, namely Ras Shamra at 8,233 cal yr BCE [47]. Since this location is only about 

150 km away from the average location of the Syrian sites with available mtDNA data, at first sight 

one might expect that we could directly apply the value (40%K) measured at the latter (Appendix A 

Data S2 and Data S3, estimated from the data reported by Fernández et al. [165]) also as initial genetic 

conditions at Ras Shamra. However, if we did so, we would obtain the results shown in Fig. 5.14. Note 

that in this figure the %K of PPNB Syrian sites (region 1) is not 40% but lower (except if 𝜂 = 0). There 

are two reasons for this. The less important one is that the cell where we record the genetic 

information, located at the average location of the PPNB Syrian individuals in Appendix A Data S1, is 

4 land-travel steps (50 km each) away from the origin of the simulation (i.e., the cell that contains Ras 

Shamra). Therefore, there is some interbreeding between the farmer population expanding from the 

original cell and the hunter-gatherer populations (which lack haplogroup K) at those other 4 cells. 
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However, the most important reason is that the simulation starts at 8,233 cal yr BCE (the date of Ras 

Shamra) but we compute the simulation results (lines in Fig. 5.14) for Syria (region 1) at 7,258 cal yr 

BCE (because 7,258 cal yr BCE is the average date of all PPNB individuals whose mtDNA haplogroup is 

known in this region, as computed in Appendix A Data S1 from the data in reference [165]). Therefore, 

the fact that the %K in region 1 in Fig. 5.14 is below 40% (except if 𝜂 = 0) is mostly due to interbreeding 

between farmers and hunter-gatherers during the 1,000 yr elapsed since the beginning of the 

Neolithic (8,233 cal yr BCE) until the time when we have genetic data to compare to the simulations 

(7,258 cal yr BCE). Note that the decrease in %K in region 1 (Fig. 5.14) is larger the more intense the 

interbreeding (i.e. the higher the value of 𝜂), as it should.  

 

Figure 5.14 The lines are the model predictions when applying 40%K at the time of the oldest PPNB/C 

archaeological data in Syria (8,233 cal yr BCE). Symbols (with error bars) correspond to the observed percentages 

of haplogroup K in the 9 oldest regional cultures. Lines are the results from the simulations for different values 

of the interbreeding intensity 𝜂. The lines have been plotted by joining the simulation results for each of the 9 

regional cultures (at its average location and date of its individuals). Here and in the rest of figures, for each 

regional culture, the date used to compute the results of the simulations is not that of the regional arrival of 

farming (as in Fig. 5.13) but the average date of the ancient individuals whose mtDNA haplogroup is known. In 

this way, we can compare simulated and observed %Ks. The regional cultures (and their average dates, as 

calculated in Appendix A Data S1) are: 1 Syria PPNB (7,258 cal yr BCE), 2 Anatolia (6,243 cal yr BCE), 3 Hungary-

Croatia Starčevo (5,675 cal yr BCE), 4 Eastern Germany LBK (5,125 cal yr BCE), 5 Western Germany LBK (5,115 

cal yr BCE), 6 North-Eastern Spain Cardial (5,286 cal yr BCE), 7 Spain Navarre (4,941 cal yr BCE), 8 Portugal coastal 

Early Neolithic (5,184 cal yr BCE) and 11 Sweden (2,802 cal yr BCE). The lines show the results of the simulations 

assuming that the %K in the Syrian region with PPNB sites was 40% at 8,233 cal yr BCE. However, according to 

the ancient DNA data available, this happened about 1,000 yr later (at 7,258 cal yr BCE). The problem is that in 

this figure, we do not obtain a 40% of haplogroup K in Syria at 7,258 cal yr BCE (see the values of the lines at 

region 1) except if 𝜂 = 0 (no interbreeding and, therefore, no cline). In the main paper we applied a different 

implementation of the initial conditions to avoid this inconsistency (see Fig. 5.15). 
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   In order to avoid this inconsistency, i.e. in order to avoid values of the percentage of haplogroup K 

below 40% at region 1 at time 7,258 cal yr BCE (lines in Fig. 5.14, region 1), we repeated the simulations 

by finding (by trial and error), for each value of 𝜂, an initial value (at time 8,233 cal yr BCE) for the %K 

in the starting cell (Ras Shamra) higher than 40% and such that the simulations yielded 40% of 

haplogroup K in region 1 at time 7,258 cal yr BCE (in agreement with the genetic data [165]). The 

results are shown in Fig. 5.15, which is the same as Fig. 5.3 in the main paper. Note that, as opposed 

to the results in Fig. 5.14, by taking into account the time lag between the first archaeological and 

genetic evidence, in Fig. 5.15 all lines predict a 40% of haplogroup K in region 1 (at 7,258 cal yr BCE), 

in agreement with the genetic data (Appendix A Data S1-Data S3) reported by Fernández et al. [165]. 

Therefore, in Fig. 5.15 the observed genetic initial condition (40%K in region 1, i.e. Syria) has been 

applied at the correct time (7,258 cal yr BCE). In contrast, in Fig. 5.14 the same genetic initial condition 

has been applied, but at an incorrect time (8,233 cal yr BCE). 

 

Figure 5.15 This figure is the same as Fig. 5.3 in the main paper. The lines are the model predictions when 

applying the adequate %K in Syria at 8,233 cal yr BCE to obtain a 40%K in Syria (region 1) at 7,258 cal yr BCE. 

Thus this figure shows the results of the simulations (lines) assuming that the percentage of haplogroup K in the 

Syrian region with PPNB sites was 40% at 7,258 yr BCE, in agreement with the ancient DNA data (symbol for 

region 1; percentage computed in Appendix A Data S1-Data S3 from the genetic data by Fernández et al. [165]). 

Compare to Fig. 5.14, where the %K at the initial cell is assumed to be 40% at 8,233 yr BCE instead. The regional 

cultures and dates are the same as in Fig. 5.14. 

 

   In all of our simulations, the maximum population density is 3,200 individuals/cell (see Sec. 5.8.5). 

Therefore, the initial genetic condition that at 7,258 cal yr BCE we had a 40%K in Syria (region 1) means 

that 1,280 of the 3,200 early farmers in this cell have haplogroup K. However, in the genetic dataset 

(Appendix A Data S1) we only have 6 of 15 individuals carrying K haplotypes, a value considerably 
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lower than in our simulations. Unfortunately, we have not been able to find further aDNA data for 

Early Neolithic individuals in Europe to improve our dataset (beyond the 15 individuals reported by 

Fernández et al. [165], already included in Appendix A Data S1). To check the representativeness of 

the dataset used, we have repeated our simulation but now using as initial genetic conditions the two 

extreme values (maximum and minimum) of the 80% CL error bar (note that the error bars have been 

computed, using the bootstrap method, precisely to take into account the small size of the available 

samples; see Sec. 5.8.10). 

   We have first repeated the computations in Fig. 5.15 (or Fig. 5.3) but using as initial %K in Syria (at 

7,258 yr BCE) the lowest extreme of the error bar (the lowest extreme of the 80% CL range), i.e. 

26.67%K, as shown in Fig. 5.16. Under these initial conditions we see that now the best fit between 

model and data is obtained for 𝜂 = 0.01, since it is the value of the cultural transmission parameter 

for which the modelled results cross most of the error bars (in fact, all of them except ‘2 Anatolia’). 

Assuming a lower intensity of cultural transmission would yield a better prediction for Anatolia, but 

then the predictions would fall out of the measured range for the regions furthest from the origin. 

Therefore, if we initially had a 26.67%K in Syria (i.e., about 850 of the 3,200 early farmers), the 

observed cline could be explained assuming 𝜂 = 0.01, an intensity of cultural transmission lower than 

the value 𝜂 = 0.02 obtained when using the mean %K measured for Syria. This is as expected because 

a lower value of 𝜂 leads to a smoother cline. 

 

Figure 5.16 Model predictions when applying as initial genetic conditions in Syria (region 1) the lower extreme 

of the error bar of the observed %K (this is why the % in region 1 is not 40% but lower). This figure shows the 

results of the simulations (lines) assuming that the %K in the Syrian region with PPNB sites was 26,67% at 7,258 

yr BCE, computed from the aDNA data as the lower extreme of the 80% CL bootstrap range (error bar for region 

1; range computed in Appendix A Data S6 from the genetic data by Fernández et al. [165]). A good agreement 

with the data is obtained for 𝜂 ≈ 0.01. The regional cultures and dates are the same as in Fig. 5.14. 
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   On the other hand, when we consider as initial genetic condition in Syria the upper extreme of the 

80% CL range, i.e. 53.33%K, we see in Fig. 5.17 that the dashed line (𝜂 = 0.02) overestimates the 

percentage of the farmer population with haplogroup K at the regions furthest away from the origin. 

Thus, the intensity of cultural transmission needed to explain the cline is now higher than 𝜂 = 0.02 

(also as expected). The cline for 𝜂 = 0.03, shown in Fig. 5.17 correctly predicts the observed 

percentages at the more distant populations(although it slightly underestimates the %K at regions 4 

and 5). Therefore, the level of cultural transmission needed to explain the observed cline when 

assuming a 53.33%K in Syria at 7,258 BCE (i.e., about 1,700 of the 3,200 early farmers), is not higher 

than 𝜂 = 0.03. 

   Thus, in summary, when considering the whole 80% CL range for the initial conditions, we have 

found that the observed genetic cline can be explained for intensities of cultural transmission in the 

range 𝜂 = 0.01 − 0.03. Therefore, the conclusions in the main paper (that about 2% of farmers we 

involved in cultural transmission) is maintained (and refined by the range 2%± 1%). 

 

Figure 5.17 Model predictions when applying as initial genetic conditions in Syria (region 1) the upper extreme 

of the error bar of the observed %K (this is why the % in region 1 is not 40% but higher). This figure shows the 

results of the simulations (lines) assuming that the %K in the Syrian region with PPNB sites was 53,33% at 7,258 

yr BCE, computed from the aDNA data as the upper extreme of the 80% CL bootstrap range (error bar for region 

1; range computed in Appendix A Data S6 from the genetic data by Fernández et al. [165]). A good agreement 

with the data is obtained for 𝜂 ≈ 0.03. The regional cultures and dates are the same as in Fig. 5.14. 

 

 Text S8. Understanding the minimum in the simulated clines 
In Fig. 5.15 (i.e., Fig. 5.3 in the main paper), we observe that the curves obtained from the simulations 

have a local minimum for region 11, i.e. Sweden. Interestingly, a minimum in Sweden is also seen for 
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the genetic data (squares and circle in Fig. 5.15). The general shape of the curves in Fig. 5.15 is easy to 

understand, as follows. As the distance (horizontal axis in Fig. 5.15) increases, we are considering 

regions further and further away from Syria (e.g., region 2 is Anatolia, region 3 is Hungary-Croatia, 

etc.). Since the time elapsed for the Neolithic front to reach a region tends to be larger the further 

away it is from Syria, there was more time for interbreeding between farmers and hunter-gatherers. 

This is why the percentage of haplogroup K (vertical axis in Fig. 5.15) tends to diminish with increasing 

distance (recall that hunter-gatherers lack haplogroup K). 

   We note in Fig. 5.15 (i.e., Fig. 5.3 in the main paper) that the tendency of decreasing percentage of 

haplogroup K with increasing distance from Syria is not always satisfied (there is a minimum in 

Sweden, region 11). The explanation of this subtle point is the following. As it is well-known, the 

Neolithic spread from Syria to Anatolia, then to Greece, and from there it followed two different 

routes. One was a Mediterranean route to Italy, France, Spain and Portugal. The other was a 

central/northern European route to Croatia, Germany, Denmark and Sweden [47, 95]. In order to see 

how this explains the minimum in Fig. 5.15, consider first a Neolithic front propagating along a coast. 

In this case, population dispersal can reach locations up to 150 km away (Sec. 5.8.6), measured in a 

straight line and across the sea (Sec. 5.4 in the main paper and Sec. 5.8.5). Now consider a Neolithic 

front propagating inland. In this case, dispersal is driven by jumps of about 50 km per generation (Sec. 

5.4 and Sec. 5.8.5). Therefore, in order for the Neolithic front to travel a given distance, a coastal 

propagation obviously implies fewer jumps, i.e., fewer generations, and less time for interbreeding 

with hunter-gatherers than an inland propagation. Thus we should expect that a coastal propagation 

will lead, at a given distance, to a lower decrease of the percentage of haplogroup K (%K) than an 

inland propagation.  

   In Fig. 5.18 we have plotted the results of the simulations (for 𝜂 = 0.02) for the two routes 

mentioned above (i.e., the Mediterranean and the central/northern European ones) separately. Up to 

Greece, both routes are the same and thus lead to the same %K as a function of distance. However, 

after Greece the Mediterranean route is mostly coastal (to France, Spain and Portugal), in sharp 

contrast with the central/northern European route, which is mostly inland (to Germany, Denmark and 

Sweden). Thus the %K of the central/northern European route becomes smaller than that of the 

Mediterranean route, for the reasons argued in the previous paragraph (see the slope change in the 

central/northern European route after its coastal spread ends up in Trieste in Fig. 5.18). 

   Now that we have understood the shape of the curve for each route (Fig. 5.18), we can explain the 

minimum in Fig. 5.15, as follows. If in Fig. 5.18 we joined the three points Germany-Sweden-NE Spain, 

we would obtain a minimum. This is precisely the minimum in Fig. 5.15 (where regions 4-5 are again 

Germany, region 11 is Sweden, and region 6 is NE Spain). Thus, the minimum in Fig. 5.15 is due to the 

existence of two propagation routes for the European Neolithic. These are the Mediterranean and the 

central/northern European routes, which are respectively (for large distances) a coastal route (with 

high %Ks) and an inland route (with lower %Ks), as seen in Fig. 5.18. Hence, the minimum in Fig. 5.15 

is a purely geographical effect, due to the presence of the Mediterranean Sea. Below we will check 

this last point in another way (namely, by showing that simulations without sea display no minimum). 

However, before doing so, it is important to consider several related issues.  
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Figure 5.18 Results of the simulations for 𝜂 = 0.02 along two spread routes. This figure is similar to, e.g., Fig. 

5.15 (i.e., Fig. 5.3 in the main paper), but instead of considering the regions for which the DNA of ancient farmers 

has been determined, here we consider several locations on the two main routes along which the Neolithic 

spread, namely the Mediterranean route (dashed blue line) and the central/northern European route (solid 

black line). Another difference with Fig. 5.15 is that both lines in this figure have been obtained from our 

simulations at a single time, namely 3,113 yr BCE (i.e., 160 generations after the departure of the wave of 

advance from Ras Shamra, Syria). We have chosen this time so that the Neolithic wave of advance has reached 

all of Europe. However, in order to make sure that this figure can be used to understand the minimum in Fig. 

5.15 (in spite of having used a value of time different from those used in Fig. 5.15), we also include the following 

results at other times. Blue rhombuses are results at locations on the Mediterranean route obtained at the most 

recent genetic date on that route, i.e. at the time of the genetic data of Portugal in Fig. 5.15 (5,184 yr BCE or 95 

generations). Empty circles are the results at locations on the central/northern European route obtained at the 

most recent genetic date on that route, i.e. at the time of the genetic data of Sweden in Fig. 5.15 (2,802 yr BCE 

or 169 generations). We can see that considering different times leads to almost the same results, so the 

explanation of the minimum in Fig. 5.15 remains valid. 

   Genetic data from modern populations display distinct clines along the Mediterranean and 

central/northern European directions, and it has been suggested that this difference may be due to 

the respective routes of Neolithic dispersal [60]. Unfortunately, ancient mtDNA data are not yet 

numerous enough to distinguish whether both routes led to distinct ancient clines of haplogroup K or 

not. However, the presence of the minimum in Sweden, both according to the model simulations and 

to the data available (squares and circle in Fig. 5.15, i.e. Fig. 5.3 in the main paper), strongly suggests 

this possibility (see Fig. 5.18). Nevertheless, we cannot yet plot both observed clines (in contrast to 

the simulated ones in Fig. 5.18) due to the paucity of aDNA data available at present. Indeed, in Italy 

there are no mtDNA data from ancient farmers yet. In Greece, the mtDNA of only one early Neolithic 

individual is known [171]. In many other regions, there are data only from a small number of 

individuals (Fig. 5.2). 
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   In Fig. 5.18, at the beginning of the spread, e.g. in Syria, the %K of the rhombuses is higher than that 

of the circles. This is reasonable, because rhombuses correspond to the %K at an earlier time than 

circles, thus less interbreeding with HGs has taken place. Note that this decrease (from the rhombus 

to the circle) is lower in Anatolia or Greece than in Syria, because populations of farmers with higher 

%K than the local frequency arrive to Anatolia and Greece but not to Syria (the origin of the expansion). 

On the other hand, Portugal is the only region where the %K increases with time (rhombus and dotted 

line in Fig. 5.18), because populations with higher %K arrive from the North, the South and the East 

into Portugal (see Fig. 5.13b). 

   Sweden is the latest region in Europe where the Neolithic arrived, and therefore the region with 

most recent DNA data in Fig. 5.15. Since more time implies more interbreeding with hunter-gatherers, 

and therefore a larger decrease in the %K, we could expect that the presence of the minimum in 

Sweden in Fig. 5.15 is due to the fact that we have plotted the %K as a function of distance, not of 

time. In order to check this point, in Fig. 5.19 we plot the %K as a function of time (not of distance as 

in Fig. 5.15). We observe that a minimum still appears. However, now the minimum does not 

correspond to Sweden (as in Fig. 5.15) but to Portugal (Fig. 5.19).  

 

Figure 5.19 Percentage of mtDNA haplogroup K, as a function of time. The data points correspond to the same 

9 regional cultures which have been plotted as a function of distance in Fig. 5.15, namely: 1 Syria PPNB, 2 

Anatolia, 3 Hungary-Croatia Starčevo, 4 Eastern Germany LBK, 5 Western Germany LBK, 6 North-Eastern Spain 

Cardial, 7 Spain Navarre, 8 Portugal coastal Early Neolithic and 11 Sweden. The error bars are the 80% CL for the 

%K (i.e., the same as in, e.g., Fig. 5.15 or Fig. 5.3 in the main paper). The lines join the results of the simulations 

for different values of the cultural diffusion intensity 𝜂. Note that, in contrast to Fig. 5.15, region 11 (Sweden) 

appears at the right-hand side, and region 8 (Portugal) in the middle of the plot, where the minimum is now 

located. 

   We can explain the minimum in Fig. 5.19, again in terms of the Mediterranean and central/northern 

European routes, as follows. In Fig. 5.20 we plot the results of the simulations (for 𝜂 = 0.02) for the 
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two routes separately but as a function of time (not of distance as in Fig. 5.18). Similarly to our 

explanation above of the minimum in Fig. 5.15 (from the two routes in Fig. 5.18), we note that a 

minimum would appear in Portugal (region 8) in Fig. 5.20 if we joined regions 6-8-4/5. This is precisely 

the reason why we now see a minimum in Portugal (region 8) in Fig. 5.19 (rather than in Sweden as in 

Fig. 5.15).  

   The fact that the minimum appears in Portugal if time is the horizontal axis (Figs. 5.19-5.20) whereas 

it appears in Sweden if distance is the horizontal axis (Fig. 5.15) can be understood as follows. Note 

that the value of the vertical axis (simulated %K) for each regional culture is the same in Figs. 5.19-

5.20 as for the dashed line in Fig. 5.15. Regional cultures 4, 5 (Germany) and 11 (Sweden) appear to 

the left of culture 8 (Portugal) in Fig. 5.15 because their distances are lower (so the minimum is in 

Sweden). However, they appear to the right of culture 8 (Portugal) in Figs. 5.19-5.20 because their 

dates are later (so the minimum is in Portugal), simply because the average dates of the ancient 

individuals whose mtDNA haplogroup is known are more recent for cultures 4, 5 and 11 than for 8. 

 

Figure 5.20 Results of the simulations for 𝜂 = 0.02, as a function of time, for the regional cultures in Fig. 5.19 

located on the Mediterranean route (dashed blue line) and the central/northern European route (solid black 

line). In contrast to Fig. 5.18, here we cannot consider a single value of time (because here the horizontal axis is 

time, not distance). Thus we consider the same regions and their values of time as in Fig. 5.19 (the value of time 

in each region being equal to the average date of the individuals whose mtDNA is known). A minimum would 

appear in Portugal (region 8) if we joined regions 6-8-4/5. These are precisely the regions where the minimum 

also appears in Fig. 5.19. This explains the minimum in Fig. 5.19. 

 

   Finally, we checked in another way that the minimum of the percentage of haplogroup K is indeed 

due to the geography of Europe. We simulated the spread of the Neolithic and its genetic dynamics 

using, instead of a map in Europe, a homogeneous space, i.e., a grid with only land nodes (without any 
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seas neither mountains), so that all individuals that change their residence move 50 km (this 

simulation can be performed by modifying only the grid and initial conditions in Program S1, but for 

convenience we have made all of the necessary files available at the journal web as Program S4, or at 

http://copernic.udg.es/QuimFort/2017_08_07r__Program_S4.zip). We run our simulations on a grid 

of the same size as the geographically realistic grid (180x102 cells of 50kmx50km each). For simplicity, 

we have set the origin of the spread at the same node and with the same initial genetic conditions as 

in Fig. 5.15 (for 𝜂 = 0.02) and Figs. 5.18-5.20, namely, the node containing Ras Shamra, which has 

coordinates (112, 31) and initially (8,233 cal yr BCE) a percentage of farmers with haplogroup K equal 

to 42.2%K, which is the percentage needed in the previous simulations (in real geography) so that the 

40%K in 1 Syria is correctly predicted at 7,258 cal yr BCE when 𝜂 = 0.02 (see Fig. 5.15 and Figs. 5.19-

5.20). In Fig. 5.21 we show the results of our simulations for 𝜂 = 0.02 at the same cells used in the 

previous figures (e.g. Fig. 5.15), which we have labelled accordingly. However, since we are now 

dealing with homogeneous space, the results do not really correspond to the regional cultures in the 

previous figures (e.g., “1 Syria PPNB” or “11 Sweden”), but to points located at the same radial 

distance from the origin as them, for which we have computed the %K at 200, 500 and 900 generations 

after the beginning of the spread (Fig. 5.21). For clarity we mention that in the node corresponding to 

the average location of region '1. Syria PPNB', i.e. node (115, 32), we find at 7,258 cal yr BCE a 

percentage equal to exactly 39.98% in real geographies (Fig. 5.15 for 𝜂 = 0.02 and Figs. 5.19-5.20) and 

39.91% in homogeneous space (i.e., about 40% in both cases). However, in Fig. 5.21 (homogeneous 

space) we obtain for the upper line about 36% (rather than 40%) because this result is after 200 

generations (whereas the percentage 40% is obtained at 7,258 cal yr BCE, i.e. 30 generations after 

8,233 cal yr BCE). For a Neolithic wave spreading in homogeneous space, we simply expect that the 

percentage of haplogroup K will diminish with increasing distance, and that this cline will gradually 

disappear as time passes (both features being due to interbreeding). This is precisely what can be 

observed from our simulations in Fig. 5.21, but most importantly, in contrast with Fig. 5.15, there is 

no local minimum in Fig. 5.21. Thus the minimum in, e.g., Fig. 5.15 indeed arises due to the presence 

of the Mediterranean sea in Europe, which leads to the existence of two expansion routes with 

differentiated dispersal behavior, namely the central/northern European route (which is mainly inland 

and has thus jumps of 50 km per generation) and the Mediterranean one (which is mainly coastal and 

has thus jumps of up to 150 km per generation). 
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Figure 5.21 This figure shows the results of the simulations (for 𝜂 = 0.02) without seas neither mountains in the 

simulation grid. We have set the start of the spread at the same cell and initial genetic conditions as in Fig. 5.15 

and Figs. 5.18-5.20, and the simulated results plotted correspond to the same cells as the cultural regions in Figs. 

5.15-5.17 and Figs. 5.19-5.20 (labelled accordingly in the figure) but at 200, 500 and 900 generations after the 

origin of the spread. As expected, the %K decreases with increasing distance from the origin of the spread, and 

the cline is gradually erased with time (1 generation=32 yr [182]). In contrast to the line in Fig. 5.15 for 𝜂 = 0.02, 

no minimum appears here (homogeneous space). This confirms that the minimum in, e.g., Fig. 5.15 (which is the 

same as Fig. 5.3 in the main paper) is a purely geographical effect, due to the existence of the Mediterranean 

sea. 

 

 Text S9. Horizontal/oblique transmission 
All models in the main paper and other sections in this Supplementary Information use the equations 

of vertical transmission, i.e. interbreeding between farmers and hunter-gatherers. In this section we 

show that the conclusions would not change if we considered, instead, acculturation, i.e. learning of 

agriculture by hunter-gatherers from farmers of the same generation (horizontal transmission) and/or 

the previous one (oblique transmission). 

   Vertical transmission leads to the following new population numbers (in each spatial cell) after one 

generation (see equations (S17)-(S19)), 

𝑃𝐻𝐺(𝑥, 𝑦, 𝑡 + 1) = 𝑅0,𝐻𝐺[𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋 − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁], (S20) 

𝑃𝑁(𝑥, 𝑦, 𝑡 + 1) = 𝑅0,𝐹  𝑃𝑁(𝑥, 𝑦, 𝑡) , (S21) 

𝑃𝑋(𝑥, 𝑦, 𝑡 + 1) = 𝑅0,𝐹[𝑃𝑋(𝑥, 𝑦, 𝑡) + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋 + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁], (S22) 
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   where, for the cell considered, 𝑃𝐻𝐺 is the number of hunter-gatherers, 𝑃𝑁 is the number of farmers 

who have haplogroup K, and 𝑃𝑋 is the number of farmers who do not have haplogroup K. The numbers 

of mixed couples are given by equations (S5)-(S6), namely 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁 = 𝜂
𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) ∙ 𝑃𝑁(𝑥, 𝑦, 𝑡)

𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) + 𝑃𝐹(𝑥, 𝑦, 𝑡)
, 

(S23) 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋 = 𝜂
𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) ∙ 𝑃𝑋(𝑥, 𝑦, 𝑡)

𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) + 𝑃𝐹(𝑥, 𝑦, 𝑡)
, 

(S24) 

   and the total number of farmers in the spatial cell considered is  𝑃𝐹(𝑥, 𝑦, 𝑡) = 𝑃𝑁(𝑥, 𝑦, 𝑡) +

𝑃𝑋(𝑥, 𝑦, 𝑡). 

   We can interpret the meaning of 𝜂 by noting that for pioneering, low-density populations of farmers 

(𝑃𝑁 ≈ 0, 𝑃𝑋 ≈ 0 and thus 𝑃𝐹 ≈ 0), equations (S21)-(S24) for the special case 𝑅0,𝐹 = 1 (no net 

reproduction) lead to 𝑃𝐹(𝑥, 𝑦, 𝑡 + 1) − 𝑃𝐹(𝑥, 𝑦, 𝑡) ≈ 𝜂𝑃𝐹(𝑥, 𝑦, 𝑡), so that 𝜂 can be interpreted as the 

relative increase in the number of farmers per generation due to interbreeding with HGs (i.e., the 

proportion of farmers that take part in vertical cultural transmission).  

   For horizontal/oblique transmission [3], the first three equations are valid replacing the number of 

couples by the number of hunter-gatherers who learn farming (which we call converts and do not 

have haplogroup K, i.e. they belong to population X) from each population of farmers (X and N), i.e. 

𝑃𝐻𝐺(𝑥, 𝑦, 𝑡 + 1) = 𝑅0,𝐻𝐺[𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) − 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑠 𝐻𝑋 − 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑠 𝐻𝑁], (S25) 

𝑃𝑁(𝑥, 𝑦, 𝑡 + 1) = 𝑅0,𝐹  𝑃𝑁(𝑥, 𝑦, 𝑡) , (S26) 

𝑃𝑋(𝑥, 𝑦, 𝑡 + 1) = 𝑅0,𝐹[𝑃𝑋(𝑥, 𝑦, 𝑡) + 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑠 𝐻𝑋 + 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑠 𝐻𝑁], (S27) 

   where [3]  

𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑠 𝐻𝑁 = 𝑓
𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) ∙ 𝑃𝑁(𝑥, 𝑦, 𝑡)

𝛾𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) + 𝑃𝐹(𝑥, 𝑦, 𝑡)
, 

(S28) 

𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑠 𝐻𝑋 = 𝑓
𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) ∙ 𝑃𝑋(𝑥, 𝑦, 𝑡)

𝛾𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) + 𝑃𝐹(𝑥, 𝑦, 𝑡)
. 

(S29) 

   Analogously to the paragraph below Eq. (S24), we can interpret the meaning of 𝐶 by noting that for 

pioneering populations of farmers (𝑃𝑁 ≈ 0, 𝑃𝑋 ≈ 0 and thus 𝑃𝐹 ≈ 0), equations (S26)-(S29) for the 

special case 𝑅0,𝐹 = 1 (no net reproduction) lead to 𝑃𝐹(𝑥, 𝑦, 𝑡 + 1) − 𝑃𝐹(𝑥, 𝑦, 𝑡) ≈ 𝐶𝑃𝐹(𝑥, 𝑦, 𝑡), so that 

𝐶 ≡ 𝑓/𝛾 can be interpreted as the relative increase in the number of farmers per generation due to 

acculturation with HGs (which is the same, if 𝐶 < 1, as the proportion of farmers that take part in 

horizontal/oblique cultural transmission) [3].  

   In the simple case 𝛾 = 1 (which corresponds to random copying of behavior between individuals 

[3]), it is easy to see that 0 ≤ 𝑓 ≤ 1 (otherwise, 𝑃𝐻𝐺(𝑥, 𝑦, 𝑡 + 1) could become negative for 𝑃𝐻𝐺 <<

𝑃𝐹). Then equations (S25)-(S29) for horizontal/oblique transmission are the same as equations (S20)-

(S24) for vertical transmission, with 𝜂 replaced by 𝑓. Recall also that for vertical transmission 0 ≤ 𝜂 ≤

1 [94]. Thus, the same model as in the main paper can be used for horizontal/oblique transmission, 

instead of vertical transmission. Obviously, for horizontal/oblique transmission the conclusion (from 
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Fig. 5.3, or Fig. 5.15) would be that 𝑓 = 0.02 (instead of 𝜂 = 0.02), i.e. that about 2% of new farmers 

join the pioneering farming populations per generation due to acculturation of hunter-gatherers 

(instead of due to interbreeding with hunter-gatherers) or, equivalently, that about 2% of farmers 

teach agriculture to a hunter-gatherer (instead of mating a hunter-gatherers). 

   A more general case is to consider both horizontal/oblique transmission (acculturation) and vertical 

transmission (interbreeding). In such an instance, the corresponding equations (as given above) 

should be applied sequentially in the simulations, in general with different values for parameter 𝑓 

(horizontal/oblique transmission) and 𝜂 (vertical transmission). Accordingly, the equations are a bit 

more complicated, because vertical transmission makes the frequencies of parent and children 

different, so it must be taken into account explicitly that the teachers belong to the parental 

generation in oblique transmission but not in horizontal transmission (compare Eqs. (3.4.1) to (3.1.3) 

in Ref. [93]). We do not perform such simulations, for the following reason. We have estimated the 

value of 𝜂 (namely 𝜂 ≈ 0.02) in Fig. 5.3 in the main paper, by assuming only vertical transmission. 

Alternatively, if we considered only horizontal/oblique transmission, we would estimate the same 

value for 𝑓 (i.e., 𝑓 ≈ 0.02). But if we considered a model with both kinds of transmission, we would 

have at least two independent parameters (𝜂 and 𝑓), and we cannot estimate both of them univocally 

from the genetic data available (i.e., from the error bars in Fig. 5.3 in the main paper). However, we 

next show that the conclusions in the main paper would not change under such more complicated 

models. Clearly, values 𝜂 ≈ 0.02 and 𝑓 ≈ 0.02 or higher would yield more cultural transmission than 

the case considered in the main paper (Fig. 5.3), i.e. 𝜂 ≈ 0.02 and 𝑓 = 0. Therefore, for values 𝜂 ≈

0.02 and 𝑓 ≈ 0.02 or higher, obviously the simulated cline will be too steep to be consistent with the 

genetic data (error bars in Fig. 5.3). Thus, we can assure that more complicated models (i.e., with both 

vertical and horizontal/oblique transmission) will be consistent with the genetic data only if 𝜂 < 0.02 

and 𝑓 < 0.02 (more precisely, we should expect e.g. 𝜂 + 𝑓 ≤ 0.02). These values are very small 

compared to the maximum possible ones (namely 𝜂 = 1 and 𝑓 = 1). Noting that, in regions where 

the first famers arrived (𝑃𝑁 ≈ 0 and 𝑃𝑋 ≈ 0), the equations above simplify to 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑁 ≈ 𝜂𝑃𝑁, 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝐻𝑋 ≈ 𝜂𝑃𝑋 (for vertical transmission) and 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑠 𝐻𝑁 ≈ 𝑓𝑃𝑁, 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑠 𝐻𝑁 ≈ 𝑓𝑃𝑋 (for 

horizontal/oblique transmission), we can interpret the result above (𝜂 + 𝑓 < 0.02) by stating that less 

than 2% of farmers took part in cultural transmission, either by mating with hunter-gatherers or by 

teaching agriculture to them. Thus, about 98% of the population did not take part in cultural 

transmission. In this sense, cultural diffusion was of little importance. Therefore, the main conclusion 

of our work remains the same, regardless that we consider vertical, horizontal, oblique, or any 

combination of these three kinds of cultural transmission.  

 Text S10. Calculation of the error bars of percentages of 

haplogroup K 
For each sample (e.g. Syria PPNB, Anatolia, Hungary-Croatia Starčevo, etc.), we calculated the 80% 

confidence-level (CL) range of its percentage of haplogroup K (hereafter called %K), which we 

represent as error bars in Figs. 2-3, by bootstrap case resampling. In order to do so, we drew 10,000 

random resamples from each original sample with replacement. Each resample had the same number 

of individuals as the original sample (e.g., 15 individuals for Syria PPNB, 28 for Anatolia, etc.). For these 

10,000 resamples, we computed a histogram with the number of resamples versus their %K. Then, 

with 80% CL, the error bar is limited by the 10% and 90% quartiles of this distribution (i.e. the values 
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of the %K below which there are 10% and 90% of the histogram resamples, respectively). We 

performed these calculations using Mathematica and checked them using Excel.  

   However, this bootstrap method cannot be applied to the case of populations with 0%K (e.g., 

Portugal coastal Early Neolithic), simply because then there are no individuals with haplogroup K, so 

all bootstrap samples have 0 individuals with haplogroup K. This would yield a vanishing error bar for 

the estimation 0%K, which is not reasonable, for the following reason. For example, for the sites in 

the sample called 'Portugal coastal Early Neolithic' there are only 10 individuals. None of them has 

haplogroup K, so its frequency is obviously 0%. However, if we had e.g. 100 individuals, and none of 

them had haplogroup K, its frequency would again be 0% but with more certainty, i.e., the error bar 

should be narrower. Thus, assigning a vanishing error bar to samples with 0% of a haplogroup is not 

justified. In order to deal with such samples, we could begin by introducing reasonable assumptions, 

e.g. by adding noise to the data [249, 250, 251]. However, such approaches would require hypotheses 

(on the kind of noise, its parameter values, etc.) [249, 250, 251]. Clearly, it would be better to find a 

solution without introducing such assumptions. With this aim, we devised the following method. 

   Although our method is general, for clarity let us consider a specific sample we are interested in, e.g. 

'Portugal coastal Early Neolithic'. As mentioned above, in this sample there are only 10 individuals and 

none of them carried haplotypes from haplogroup K, so the K frequency is 0%. For the sake of 

simplicity, as a first step, imagine 11 possible populations (each of them composed of a very large 

number of individuals), with percentages of individuals with haplogroups different than K (which we 

call "0" individuals) equal to 100%, 90%, 80%, ..., 20%, 10% and 0%. We call those populations P100, 

P90, ..., P10, P0, respectively (note that they have %s of the K haplogroup equal to 0%, 10%, ..., 90% and 

100%, respectively). Imagine that we choose at random 1 of these 11 populations, next we choose 10 

individuals at random from it, and it turns out that all of them are "0" individuals (i.e., none of them 

has haplogroup K, as in the case of 'Portugal coastal Early Neolithic'). In such a situation, obviously it 

is more likely that we have chosen the population P100 than P90, it is also more likely that we have 

chosen the population P90 than P80, etc. But what are the exact probabilities that we have chosen 

each population? The probability of population P100 for the situation considered (i.e., that in which all 

10 individuals are "0") is  

𝑝(P100  0000000000) =
𝑝(P100∩ 0000000000)

𝑝(0000000000)
,    (S30) 

   where the symbol ∩ denotes intersection, i.e. co-occurrence of the two events, and 

𝑝(P100 ∩  0000000000) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 P100 𝑎𝑛𝑑 0000000000

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠
,   (S31) 

𝑝(0000000000) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 0000000000

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠
 ,   (S32) 

   and the number of total cases includes all 11 possible populations and all possible outcomes besides 

0000000000 (e.g., 1000000000, 010000000, 1100000000, etc.). Similarly for the other 

populations, 

𝑝(P90  0000000000) =
𝑝(P90∩ 0000000000)

𝑝(0000000000)
,    (S33) 

𝑝(P80  0000000000) =
𝑝(P80∩ 0000000000)

𝑝(0000000000)
,    (S34) 
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   etc. Clearly, since they refer to two independent events, the numerators in equations (S30), (S33), 

(S34), etc. are equal to the probability that we have chosen the considered population P𝑖 (namely 
1

11
, 

because it has been chosen at random) times the probability that, if we have chosen this population, 

we have also chosen a sample in which all 10 individuals are "0". Thus 

𝑝(P100 ∩  0000000000) =
1

11
1 =

1

11
,      (S35) 

𝑝(P90 ∩  0000000000) =
1

11
(0.910) =

0.910

11
,    (S36) 

𝑝(P80 ∩  0000000000) =
1

11
(0.810) =

0.810

11
,    (S37) 

   etc. By adding up these values, equation (S32) can be written as 

𝑝(0000000000) =
1

11
(1 + 0.910 + 0.810 +⋯+ 0.110 + 010),   (S38) 

   and we find the final result for population P100 from equations (S30), (S35) and (S38) as 

𝑝(P100  0000000000) =
1

1+0.910+0.810+⋯+0.110
= 0.6705.   (S39) 

   Similarly we find, for the other populations, 

𝑝(P90  0000000000) =
0.910

1+0.910+0.810+⋯+0.110
= 0.2338,   (S40) 

𝑝(P80  0000000000) =
0.810

1+0.910+0.810+⋯+0.110
= 0.0720,   (S41) 

   etc. As expected, the probability is highest for population P100 (i.e., for 0%K). The important point is 

that, in contrast to the bootstrap method with case resampling (which would predict that P100 is the 

only possible population), we have computed non-vanishing probabilities for the other populations 

(and they decrease with increasing %K, also as expected). Moreover, by adding equations (S39) and 

(S40), we find that 

𝑝(P100  0000000000) + 𝑝(P90  0000000000) = 0.9043,   (S42) 

   from which we can state that there is a probability of 90.43% that our sample comes from a 

population with a percentage of "0" individuals between 100% and 90%. In other words, we have 

found, with 90.43% confidence level, that our sample comes from a population in which the 

percentage of haplogroup K is in the range 0%-10%K. Note, however, that in this first computation 

(i.e., using 11 possible populations) there is a lot of uncertainty, because the closest possible result 

that we can possibly estimate would be obtained by adding 𝑝(P80  0000000000) to equation (S42) 

and then, the range of the percentage of "0" individuals would be between 100% and 80%, i.e., the 

upper limit of of the % of haplogroup K would be 20%K, rather than 10%K as above. Thus, it is safe to 

accept that there is an error of up to 10% in the estimation of percentages using 11 populations 

(another way to see this is simply to note that our 11 possible populations are separated by increases 

of 10%K). Therefore, our conclusion should be that, with 90.43% confidence level, the original 

population had a frequency in the range 0%-20%K.  



131 

 

   Note also that, for the CL we are interested in, namely 80% (because this is the range used in the 

main paper), this first calculation does not lead to a precise range of the %K, because we can only 

estimate such a range with a 67.05% CL (using equation (S39)), with a 90.43% CL (using equation (S42)), 

etc. We next show that we can solve this problem by considering a larger number of possible 

populations.  

   Secondly, we repeat the previous procedure with 101 populations (instead of 11 as above), with 

percentages of "0" individuals equal to 100%, 99%, 98%, ..., 2%, 1% and 0 %. Thirdly, we repeat the 

same approach with 1,001 populations (with percentages 100%, 99.9%, ..., 0.1% and 0%). And fourthly, 

we do the same with 10,001 populations (with percentages 100%, 99.99%, ..., 0.01% and 0%). The 

results (obtained using the Mathematica computer program) are shown in Table 5.2. 

   As expected, the higher the number of populations, the lower the error of the estimated %K, and we 

can choose a CL closer and closer to 80%. Note also that each error bar is within the previous one, as 

it should (because an estimation with more populations, as designed above, is obviously more 

precise). From the last column we can safely conclude, with 80% CL, that the percentage of haplogroup 

K in a population for which we have measured a sample of 10 "0" individuals (i.e., in which none of 

the 10 individuals has the haplogroup K), is within the range 0%-14%. Thus we have applied the error 

bar 0-14%K to the sample 'Portugal coastal Early Neolithic' in the main paper. 

Number of possible 
populations 

upper limit of the % of 
haplogroup K 

error bar of the % of 
haplogroup K 

confidence level (CL) 

11 (10±10)%K 0%-20%K 90.40% 

101 (13±1)%K 0%-14%K 80.80% 

1,001 (13.6±0.1)%K 0%-13.7%K 80.21% 

10,001 (13.61±0.01)%K 0%-13.62%K 80.02% 

Table 5.2 Error bar estimation for the regional culture 'Portugal coastal Early Neolithic' (10 individuals and 0%K). 

 

   Our method could be also applied to cases in which the haplogroup percentage is different from 0%, 

but calculations would be more tedious (because it is less straightforward to compute, e.g., the 

probability of 4 "0"s and 6 "1"s than to compute that of 10 "0"s). If the haplogroup percentage is 

different from 0%, we prefer to use the bootstrap approach because it is a reasonable method which 

makes it possible to compare directly to the error bars estimated by other authors (e.g., references 

[78, 176]). 

   Besides the sample 'Portugal coastal Early Neolithic' (which has 10 individuals, none of them with 

haplogroup K), in Fig. 5.2 (main paper) there is another sample with 0%K, namely 'Romanian Late-

Middle Neolithic' (which has 9 individuals, none of them with haplogroup K). Repeating the same 

procedure as above for 9 (instead of 10) individuals, the result is that, with 80% CL, the percentage of 

haplogroup K in the original population is 0-15%K. The upper bound is higher than for 10 individuals, 

as it should, because with fewer individuals in a sample, inference about properties of the complete 

population (from which the sample has been drawn) is obviously more uncertain. 
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 Text S11. A more complicated simulation model 
In our main paper and in Sec. 5.8.5, the equations used to compute cultural transmission assume that 

both male and female hunter-gatherers are equally liable to form mixed couples with Neolithic 

individuals. However, ethnographic studies show that, in similar situations, mating takes place mostly 

between female hunter-gatherers and male farmers (see, e.g., reference [208]). If only female hunter-

gatherers can mate with farmers, then none of the HN couples will contribute haplogroup K to the 

Neolithic gene pool, because mtDNA is inherited only from the mother. Note, however, that taking 

this point into account will not modify the genetic contribution of HX couples (because none of the 

parents has haplogroup K) neither NX couples (because both N and X are farmers, so the female can 

be either of them), neither of course HH, NN nor XX couples. On the other hand, the maximum possible 

number of both HN and HX couples will be smaller (by 50%) than in the model in the main paper and 

Sec. 5.8.5, because only female HGs can take part in them. Therefore, some genetic impact could in 

principle be expected if using this more realistic approach. Here we take this point into account, by 

means of an alternative cultural transmission scheme described below. We find, however, that the 

change in the results is in fact minimal, so the conclusions in the main paper do not change. We will 

also suggest some intuitive explanations of why this effect is so small. 

   In this model (Program S2, available at the journal web or at 

http://copernic.udg.es/QuimFort/2017_08_07r__Program_S2.zip) only part of the hunter-gatherer population 

(the females) can mate with farmers, so we have to consider separate sub-populations for men and 

women. Let 𝑀𝐻𝐺(𝑥, 𝑦, 𝑡) and 𝑊𝐻𝐺(𝑥, 𝑦, 𝑡) stand for the number of hunter-gatherer men and women, 

respectively, present in a cell after dispersal (step 1 in the main paper, Sec. 5.4). Therefore, the total 

number of hunter-gatherers in the cell is 𝑃𝐻𝐺(𝑥, 𝑦, 𝑡) = 𝑀𝐻𝐺(𝑥, 𝑦, 𝑡) +𝑊𝐻𝐺(𝑥, 𝑦, 𝑡). Likewise, let 

𝑀𝐹(𝑥, 𝑦, 𝑡) and 𝑊𝐹(𝑥, 𝑦, 𝑡) stand for the farmer sub-populations of men and women, which are in turn 

divided into 𝑀𝑁(𝑥, 𝑦, 𝑡) and 𝑊𝑁(𝑥, 𝑦, 𝑡) for the farmer population with haplogroup K present in the 

cell, and 𝑀𝑋(𝑥, 𝑦, 𝑡) and 𝑊𝑋(𝑥, 𝑦, 𝑡) farmers that do not have haplogroup K. In the computer code we 

assume that initially there is gender balance in all populations, i.e. that there is the same number of 

males and females, and that in the new generations there is also equal probability to be born male or 

female. 

5.8.11.1. Cultural transmission 

The cultural transmission process (step 2 in the main paper, Sec. 5.4, and detailed in Sec. 5.8.5) is now 

replaced by the following. 

Cross-matings between cultural groups. For cells with Mesolithic and Neolithic individuals, we first 

compute the mixed couples by taking into account that only hunter-gatherer women can mate into 

the farmer community. Let us first find, for example, the probability for a hunger-gatherer woman to 

mate with a farmer man who has haplogroup K. Under random mating (same tendency to mate with 

a hunter-gatherer man than with a farmer man), this probability would be simply the fraction of men 

with haplogroup K (relative to the whole male population in the cell). However, in general, this 

probability will be reduced by the interbreeding parameter 𝜂 which, when 𝜂 < 1, favors mating within 

the same population over mixed matings. Therefore, the probability for a hunger-gatherer woman to 

mate with a farmer man who has haplogroup K is given by [94] 



133 

 

 𝜂
𝑀𝑁

𝑀𝑁 +𝑀𝑋 +𝑀𝐻𝐺
, (S43) 

   where 𝑀𝑁 +𝑀𝑋 +𝑀𝐻𝐺 is the total male population in the cell. Multiplying this probability (S43) by 

the number of hunter-women, 𝑊𝐻𝐺, we find the corresponding number of mixed couples 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑁𝑊𝐻𝐺 = 𝜂
𝑊𝐻𝐺 · 𝑀𝑁

𝑀𝑁 +𝑀𝑋 +𝑀𝐻𝐺
 . (S44) 

   Similarly, we find for the number of matings to farmer men who do not have the haplogroup K 

𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑋𝑊𝐻𝐺 = 𝜂
𝑊𝐻𝐺 · 𝑀𝑋

𝑀𝑁 +𝑀𝑋 +𝑀𝐻𝐺
 . (S45) 

   Note that equations (S44)-(S45) are similar to equations (1)-(2) in the main paper, so we are actually 

applying vertical cultural transmission, but only to the subgroups liable to form mixed couples.  

   Analogously to the model used in our main paper (equation (S7)-(S9)), we next compute the number 

of farmer men and hunter-gatherer women who do not take part in the mixed matings above, 

 

𝑀′𝑁 = 𝑀𝑁 − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑁𝑊𝐻𝐺 

𝑀′𝑋 = 𝑀𝑋 − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑋𝑊𝐻𝐺 

𝑊′𝐻𝐺 = 𝑊𝐻𝐺 −  𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑁𝑊𝐻𝐺 − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑋𝑊𝐻𝐺  

(S46) 

(S47) 

(S48) 

Cross-matings between genetic groups of farmers. We now compute the number of couples between 

farmer individuals of different genetic groups (𝑁 and 𝑋). Since some farmer men have mated with 

hunter-gatherer women, we now have fewer farmer men than farmer women (remember that we 

initially had gender balance). We can find the probability for a farmer man to mate with a farmer 

woman of the other genetic group. This will now just be the fraction of women of the other genetic 

group (relative to all farmer women). As argued above equation (3) in the main paper, there is no 

reason to assume any preference toward or against matings within the same genetic group, and 

therefore we can assume 𝜂 = 1 (random mating). As a result, the number mixed genetic couples 

within the farmer community are given by 

 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑁𝑊𝑋 =
𝑀′𝑁 · 𝑊𝑋
𝑊𝑁 +𝑊𝑋

 , (S49) 

 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑋𝑊𝑁 =
𝑀′𝑋 · 𝑊𝑁
𝑊𝑁 +𝑊𝑋

 , (S50) 

   where 𝑊𝑁 +𝑊𝑋 = 𝑊𝐹 is the total number of farmer women. Equations (S49)-(S50) are analogous 

to equation (S10) for the simpler model used in our main paper. 

Matings within groups. Finally, the number of couples between farmers of the same genetic group is 

constrained by the number of unmated men (which are fewer in number than unmated women). In 

the same way, the number of couples between hunter-gatherers is constrained by the number of 

unmated women. Therefore, 
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 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑁𝑊𝑁 = 𝑀′𝑁 − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑁𝑊𝑋 , 
 

(S51) 

 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑋𝑊𝑋 = 𝑀′𝑋 − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑋𝑊𝑁  , 
 

(S52) 

 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝐻𝐺𝑊𝐻𝐺 = 𝑊′𝐻𝐺 . 
 

(S53) 

   Note that, in contrast to the analogous equations in the simpler model applied in the main paper 

[equations (S11)-(S13)], here we do not need to divide by two because we are now dealing with men 

and women separately. 

5.8.11.2. Reproduction 

The following scheme replaces the reproduction step in the main paper (Sec. 5.4) and Sec. 5.8.5. We 

apply the following rules. (i) Each couple will have 2𝑅0,𝑖 children, because 𝑅0,𝑖 is computed per 

individual and there are two individuals per mating. However, the net growth rate 𝑅0,𝑖 is different for 

farmers and HGs (𝑖 = 𝐹,𝐻𝐺). Applying that the children from cross matings between HG and F will be 

farmers [52, 208], we use  𝑅0,𝐻𝐺 = 1 for matings in which both parents are HGs (assuming that the 

HG population is stationary), and 𝑅0,𝐹 = 2.45 [183] for HN, HX, NN, XX and NX matings. (ii) Since 

mtDNA is inherited from the mother, all the children from each couple will become part of the same 

genetic group as the mother. (iii) We assume equal probability for the children being male or female, 

so 50% of the new population will be men and the other 50% women. Under these three rules, the 

number of men and women in the next generation is given by 

 𝑀𝐻𝐺(𝑡 + 1) =  𝑊𝐻𝐺(𝑡 + 1) = 𝑅0,𝐻𝐺 · 𝑐𝑜𝑢𝑝𝑙𝑒𝑠𝑀𝐻𝐺𝑊𝐻𝐺  , 

 

(S54) 

 𝑀𝑁(𝑡 + 1) = 𝑊𝑁(𝑡 + 1) =  𝑅0,𝐹(𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑁𝑊𝑁 + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑋𝑊𝑁) , 

 

(S55) 

 𝑀𝑋(𝑡 + 1) = 𝑊𝑋(𝑡 + 1) = 𝑅0,𝐹(𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑋𝑊𝑋 + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑁𝑊𝑋 

                                                    + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠𝑀𝑋𝑊𝐻𝐺 + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠𝑀𝑁𝑊𝐻𝐺) . 

 

(S56) 

   These equations are analogous to equations (S14)-(S16) for the simpler model applied in the main 

paper. Note that the couples HN appear in equation (S15) but not in equation (S55), because here all 

HGs in those matings are women and their mtDNA haplogroup is inherited by their children (so none 

of the latter will have haplogroup K and, therefore, never belong to population N but always to X). 

Finally, although this is not necessary to perform the simulations, using equation (S46)-(S48) into 

(S51)-(S53) and the results into (S54)-(S56) we can relate the population numbers at generation 𝑡 + 1 

to those at the previous generation 𝑡, 

 𝑀𝐻𝐺(𝑡 + 1) =  𝑊𝐻𝐺(𝑡 + 1) = 𝑅0,𝐻𝐺  (𝑊𝐻𝐺(𝑡) − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠𝑀𝑁𝑊𝐻𝐺 

                                                          −𝑐𝑜𝑢𝑝𝑙𝑒𝑠𝑀𝑋𝑊𝐻𝐺) , 

 

(S57) 

 𝑀𝑁(𝑡 + 1) = 𝑊𝑁(𝑡 + 1) =  𝑅0,𝐹 (𝑀𝑁(𝑡) − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑁𝑊𝐻𝐺 

                                                      −𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑁𝑊𝑋 + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑋𝑊𝑁 ), 

 

(S58) 



135 

 

 𝑀𝑋(𝑡 + 1) = 𝑊𝑋(𝑡 + 1) = 𝑅0,𝐹 (𝑀𝑋(𝑡) − 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑋𝑊𝑁 

                                                    +𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑁𝑊𝑋 + 𝑐𝑜𝑢𝑝𝑙𝑒𝑠 𝑀𝑁𝑀𝐻𝐺) , 

 

(S59) 

   which are analogous to equations (S17)-(S19) for the simpler model used in the main paper. 

5.8.11.3. Simulation results 

If we apply this new cultural transmission-reproduction scheme to the same initial conditions as in the 

main paper, we obtain basically the same results, as can be observed by comparing Fig. 5.22 below to 

Fig. 5.15 (i.e., Fig. 5.3 in the main paper). The absolute differences between the predicted fractions of 

individuals with haplogroup K are lower than 0.002. Therefore, although the scheme used in the main 

paper is more simplified, its results are close enough to those obtained here to validate the use of 

such an approximation. Also, because both models yield nearly the same results, the conclusions of 

the paper remain unchanged.  

 

Figure 5.22 This figure is the same as Fig. 5.15 (i.e., Fig. 5.3 in the main paper), but applying the more refined 

model in Sec. 5.8.11. It shows the percentage of mtDNA haplogroup K present in the farmer population as a 

function of distance to Syria. Black squares correspond to the measured data. Lines correspond to the results of 

the simulations, using the model in Sec. 5.8.11, for several values of the interbreeding parameter 𝜂. The results 

that follow from this more precise model are almost the same as those from the model used in the main paper 

(compare this figure to Fig. 5.15, i.e. Fig. 5.3 in the main paper). 

 

   The fact that the refined model (this section) and the approximate one (main paper and Sec. 5.8.5) 

lead to much the same results does not seem very surprising, for the following reasons. It is true that 

in the more refined model (this section) only female hunter-gatherers (without haplogroup K) are 

incorporated into the farming populations (thus all of their children lack haplogroup K), whereas in 
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the approximate model (main paper and Sec. 5.8.5) additional (male) hunter-gatherers are also 

incorporated. However, the children of the latter do not always have haplogroup K (they will have it if 

the mother belongs to group N, but not if she belongs to group X). Thus the HN matings that are not 

taken into account in the more refined model (this section) lead not only to children who have 

haplogroup K, but also to children who do not have in the approximate model (main paper and Sec. 

5.8.5). Then it seems reasonable that the effect of this refinement on the percentage of haplogroup K 

is small. Moreover, the genetic contribution of most matings (i.e., HX, NX, HGHG, NN and XX) is 

unaffected by this refinement in the model. Another difference is that the maximum possible number 

of HN and HX matings is lower in the model in this section (because only women HGs and men farmers 

take part in them), but again all other matings (i.e., NX, HGHG, NN and XX) are unaffected and, 

moreover, in our simulations we have observed that the percentage of haplogroup K becomes almost 

constant many generations before all possible matings with HGs have taken place (i.e., before the 

local HGs extinguish in the model in the main paper and Sec. 5.8.5, or before the local HG women 

extinguish in the model in this section).  

 Text S12. Approximate, one-dimensional model 
In this work we have concluded that a value of the interbreeding parameter 𝜂 as low as 𝜂 = 0.02 

(which is very small, as compared to the maximum possible value 𝜂 = 1 [94]) explains the observed 

cline of haplogroup K in aDNA data (main paper, Fig. 5.3). In order to perform a check to the validity 

of this new result, we conceived an approximate, simpler model as follows. The model in the main 

paper (detailed in Sec. 5.8.5), as well as the more elaborate one in Sec. 5.8.11 above, considers a two-

dimensional (2D) grid, and distinguishes sea, mountain, coast and inland cells to simulate a real map 

of Europe. On this 2D grid, individuals are exchanged between cells via sea travels (up to 150 km, as 

implied by archaeological data; see Sec. 5.8.6) and also via inland travels (of 50 km, as implied by 

ethnographic data [139]). We reasoned that, since sea travels can be substantially longer than inland 

travels, a one-dimensional (1D) model (representing the Mediterranean coast) could be a simpler way 

to describe roughly the dynamics of the system. Although this is admittedly a simplification, and will 

obviously lead to less precise results, it seems reasonable to expect that it can be useful to check the 

main conclusion of our work (namely, that 𝜂 ≪ 1, as explained above). 

   In this one-dimensional model (Program S3, available at the journal web or at 

http://copernic.udg.es/QuimFort/2017_08_07r__Program_S3.zip) we assume a line of 150 nodes, 

each one separated 150 km from their two neighbors. This corresponds to a total of 22,350 km 

between the two extreme nodes (150 km multiplied by 149 jumps between nodes). As in the main 

model, initially only one node has Neolithic population (3,200 individuals) but no Mesolithic 

population, and all other nodes have no Neolithic population and 160 Mesolithic individuals per node 

(values obtained from ethnographic data13 and the area of a cell in the main model). From the node 

with Neolithic individuals, the Neolithic population expands along the line (which corresponds to the 

Mediterranean coast) by performing, each generation, the steps of population dispersal, cultural 

transmission and reproduction. The latter two steps are treated here in the same way as in the main 

paper (detailed in Sec. 5.8.5). Dispersal, on the other hand, needs to be treated differently because of 

the unidimensionality of space. 
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5.8.12.1. Dispersal 

The nodes in the 1D grid (this section) are equivalent to coastal nodes in the 2D grid (main paper and 

Sec. 5.8.5). The population present at a coastal cell in the 2D model can stay with a 38% probability 

(persistence) [139], or it can travel either inland or by sea (with the number of individuals taking each 

route depending on the number of sea neighbors). In general, in the 2D model we have three 

possibilities (we ignore the cases where a neighbor is a mountain cell), depending on the number of 

sea neighbors: (i) one sea neighbor implies that 25% of the population that travels (15.5% of the total 

population, computed as (1/4)(1 − 𝑝𝑒)) moves by sea, (ii) two sea neighbors means that 50% of the 

traveling population (31% of the total population, computed as (1/2)(1 − 𝑝𝑒)) will travel by sea, and 

(iii) three sea neighbors means that 75% of the traveling population (46.5% of the total population, 

computed as (3/4)(1 − 𝑝𝑒)) will travel by sea.  

   In the approximate 1D model (this section), we are only considering sea travel. In contrast, in the 2D 

model (main paper and Sec. 5.8.5) we consider both sea and inland travel. For this reason, obviously 

in the 1D model if we allowed for all of the population that can travel (62% of the cell population) to 

migrate by sea, the speed of the front would largely overestimate the results obtained with the more 

realistic 2D model (which agree with the archaeological data, see Sec. 5.8.6). In addition, nodes in the 

1D model are separated 150 km, so shorter jumps are not possible. In contrast, in the 2D model not 

all of the population that travels by sea moves 150 km away from the origin, because part of it moves 

to closer coastal locations. Therefore, for the 1D model to provide equivalent results, it is important 

that a lower fraction of the population travels by sea, so that the results are realistic. This implies that 

part of the population has to disappear from the system in the 1D model, in order to take care of the 

fraction of the population that travels inland (and, therefore, does not contribute to the coastal 

expansion) in the 2D model. Hence, in our 1D model a fraction 𝛼(1 − 𝑝𝑒) of the population travels by 

sea, and a fraction (1 − 𝛼)(1 − 𝑝𝑒) of the population disappears. We find by trial and error a fair 

approximation to the value of 𝛼 by setting the following constraint. For the 1D model to be a good 

approximation of what happens in a real geography, the arrival times for the 1D and the 2D models 

must be the same. We have chosen a coastal cell as a test origin for the 2D model, and a cell located 

5,100 km away (distance measured along the coast) to calibrate the 1D model (5,100 km corresponds 

to 34 jumps of 150 km each). As in Sec. 5.8.6, the arrival time of the Neolithic to a cell is recorded by 

the simulations as the time when the population of farmers is 10% of its saturation value. In the 2D 

model, and with jumps of 150 km, a node located at 5,100 km is reached within 75 generations. With 

the 1D model, a node located 5,100 km away from the origin (i.e., 34 cells away) is reached within 52 

generations if we assume that (1/2)(1 − 𝑝𝑒) individuals travel by sea, within 69 generations if 

(1/3)(1 − 𝑝𝑒) individuals travel by sea, and within 83 generations if we assume that (1/4)(1 − 𝑝𝑒) 

individuals travel by sea. This allows us to fine tune the best approach to a fraction of the population 

that must travel by sea in the 1D model to 0.3(1 − 𝑝𝑒), which yields an arrival time within 75 

generations, equivalent to the one measured in the 2D model. 

   Therefore, in the dispersion process of the 1D model, 38% of the population stays in the same node, 

and a fraction 0.3 of the remaining population (0.3(1 − 𝑝𝑒), i.e 18.6% of the total population) will 

travel by sea, half of them forward and the other half backward (similarly to the 2D model, where all 

possible destinations receive equal fraction of the sea travelling population). The rest of the 

population, as mentioned above, disappears from the system, representing the population that would 

travel inland (in the 2D model). 
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5.8.12.2. Simulation results 

We now run the 1D model (Program S3) and the 2D one (Program S1), under the initial condition 

observed from ancient mtDNA data in Syria, namely that 40% of the initial farmer population has 

haplogroup K, and we compare the results at several distances from the origin. For the 2D model, we 

choose a coastal node as origin and measure the distances along the coast, rather than with straight 

lines. 

   We show the results for several values of 𝜂 in Fig. 5.23, where we have measured the fraction of the 

population with haplogroup K at several locations, 10 generations after the local Neolithic arrival 

(according to the simulations). From Fig. 5.23 we can see that the 2D model (lines + symbols) always 

predicts a lower fraction of population with haplogroup K than the 1D model (lines). However, given 

that the 1D model is just an approximation, it is interesting to see that the results from both models 

have similar behaviors and are close enough, so the 1D model is a useful check of the results of the 

2D model (especially, the conclusion that very low values of 𝜂 are necessary in order for the genetic 

cline to extend across a distance similar to that from Syria to Portugal). 

 

Figure 5.23 Percentage of mtDNA haplogroup K present in the farmer population that disperses along the coast, 

as a function of distance to an origin coastal node. Lines correspond to the approximate 1D model developed in 

Sec. 5.8.12. Lines with symbols correspond to the 2D model on a real map of Europe used in the main paper. All 

results are measured 10 generations after the local arrival of the Neolithic front (according to the simulations). 
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 Text S13. The speed of waves of advance in homogeneous 

space 
In order to perform a check of our simulations we recall that, in two-dimensional homogeneous space 

(i.e., without seas neither mountains), the speed of the waves of advance of farmers corresponding 

to our reproduction-dispersal-interbreeding scheme is [94] 

𝑠𝑝𝑒𝑒𝑑 = 𝑚𝑖𝑛𝜆>0
𝑙𝑛{𝑅0,𝐹(1 + 𝜂)[𝑝𝑒 + (1 − 𝑝𝑒)𝐼0(𝜆𝑟)]}

𝑇𝜆
, 

(S60) 

   where 𝐼0(𝜆𝑟) is the modified Bessel function of the first kind and order zero, 𝑟 is the average distance 

that an individual moves per generation, 𝑅0,𝐹 is the net reproduction rate for farmers, 𝑝𝑒  is the 

persistence, and 𝑇 is the generation time. Figure 5.24 shows the results (lines) obtained from equation 

(S60) when using the same values as in the main paper, Sec. 5.4, i.e. 𝑟 = 50 km [52, 139], 𝑅0,𝐹 = 2.45 

[183], 𝑝𝑒 = 0.38 [139] and 𝑇 = 32 yr [182]). 

 

Figure 5.24 Predicted front speed from the computational model (Program S5) and an analytical approximation 

on a homogeneous grid. Our simulations on a homogenous grid, i.e. without seas nor mountains (symbols), 

agree with and the corresponding analytical formula, Eq. (S60) (curve). This is a useful check of our simulations. 

All results have been obtained using 𝑟 = 50 km [52, 139], 𝑅0,𝐹 = 2.45 [183], 𝑝𝑒 = 0.38 [139] and 𝑇 = 32 yr 

[182]. 

 

   We performed additional simulations using, instead of a map of Europe, a homogeneous grid of land 

nodes (i.e., without sea-travel neither mountain barrier effects), as we did in Fig. 5.21. However, in 

order to compare to equation (S60), now we will analyze the spread rate of the front (not the genetic 

cline as in Fig. 5.21). We perform our simulations with Program S5 (available at the journal web or at  

http://copernic.udg.es/QuimFort/2017_08_07r__Program_S5.zip), which performs the same logic as 

Program S1 (Sec. 5.8.5), but on a homogeneous grid where the Neolithic spreads from its center 
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(Program S5 differs from Program S4, Sec. 5.8.8, in how the initial conditions are set). Initially there 

are hunter-gatherers (at their saturation density) in all cells but the central one, where there are only 

farmers (also at their saturation density). Since we are now only interested in the arrival time, the 

genetic composition of the initial farming population does not affect the results, so we set it at 100%K. 

In each simulation, a wave of advance of farmers propagates outwards from the center of the grid. In 

order to determine its speed, for each cell along the x-axis we record the time when the farmer 

population reaches a population number equal to 10% of its saturation value (however, the wave-of-

advance speed is not affected by this percentage, i.e. we would obtain the same speeds by using, e.g., 

90%). The speed is then computed as the slope of the linear fit of the distances from the origin versus 

arrival times. Figure 5.24 shows the speed of the waves of advance along the horizontal direction 

(symbols), obtained from those simulations, as a function of the interbreeding parameter 𝜂 (with 0 ≤

𝜂 ≤ 1, see main paper, Sec. 5.4, Cultural transmission). Errors are below 6% (see Data S5), which is 

reasonable because, in contrast to equation (S60), which assumes a continuous space, simulations are 

necessarily performed on a grid, i.e., using only a finite number of spatial locations. This confirms the 

validity of our simulations. 

 Text S14. Pre-Neolithic haplogroups in Neolithic 

communities 
The analysis performed in the main paper indicates, based on the variation of the mitochondrial 

haplogroup K, that the Neolithic expansion was mostly demic, although with a low contribution of 

cultural diffusion. Under these circumstances, in addition to the decay in the presence of haplogroup 

K, we should also be able to observe an increase in the presence of hunter-gatherer haplogroups in 

the Neolithic communities. Mitochondrial DNA from hunter-gatherers in Central-European was 

limited to haplogroups U, U4, U5 and U8 [78, 203, 204, 252]. These lineages showed also a high 

frequency among the western Mediterranean hunter-gatherers [167, 253], but the latter also 

presented important frequencies of haplogroup H lineages [78, 167]; especially haplogroups H1 and 

H3, which are related to a post glacial expansion from an Iberian refugium [166, 253, 254] (in central 

Europe, on the other hand, H lineages are linked to the spread of the Neolithic [255]).  

   Figure 5.25 shows the percentage of hunter-gatherer haplogroups (i.e., haplogroups U, U4, U5 and 

U8 for regions in the Near East and Eastern and Central Europe, and haplogroups U, U4, U5, U8, H1 

and H3, for regions in Iberia and Southern France) with their error bars, for the same regions as in Fig. 

5.2 in the main paper. In Fig. 5.2, we have fitted a straight line because this is the simplest fit such that 

it crosses all error bars of the oldest Neolithic cultures (squares and circle). However, this is not 

possible for Fig. 5.25, so we fit more appropriate curves, namely a power and an exponential function. 

This is reasonable since, as we mentioned in the main text, there is no reason why a genetic cline 

should be linear, and we could actually also fit a decreasing power or exponential curve to Fig. 5.2. We 

see that both fits in Fig. 5.25 show that the percentage of hunter-gatherer lineages present in the Early 

Neolithic populations increases with distance once the Neolithic front reaches the Central European 

area (Region ‘3 Hungary-Croatia Stracevo’), which agrees with our hypothesis that the hunter-gatherer 

contribution to the Neolithic pool would have increased away from the origin of expansion.  
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Figure 5.25 Observed percentage of hunter-gatherer mtDNA haplogroups as a function of the great-circle 

distance from Ras Shamra (Syria). The haplogroups considered in all regions are U, U4, U8 and U8, while 

haplogroups H1 and H3 are also included in western Mediterranean regions: 6 North-Eastern Spain Cardial, 7 

Spain Navarre, 8 Portugal coastal Early Neolithic and 21 South-Eastern France Treilles. Each number denotes the 

same cultures as in Fig. 5.1 (as in Fig. 5.2, regions with fewer than 8 individuals have been ignored to avoid very 

large error bars). The solid and dashed lines are regression fits to the 8 oldest regional data (squares) and the 

oldest data in Sweden (circle). Error bars display 80% confidence-level intervals (see Sec. 5.4.2). 

 

   In Fig. 5.25, for distances below 2,000 km the two considered fits show different behaviors, both 

consistent with the data and their error bars, and both yielding a similar goodness of fit. Therefore, it 

is not possible to establish which fit is more reasonable. But this does not change our conclusion that 

the percentage of HG haplogroups increases with distance, as expected. Our results in the main paper 

attempt to provide an estimation of the average intensity of cultural diffusion at the continental scale, 

i.e., our purpose is to analyze the overall process, not regional differences. However, it is worth to 

note that recent studies have suggested that the effect of cultural diffusion increased as farmers 

spread to further locations [207], which would agree nicely with our observations in Fig. 5.25.  

   From Fig. 5.25 we can also see that, in general, in later periods (triangles) the presence of hunter-

gatherer haplogroups increases, since most triangles are located above the lines fitting the data for 

Early Neolithic populations (black squares and circle). This behavior is consistent with the conclusion 

in our main paper that after the first arrival, the farmer populations continue incorporating local 

hunter-gatherer individuals, and therefore the presence of hunter-gatherer haplogroups in the 

Neolithic populations should increase (as observed in Fig. 5.25). 
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Figure 5.26 Observed percentage of U haplogroups in Neolithic populations as a function of the great-circle 

distance from Ras Shamra (Syria). Labels denote the same cultures as in Fig. 5.1 (as in Fig. 5.2, regions with fewer 

than 8 individuals have been ignored to avoid very large error bars). The solid and dashed lines are regression 

fits to the 8 oldest regional data (squares) and the oldest data in Sweden (circle). Error bars display 80% 

confidence-level intervals (see 5.4.2). 

 

   We would like to stress that the observed increase at longer distances is not an artificial effect of 

including H lineages; if we considered only U lineages we would again obtain an increase of hunter-

gatherer haplogroups in the early farmer populations, as shown in Fig. 5.26. 
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6. Discussion 

The main work of this thesis encompasses three different systems that can be described using similar 

mathematical models, which deal with population diffusion (or dispersal) and reaction (reproduction 

and interactions). These systems have been presented as a collection of papers (Chapters 3-5). Each 

one includes an introduction to the problem, the mathematical models we have used, computational 

analyses, results and conclusions. Finally we review the main results that we have found along these 

three Chapters, and we discuss their similarities. 

6.1. Mathematics behind viral replication and applications 
The mathematical analyses in Chapters 3 and 4 are based on very similar models of viral infections. In 

these two Chapters, our main purposes have been to calculate front propagation speeds and to 

compare them to experimental data.  

   In the first system (Chapter 3), T7 viruses infect E. coli bacteria in vitro. This system was discussed 

already in 1945 by M. Demerec and U. Fano [256], and has attained some interest in Physics because 

it has allowed to test time-delayed front propagation theories in the laboratory [4].  

   The second system (Chapter 4) aims to go one step further by applying these ideas to a system with 

a real clinical application, namely the treatment of GBM tumors with VSVs. Although the model is 

simple (radial symmetry, no vasculature, infection starting from a single point, etc.), Chapter 4 

provides a quantitative framework to describe the spread of GBMs and VSVs infecting them.  

   For the system analyzed in Chapter 3, Yin and McCaskill [14] had previously developed a model which 

we have already detailed in Sec. 1.2.3, Eqs. (1.19)-(1.21). In fact, this model can be recovered from our 

main model, which is described by Eqs. (3.4)-(3.6), if assuming a vanishing time delay, i.e. 𝜏 = 0. In 

their original work, Yin and McCaskill [14] noted that, if using realistic parameter values, the observed 

speeds were substantially faster than those predicted by their model. They could obtain agreement 

between predicted and observed speeds only by fitting three adjustable parameters in their model 

(Fig. 3b in Ref. [14]). In contrast, in Chapter 3 we have not fitted any parameter but used realistic 

values for all parameters, obtained from independent experiments. We have seen, again, that using 

the Yin-McCaskill model (Eqs. (1.19)-(1.21)) the speeds calculated for all 3 strains of the T7 virus are 

much faster than the experimental ones (Fig. 3.2). This is because the Yin-McCaskill model does not 

take into account that, after the virus infects a bacterium, it takes a certain time 𝜏 to complete the 

lytic cycle (see Fig. 1.2). During this time interval 𝜏, the virus cannot move because it is inside a cell 

(which is immobilized by agar). In the Yin-McCaskill model, this delay time is not taken into account, 

and this is why the resulting velocities are faster than the experimental ones (Fig. 3.2). In contrast, in 

our new model [Eqs. (3.4)-(3.7)] we take into account this delay time both in the diffusion [terms 

proportional to 𝜏 in Eq. (3.5)] and in the reaction [last term in Eqs. (3.4), (3.5) and (3.7)]. In this way, 

our predicted speed is substantially closer to the observed one for all 3 strains (Fig. 3.2).  
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   Previous models had already included the delay time effect into either the diffusive of the reactive 

terms, but not into both terms. On one hand, previous models that took into account the delay time 

in the diffusion [4, 21, 145] did not do so in the reaction and used instead a logistic term (see Eq. (3.2)) 

according to which the death rate of infected cells would be proportional to the free space, which is 

not biologically reasonable. On the other hand, recent models by Gourley and Kuang [146] and Jones 

et al. [147] include the time delay only in the reaction (death of infected cells and creation of new 

viruses), but not in the diffusion. Moreover, both studies [146, 147] assume that all cells infected at 

time 𝑡 − 𝜏 die exactly at time 𝑡. This does not agree with one-step experiments because in those 

experiments, not all viruses appear at the same time after infection. Indeed, some viruses appear 14 

min and others 21 min after infection (Fig. 3.1). The main difference between those two previous 

works is that Jones et al. [147] assumed that all infected cells release new viruses, while Gourley and 

Kuang [146] include an additional parameter 𝑒−𝜇𝐼𝜏 which accounts for the infected cells that may have 

died without contributing to virus replication. This is why the Gourley-Kuang model yields slightly 

slower front propagation speeds than the model due to Jones et al. (Fig. 3.2). In any case, both models 

[146, 147] contradict one-step experiments. In contrast, in our model infected cells present at time 

𝑡 − 𝜏 begin to die at time 𝑡, and do so gradually thereafter, which agrees with one-step experiments 

(Fig. 3.1). With our new approach, and taking also into account the effect of the delay time on the 

diffusive process, we achieve better agreement between predicted and front speeds than the Yin-

McCaskill [14], Gourley-Kuang [146] and Jones et al. [147] models (Fig. 3.2). 

   In Table 6.1 we illustrate the models reviewed above by comparing their predicted speeds for the T7 

wild strain infecting E. coli to the observed speed (namely, 𝑐𝑜𝑏𝑠 = 0.195 ± 0.012 mm/h [15]). The 

lowest error (9%) is attained for our model. This indicates that a satisfactory description of this system, 

both at the quantitative and at the conceptual level, requires including both reactive and diffusive 

time-delay effects. 

 
experimental 

[15] 
Yin and 

McCaskill [14] 
Jones et al. 

[147] 
Gourley and 
Kuang [146] 

de Rioja et al. 
(Chapter 3) 

speed 
[mm/h] 

0.195−0.012
+0.012 0.375−0.078

+0.054 0.261−0.035
+0.020 0.254−0.035

+0.020 0.212−0.011
+0.005 

Relative 
errors 

[%] 
- 92% 34% 30% 9% 

Table 6.1 Front propagation speed and error (relative to the experimental speed) for the T7 wild strain infecting 
E. coli, according to four reaction-diffusion models. The model by Yin and McCaskill ignores the delay-time effect, 
those by Jones et al. and by Gourley and Kuang take it into account but only in the reactive process, and the 
model in Chapter 3 takes it into account both in the reactive and in the diffusive processes. 

 

   Chapter 4 applies models very similar to the ones developed in Chapter 3 to obtain front propagation 

speeds of viruses and tumors. The main goal of this study is to give mathematical support to this type 

of oncolytic treatment. Three increasingly complex mathematical models have been presented, and 

we have compared their results with observed data. Model 1 is based on a previous one by Wodarz et 

al. [45], but we do not assume that the virus concentration is stationary, i.e. we use three evolution 

equations (whereas Wodarz et al. [45] used two equations, see Sec. 1.2.4). This model 1 is a non-

delayed model (such as the one by Yin & McCaskill reviewed above [14]), so the resulting speeds will 
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necessarily be faster than those from models that take into account the delay time. Model 2 is time-

delayed but only concerning reaction, in the sense that it takes into account the fact that tumor cells 

do not die instantly, but rather take a time 𝜏 between being infected and killed by the virus. Finally, 

our model 3 takes into account the reactive time-delay effect (as model 2) and also the diffusive one, 

in the sense that during time 𝜏 viruses are inside the cells so they cannot freely move. The value of 𝜏 

is not accurately known for the VSV-GBM system, but the in vitro experiments by Wollmann et al. [24] 

(Sec. 2.1.8) imply the range 2 < 𝜏 < 12 h. The experimental data (Sec. 2.1.9) imply the range of 

observed VSV speeds 𝑐𝑜𝑏𝑠 = 4 − 5.4 cm/h. Model 1 predicts an average speed that is two orders of 

magnitude faster than the observed range, namely 𝑐𝑚𝑜𝑑𝑒𝑙 1 = 265 cm/h (Fig. 4.2). So model 1 is 

inconsistent with the experimental data. For model 2, the predicted average speed is much slower, 

𝑐𝑚𝑜𝑑𝑒𝑙 2 = 10 − 22 cm/h (Fig. 4.2). Still, for model 2 to agree with the observed range, we would need 

values of 𝜏, 𝑌 or 𝑘1 far from the real ones for the VSV-GBM system. So model 2 does not agree with 

the experimental data either. Finally, model 3 predicts speeds consistent with the experimental range, 

for 𝜏 between 5.0 h and 9.3 h (Fig. 4.2), namely 𝑐𝑚𝑜𝑑𝑒𝑙 3(5.0 ≤ 𝜏 ≤ 9.3 h) = 𝑐𝑜𝑏𝑠 = 4 − 5.4 cm/h. So 

again we see the importance of appropriately including the delay time 𝜏 in the diffusive and reactive 

terms of our models to reproduce the observed results. 

   Also in Chapter 4, the glioblastoma front speed has been calculated. This is much simpler 

mathematically than the three-species sets of equations that we have used to calculate virus infection 

speeds. Using the Fisher speed, Eq. (4.24), we have obtained 7.9 ∙ 10−5 < 𝑐𝐺𝐵𝑀 < 4.33 ∙ 10
−4 cm/h, 

which is in agreement with the in vitro speed range of 2.37 ∙ 10−4 < 𝑐𝐺𝐵𝑀 < 5.54 ∙ 10
−4 cm/h [153]. 

Note that the VSV speeds above are four orders of magnitude faster, which implies that the virus 

infection can eventually spread up to the border of the expanding glioblastoma and destroy it (see Fig. 

4.1). 

   It is important to highlight that the delay time has a very important effect on virus spread rates. 

Therefore, in order to make trustable predictions, it is absolutely necessary to take it into account. 

Moreover, as we have seen in both Chapters 3 and 4, to obtain the best agreement between 

predictions and experimental observations, it is important that the predictions include the effects of 

the time delay both in the diffusive and the reproductive processes in virus infection systems. 

6.2. Discovering the past through genetics and mathematics 
We have collected all genetic data of Early and Middle Neolithic individuals that have been reported 

in the literature (Appendix A). In Chapter 5, we have used them to detect a clear cline of mitochondrial 

haplogroup K and we have proposed a mathematical model that can explain this cline.  

   In Fig. 5.1 we have plotted the mean dates and distances of Neolithic farmers belonging to the older 

regional cultures for which we have human genetic data. The space-time regression fit is highly linear 

(𝑅 = 0.93). This means that the spread rate was approximately constant, as expected from wave-of-

advance models (similarly to those used to describe the spread of viruses in Chapters 3-4). 

   The percentage of individuals with mitochondrial haplogroup K (%K) in our database decreases with 

increasing distance, but not linearly (error bars in Fig. 5.3). Nonetheless, this is not a problem because, 

in contrast to the space-time plot mentioned in the previous paragraph, there is no theoretical reason 

to expect a linear decrease for the percentage of a genetic marker versus distance. We have also noted 
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that the %K in each region tends to decrease over time (Fig. 5.2). Both decreases are expected 

intuitively, simply due to the incorporation of hunter-gatherers (who lack haplogroup K) into the 

populations of farmers (we have modelled this process using cultural transmission theory, see Eqs. 

(1.32)-(1.35)). 

   Analogously to the three-equation reaction-diffusion models with three species (viruses, uninfected 

cells and infected cells) that we have applied to viral spread (Chapters 3-4), in Chapter 5 we have used 

a model of three populations, namely hunter-gatherers (HG), farmers with haplogroup K, and farmers 

without haplogroup K. As explained in Sec. 2.3.3, most of the grid (representing the map of Europe 

and Near East) is first dominated by HGs (analogously to E. coli bacteria in Chapter 3 and to tumor 

cells in Chapter 4). Farmers (analogously to viruses in Chapters 3-4) start to spread from an initial point 

or region. At each location, farmers and HGs and farmers interact, in the sense that some HGs become 

farmers by cultural transmission (i.e. interbreeding or acculturation). This interaction leads to a 

decrease in the local number of HGs and an increase in the number of farmers, which is somehow 

analogous to the fact that the number of bacteria (Chapter 3) or tumor cells (Chapter 4) decrease 

when they are infected, and the number of viruses increases due to replication (Chapters 3-4). In this 

way, the Neolithic spreads (by land and sea) throughout the European continent. 

   The main goals of the simulations in Chapter 5 are to reproduce the observed cline (%K vs distance) 

and to estimate the relative importance of demic and cultural diffusion in the spread of the Neolithic 

across Europe. Figure 5.3 shows the result of these simulations for various values of the cultural 

transmission intensity 𝜂. For 𝜂 = 0 (purely demic process), the %K remains constant in all regions of 

the map, which is at variance with the observed cline (error bars in Fig. 5.3). This indicates that both 

mechanisms (demic and cultural diffusion) played a role in the spread of the Neolithic. For 𝜂 ≠ 0, the 

percentage of haplogroup K tends to decrease with increasing distance from the Near East, as 

expected (because at larger distances farmers will have arrived at more regions saturated by HGs, so 

more HGs will have been incorporated). The higher the value of the cultural transmission intensity 𝜂, 

the more HGs are incorporated, and the steeper the cline (Fig. 5.3). Thus, by comparing the data (error 

bars) to the simulated clines for several values of 𝜂, we can estimate the value of 𝜂 (Fig. 5.3). In this 

way, we have estimated that the intensity of cultural diffusion was 𝜂 ≈ 0.02. Therefore, cultural 

diffusion was remarkably weak, in the sense that only 2 out of every 100 farmers mated a hunter-

gatherer or, alternatively, taught agriculture to a hunter-gatherer (Chapter 5). For this reason, we have 

argued that the most relevant process in the Neolithic spread in Europe was demic diffusion, i.e. the 

dispersal of populations, rather than cultural diffusion, i.e. the incorporation of HGs into the farming 

populations. One way to justify this quantitatively is to note that such a low value of 𝜂 (𝜂 ≈ 0.02) has 

very little effect on the spread rate [94]. This implies that cultural diffusion had a very small effect on 

the spread rate and, in this sense, we can say that the spread of the Neolithic across Europe was mainly 

demic. 
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7. Conclusions 

This thesis has studied population range expansions of microbiological and human populations in 

spatio-temporal systems. By applying similar mathematical concepts to different systems, we have 

explained the front speeds of several virus strains, the dynamics of a virus-tumor system with medical 

applications, and an ancient genetic cline. We have also estimated the relative importance of demic 

and cultural diffusion in the Neolithic transition in Europe. Chapters 3, 4 and 5 use the delay time (or 

specifically, the generation time for human populations) in their respective models. Besides, in all 

three Chapters we have achieved a good agreement between theoretical models and observed data.  

   In Chapter 3 a new space-time reaction-diffusion model of virus infections has been presented, and 

it has been applied to study the front propagation speed of T7 virus through E. coli bacteria. This new 

model improves previous reaction-diffusion models, in which the evolution equation for infected cells 

lacked of biological meaning. The new mathematical perspective assumes that the death rate of 

infected cells is proportional only to its own density (evaluated a time 𝜏 before, which is the time 

between the infection and the first release of viruses), but not to the free space, providing a more 

understandable equation from a biological point of view. Thus, we have shown that it is important to 

incorporate the delay time into the reactive processes, not only in the diffusion process as in previous 

studies. Indeed, some previous models yield too fast speeds, whereas our equations successfully agree 

with in vitro results. We reach this conclusion not only by comparing to classical models (i.e. with no 

time delay), but also to recent models which include the delay time in the reactive but not in the 

diffusive process (Fig. 3.2). In Chapter 3 we have used T7-E. coli systems because there are quantitative 

experimental data for them, but our model should be useful to describe other virus infection systems. 

   The spread of a VSV (virus) infection in glioblastomas (tumor cells) is the problem that Chapter 4 

aims to describe quantitatively by using reaction-diffusion equations. This subject (oncolytic 

virotherapy) has recently motivated many scientific fields of research because of its medical interest. 

Chapter 4 improves a previous model in three increasingly realistic steps, by generalizing and 

correcting some drawbacks. Again, we include time-delay effects in the reactive and diffusive terms. 

The last of our models includes all of the necessary items to satisfactorily explain the VSV-GBM system, 

namely three-population equations, infected tumoral cells that do not die instantaneously (reactive 

effect of the delay time), and viruses that do not move in space while they are inside infected cells 

(diffusive effect of the delay time). This last model turns out to be the only one yielding results in 

agreement with front speeds for oncolytic VSVs infecting glioblastomas, as observed in vitro (Fig. 4.2). 

Therefore, it is completely necessary to add the corrections of the delay time in the diffusive and 

reactive terms to fully describe real virus-tumor systems. Although Chapter 4 has focused on VSV-

GBM system (because of the available experimental data), the mathematical model has been 

constructed by incorporating physically and biologically understandable equations and can be applied 

also to other virus-tumor systems.  

   In Chapter 5 we have analyzed the relative importance of demic and cultural diffusion in the 

Neolithic transition in Europe, from a reaction-diffusion computational perspective and based on 

archaeological and ancient genetic data. Using anthropologically realistic assumptions and parameter 

values, and a mathematical model that combines demic dispersal, population growth, and cultural 

transmission theory, we have built a computational model that explains how and why haplogroup K 
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displays a decrease in space and time, according to ancient genetic data. We have focused our 

attention on mtDNA haplogroup K because it is virtually absent in hunter-gatherer populations and 

has its maximum frequency in the Near East. We have performed different simulations, by varying the 

intensity of the interbreeding parameter 𝜂, i.e. giving more or less importance to the cultural diffusion 

relative to  demic diffusion. Simulations make it possible to reproduce the observed cline, including a 

local minimum in Sweden (which can be easily explained because of the long sea travels, as compared 

to the shorter inland movements, and this also explains the faster spread along the Mediterranean 

that is observed from archaeological data). Finally, the simulation which best agrees with the observed 

genetic cline (𝜂 ≈ 0.02) implies that 98% of farmers were not involved in cultural diffusion (Fig. 5.3). 

But it is important to highlight that the observed cline cannot be understood without cultural diffusion, 

since otherwise the percentage of haplogroup K would be uniform in space and constant in time. In 

conclusion, our research suggests that farmers involved in cultural diffusion, either by interbreeding 

(cross-mating) or by acculturation (teaching agriculture to hunter-gatherers), were a tiny but 

necessary fraction, namely about 2%. Similarly to Chapters 3-4, the ideas in Chapter 5 could be applied 

to other systems and lead to further insights in future research. Firstly, our approach could be applied 

to other genetic markers of importance in the study of the Neolithic spread across Europe [80], and 

perhaps different results for mtDNA (e.g., those in Chapter 5) and Y-chromosome markers could reveal 

different migratory behaviors of men and women (because mtDNA and the Y chromosome are 

maternally and paternally inherited, respectively). Secondly, our models could be applied to other 

human range expansions, if sufficient ancient genetic data become available (e.g., to the Neolithic 

spread in Asia [257]). And thirdly, it would be of interest to use integer numbers (i.e., population 

numbers instead of densities) in order to examine the possible role of drift effects in the formation of 

genetic clines [56]. 

 

  



151 

 

PART IV Bibliography and appendices 

 

  

 

PART IV 

 

Bibliography and 

appendices 

 



152 

 

  



153 

 

Bibliography 

 

[1]  T. Pujol and B. Comas, "Analytical expressions for the flame front speed in the 

downward combustion of thin solid fuels and comparison to experiments," Phys. Rev. 

E, vol. 84, no. 026306, 2011.  

[2]  S. J. Di Bartolo and A. T. Dorsey, "Velocity selection for propagating fronts in 

superconductors," Phys. Rev. Lett., vol. 77, p. 4442, 1996.  

[3]  J. Fort, "Synthesis between demic and cultural diffusion in the Neolithic transition in 

Europe," Proc. Natl. Acad. Sci. U.S.A., vol. 109, pp. 18669-18673, 2012.  

[4]  J. Fort and V. Méndez, "Time-delayed spread of viruses in growing plaques," Phys. Rev. 

Lett., vol. 89, p. 178101, 2002.  

[5]  S. Rendine, A. Piazza and L. L. Cavalli-Sforza, "Simulation and separation by principal 

components of multiple demic expansions in Europe," Am. Nat., vol. 128, pp. 681-706, 

1986.  

[6]  J. Fort and J. Pérez-Losada, "Can a linguistic serial founder effect originating in Africa 

explain the worldwide a phonemic cline?," J. R. Soc. Interface, vol. 13, pp. 1-9, 2016.  

[7]  V. L. de Rioja, J. Fort and N. Isern, "Front propagation speeds of T7 virus mutants," J. 

Theor. Biol., vol. 385, pp. 112-118, 2015.  

[8]  V. L. de Rioja, N. Isern and J. Fort, "A mathematical approach to virus therapy of 

glioblastomas," Biology Direct, no. 11, 2016.  

[9]  N. Isern, J. Fort and V. de Rioja, "The ancient cline of haplogroup K implies that the 

Neolithic transition in Europe was mainly demic," Sci. Rep., vol. 7, no. 11229, 2017.  

[10]  M. Delbrück, "Bacterial viruses or bacteriophages," Biol. Rev. Camb. Philos. Soc., vol. 

21, pp. 30-40, 1946.  

[11]  M. H. Adams, Bacteriophages, New York: Interscience, 1959.  

[12]  J. Yin, "A quantifiable phenotype of viral propagation," Biochem. Biophys. Res. 

Commun., vol. 174, p. 1009–1014, 1991.  

[13]  A. L. Koch, "The growth of viral plaques during the enlargement phase," J. Theor. Biol., 

vol. 6, pp. 413-431, 1964.  



154 

 

[14]  J. Yin and J. S. McCaskill, "Replication of viruses in a growing plaque: a reaction-

diffusion model," Biophys. J., vol. 61, pp. 1540-1549, 1992.  

[15]  J. Yin, "Evolution of bacteriophage T7 in a growing plaque," J. Bacteriol., vol. 175, pp. 

1272-1277, 1993.  

[16]  Y. Lee and J. Yin, "Detection of evolving viruses," Nat. Biotechnol., vol. 14, pp. 491-

493, 1996.  

[17]  L. You and J. Yin, "Amplification and Spread of Viruses in a Growing Plaque," J. 

Theor. Biol., vol. 200, pp. 365-373, 1999.  

[18]  E. L. Haseltine, V. Lam, J. Yin and J. B. Rawlings, "Image-guided modeling of virus 

growth and spread," Bull. Math. Biol., vol. 70(6), pp. 1730-1748, 2008.  

[19]  J. Fort, "A comment on amplification and spread of viruses in a growing plaque," J. 

Theor. Biol., vol. 214, pp. 515-518, 2002.  

[20]  V. Lam, K. A. Duca and J. Yin, "Arrested spread of vesicular stomatitis virus infections 

in vitro depends on interferon‐mediated antiviral activity," Biotechnol. Bioeng., vol. 90, 

no. 7, pp. 793-804, 2005.  

[21]  D. R. Amor and J. Fort, "Virus infection speeds: Theory versus experiment," Phys. Rev. 

E, vol. 82, no. 061905, 2010.  

[22]  C. Holland, "Glioblastoma multiforme: The terminator," Proc. Natl. Acad. Sci. U.S.A., 

vol. 97, pp. 6242-6244, 2000.  

[23]  K. Özduman, G. Wollmann, J. M. Piepmeier and A. N. van den Pol, "Systemic Vesicular 

Stomatitis Virus selectively destroys multifocal glioma and metastatic carcinoma in 

brain," J. Neurosci., vol. 28, pp. 1882-1893, 2008.  

[24]  G. Wollmann, P. Tattersall and A. N. van den Pol, "Targeting human glioblastoma cells: 

comparison of nine viruses with oncolytic potential," J. Virol., vol. 79, pp. 6005-6022, 

2005.  

[25]  G. Wollmann, V. Rogulin, I. Simon, J. K. Rose and A. N. van den Pol, "Some attenuated 

variants of vesicular stomatitis virus show enhanced oncolytic activity against human 

glioblastoma cells relative to normal brain cells," J. Virol., vol. 84, pp. 1563-1573, 2010.  

[26]  G. Wollmann, K. Ozduman and A. N. van den Pol, "Oncolytic virus therapy for 

glioblastoma multiforme: concepts and candidates," Cancer J., vol. 18, pp. 69-81, 2012.  

[27]  R. L. Price and E. A. Chiocca, "Evolution of malignant glioma treatment: From 

chemotherapy to vaccines to viruses," Neurosurgery, vol. 61, pp. 74-83, 2014.  



155 

 

[28]  "Oncolytic viruses," Nature, vol. 237, p. 486, 1972.  

[29]  E. Kelly and S. J. Russell, "History of oncolytic viruses: genesis to genetic engineering," 

Mol. Ther., vol. 15, pp. 651-659, 2007.  

[30]  H. Ledford, "Cancer-fighting viruses near market," Nature, vol. 526, pp. 622-623, 2015.  

[31]  J. Altomonte, "Liver cancer: sensitizing hepatocellular carcinoma to oncolytic virus 

therapy," Nature Rev. Gastroenterol. & Hepatol., vol. 15, pp. 8-10, 2018.  

[32]  S. J. Franks, H. M. Byrne, J. R. King, J. C. E. Underwood and C. E. Lewis, "Modelling 

the early growth of ductal carcinoma in situ of the breast," J. Math. Biol., vol. 47, pp. 

424-452, 2003.  

[33]  Y. Kuang, J. D. Nagy and S. E. Eikenberry, Introduction to mathematical oncology, 

Boca Raton: CRC Press, 2016.  

[34]  J. Fort and R. V. Solé, "Accelerated tumor invasion under non-isotropic cell dispersal 

in glioblastomas," New J. Phys., vol. 15, p. 055001, 2013.  

[35]  M. Nowak and R. M. May, Virus dynamics: Mathematical principles of Immunology 

and Virology, Oxford: Oxford University Press, 2000, pp. 100-109. 

[36]  D. Wodarz, "Computational approaches to study oncolytic virus therapy: insights and 

challenges," Gene Ther. Mol. Biol., vol. 8, pp. 137-146, 2004.  

[37]  D. Wodarz, "Gene therapy for killing p53-negative cancer cells: Use of replicating 

versus nonreplicating agents," Hum. Gene Ther., vol. 14, pp. 153-159, 2004.  

[38]  D. Wodarz, Killer cell dynamics: mathematical and computational approaches to 

immunology, New York: Springer, 2006.  

[39]  D. Wodarz and N. Komarova, "Towards predictive computational models of oncolytic 

virus therapy: basis for experimental validation and model selection," PLoS ONE, vol. 

4, no. e4271, 2009.  

[40]  D. Wodarz, C. N. Chan, B. Trinité, N. L. Komarova and D. N. Levy, "On the laws of 

virus spread through cell populations," J. Virol., vol. 88, pp. 13240-13248, 2014.  

[41]  A. Friedman and Y. Tao, "Analysis of a model of a virus that replicates selectively un 

tumor cells," J. Math. Biol., vol. 47, pp. 391-423, 2003.  

[42]  L. M. Wein, J. T. Wu and D. H. Kirn, "Validation and analysis of a mathematical model 

of a replication-competent oncolytic virus for cancer treatment: implications for virus 

design and delivery," Cancer Res., vol. 63, pp. 1317-1324, 2003.  



156 

 

[43]  W. Mok, T. Stylianopoulos, Y. Boucher and R. K. Jain, "Mathematical modeling of 

herpes simplex virus distribution in solid tumors: implications for cancer gene therapy," 

Clin. Cancer Res., vol. 15, pp. 2352-2360, 2009.  

[44]  B. I. Camara, H. Mokrani and E. K. Afenya, "Mathematical modeling of glioma therapy 

using oncolytic viruses," Math. Biosci. Eng., vol. 10, pp. 565-578, 2013.  

[45]  D. Wodarz, A. Hofacre, J. W. Lau, Z. Sun, H. Fan and N. L. Komarova, "Complex 

spatial dynamics of oncolytic viruses in vitro: mathematical and experimental 

approaches," PLoS Comput. Biol., vol. 8, no. e1002547, 2012.  

[46]  D. Wodarz and N. Komarova, Dynamics of cancer: Mathematical foundations of 

oncology, New Jersey: World Scientific Publishing, 2014.  

[47]  J. Fort, T. Pujol and A.M. van der Linden, "Modelling the Neolithic transition in the 

Near East and Europe," Am. Antiq., vol. 77, pp. 203-220, 2012.  

[48]  N. Isern, J. Zilhão, J. Fort and A. J. Ammerman, "Modeling the role of voyaging in the 

coastal spread of the Early Neolithic in the West Mediterranean," Proc. Natl. Acad. Sci. 

U.S.A., vol. 114, pp. 897-902, 2017.  

[49]  J. P. Bocquet-Appel and O. Bar-Yosef, The Neolithic demographic transition and its 

consequences, Berlin: Spinger, 2008.  

[50]  A. J. Ammerman and L. L. Cavalli-Sforza, "Measuring the rate of spread of early 

farming in Europe," Man, vol. 6, pp. 674-688, 1971.  

[51]  J. Fort and V. Méndez, "Time-delayed theory of the Neolithic transition in Europe," 

Phys. Rev. Lett., vol. 82, pp. 867-870, 1999.  

[52]  A. J. Ammermann and L. L. Cavalli-Sforza, The Neolithic transition and the genetics 

of populations of Europe, Princeton: Princeton University Press, 1984.  

[53]  A. J. Ammerman and L. L. Cavalli-Sforza, "A population model for the diffusion of 

early farming in Europe," in The explanation of culture change, C. Renfrew, Ed., 

London: Duckworth, University of Pittsburgh Press, 1973, pp. 343-357. 

[54]  P. Menozzi, A. Piazza and L. L. Cavalli-Sforza, "Synthetic maps of human gene 

frequencies in Europeans," Science, vol. 201, pp. 786-792, 1978.  

[55]  L. L. Cavalli-Sforza, P. Menozzi and A. Piazza, "Demic expansions and human 

evolution," Science, vol. 259, pp. 639-646, 1993.  



157 

 

[56]  C. A. Edmons, A. S. Lillie and L. L. Cavalli-Sforza, "Mutations arising in the wave 

front of an expanding population," Proc. Natl. Acad. Sci. U.S.A., vol. 101, pp. 975-979, 

2004.  

[57]  G. Barbujani, "Genetic evidence for Prehistoric demographic changes in Europe," Hum. 

Hered., vol. 76, pp. 133-141, 2013.  

[58]  R. Rasteiro and L. Chikhi, "Female and male perspectives on the Neolithic transition in 

Europe: Clues from ancient and modern genetic data," PLoS ONE, vol. 8, no. e60944, 

2013.  

[59]  P. A. Underhill and T. Kivisild, "Use of Y chromosome and mitochondrial DNA 

population structure in tracing human migrations," Ann. Rev. Genet., vol. 41, pp. 539-

564, 2007.  

[60]  O. Semino, G. Passarino, P. J. Oefner, A. A. Lin, S. Arbuzova, et al., "The genetic legacy 

of Paleolithic Homo sapiens sapiens in extant Europeans: a Y chromosome 

perspective," Science, vol. 290, pp. 1155-1159, 2000.  

[61]  B. Pakendorf and M. Stoneking, "Mitochondrial DNA and human evolution," Annu. 

Rev. Genomics Hum. Genet., vol. 6, pp. 165-183, 2005.  

[62]  M. T. Seielstad, E. Minch, L. L. Cavalli-Sforza, "Genetic evidence for a higher female 

migration rate in humans," Nature Genetics, vol. 20, pp. 278-280, 1998.  

[63]  L. L. Cavalli-Sforza and A. Piazza, "Human genomic diversity in Europe: A summary 

of recent research and prospects for the future," Eur. J. Hum. Genet., vol. 1, pp. 3-18, 

1993.  

[64]  M. Richards, V. Macaulay, H. Bandelt and B. C. Sykes, "Phylogeography of 

mitochondrial DNA in western Europe," Ann. Hum. Genet., vol. 62, pp. 241-260, 1998.  

[65]  A. Torroni, H. J. Bandelt, L. D'Urbano, P. Lahermo, P. Moral, et al., "mtDNA analysis 

reveals a major late Paleolithic population expansion from southwestern to northeastern 

Europe," Am. J. Hum. Genet., vol. 62, p. 1137–1152, 1998.  

[66]  L. L. Cavalli-Sforza, P. Menozzi and A. Piazza, The history and geography of human 

genes, Princeton: Princeton Univ. Press, 1994.  

[67]  P. Bogucki, "The spread of early farming in Europe," Am. Sci., vol. 84, pp. 242-253, 

1996.  

[68]  M. Kaczanowska and J. K. Kozlowski, "Origins of the linear pottery complex and the 

Neolithic transition in Central Europe," in The widening harvest. The Neolithic 



158 

 

transition in Europe: looking back, looking forward, Boston: Archaeological Institute 

of America, A. J. Ammerman and P. Biagi, Eds., 2003, pp. 227-248. 

[69]  R. Clark, "The beginnings of agriculture in the sub-Alpine region: Some theoretical 

considerations," in The Neolithisation of the Alpine region, Brescia: Museo Civico di 

Scienze Naturali, P. Biagi, Ed., 1990, pp. 123-137. 

[70]  L. P. Louwe Kooijmans, "The gradual transition to farming in the Lower Rhine basin," 

in Going over: the Mesolithic–Neolithic transition in north-west Europe, Proceedings 

of the British Academy, vol. 144. London: British Academy, A. Whittle and V. 

Cummings, Eds., 2007, pp. 287-309. 

[71]  M. E. Allentoft, M. Sikora, K.-G. Sjögren, S. Rasmussen, M. Rasmussen, et al., 

"Population genomics of Bronze Age Eurasia," Nature, vol. 522, pp. 167-172, 2015.  

[72]  L. L. Cavalli-Sforza, "Archaeology, genetics and language: reflecting on five decades 

of human genetics," in Traces of ancestry: studies in honour of Colin Renfrew, M. Jones, 

Ed., Cambridge: McDonald Institute for Archaeological Research, 2004, pp. 3-10. 

[73]  M. Richards, V. Macaulay, C. H. Hill, Á. Carradedo and A. Salas, "The archaeogenetics 

of the dispersals of the Bantu-speaking peoples," in Traces of ancestry: studies in 

honour of Colin Renfrew, M. Jones, Ed., Cambridge: McDonald Institute for 

Archaeological Research, 2004, pp. 75-87. 

[74]  J. B. Pererira, M. D. Costa, D. Vieira, M. Pala, L. Bamford, et al., "Reconciling evidence 

from ancient and contemporary genomes: a major source for the European Neolithic 

within Mediterranean Europe," Proc. Roy. Soc. B, vol. 284, no. 20161976, 2017.  

[75]  C. Gamba, E. R. Jones, M. D. Teasdale, R. L. McLaughlin, G. Gonzalez-Fortes, et al., 

"Genome flux and stasis in a five millennium transect of European prehistory," Nat. 

Commun., vol. 5, no. 5257, 2014.  

[76]  W. Haak, P. Forster, B. Bramanti, S. Matsumura, G. Brandt, et al., "Ancient DNA from 

the first European farmers in 7,500 year old Neolithic sites," Science, vol. 310, pp. 1016-

1018, 2005.  

[77]  R. Pinhasi, M. G. Thomas, M. Hofreiter, M. Currat and J. Burger, "The genetic history 

of Europeans," Trends in Genetics, vol. 28, pp. 496-505, 2012.  

[78]  G. Brandt, W. Haak, C. Adler, C. Roth, A. Szécsényi-Nagy, et al., "Ancient DNA 

reveals key stages in the formation of central European mitochondrial genetic diversity," 

Science, vol. 342, pp. 257-261, 2013.  



159 

 

[79]  M. Rasmussen, Y. Li, S. Lindgreen, J. S. Pedersen, A. Albrechtsen, et al., "Ancient 

human genome sequence of an extinct Palaeo-Eskimo," Nature, vol. 463, pp. 757-762, 

2010.  

[80]  I. Mathieson, I. Lazaridis, N. Rohland, S. Mallick, N. Patterson, et al., "Genome-wide 

patterns of selection in 230 ancient Eurasians," Nature, vol. 528, pp. 499-503, 2015.  

[81]  I. Lazaridis, D. Nadel, G. Rollefson, D. Merrett, N. Rohland, et al., "Genomic insights 

into the origin of farming in the ancient Near East," Nature, vol. 536, pp. 419-424, 2016.  

[82]  A. Mittnik, C.-C. Wang, S. Pfrengle, M. Daubaras, G. Zarina, et al., "The genetic 

prehistory of the Baltic Sea region," Nature Commun., vol. 9, no. 442, 2018.  

[83]  W. Haak, I. Lazaridis, N. Patterson, N. Rohland, S. Mallick, et al., "Massive migration 

from the steppe was a source for Indo-European languages in Europe," Nature, vol. 522, 

p. 207–211, 2015.  

[84]  I. Olalde, S. Brace, M. Allentoft, I. Armit, K. Kristiansen, et al., "The Beaker 

phenomenon and the genomic transformation of northwest Europe," Nature, vol. 555, 

p. 190–196, 2018.  

[85]  F. De Angelis, G. Scorrano, C. Martínez-Labarga, G. Scano, F. Macciardi and O. 

Rickards, "Mitochondrial variability in the Mediterranean area: A complex stage for 

human migratins," Ann. Hum. Genet., vol. 45, pp. 5-19, 2018.  

[86]  I. Mathieson, S. Alpaslan-Roodenberg, C. Posth, A. Szécsényi-Nagy, N. Rohland, et al., 

"The genomic history of southeastern Europe," Nature, vol. 555, pp. 197-203, 2018.  

[87]  S. Brace, Y. Diekmann, T. J. Booth, Z. Faltyskova, N. Rohland, et al., "Population 

replacement in Early Neolithic Britain," bioRxiv, http://dx.doi.org/10.1101/267443.  

[88]  G. Barbujani, R. Sokal and N. Oden, "Indo-European origins: A computer-simulation 

test of five hypotheses," Am. J. Phys. Anthropol., vol. 96, pp. 109-132, 1995.  

[89]  M. Currat and L. Excoffier, "The effect of the Neolithic expansion on European 

molecular diversity," Proc. R. Soc. B, vol. 272, pp. 679-688, 2005.  

[90]  P. Sjödin and O. François, "Wave-of-advance models of the diffusion of the Y 

chromosome haplogroup R1b1b2 in Europe," PLoS ONE, vol. 6, no. e21592, 2011.  

[91]  P. Paschou, P. Drineas, E. Yannaki, A. Razou, K. Kanaki, et al., "Maritime route of 

colonization of Europe," Proc. Natl. Acad. Sci. U.S.A., vol. 111, pp. 9211-9216, 2014.  



160 

 

[92]  K. Aoki, M. Shida and N. Shigesada, "Travelling wave solutions for the spread if 

farmers into a region occupied by hunter-gatherers," Theor. Popul. Biol., vol. 50, pp. 1-

17, 1996.  

[93]  L. L. Cavalli-Sforza and M. W. Feldman, Cultural transmission and evolution: A 

quantitative approach, Princeton: Princeton University Press, 1981.  

[94]  J. Fort, "Vertical cultural transmission effects on demic front propagation: Theory and 

application to the Neolithic transition in Europe," Phys. Rev. E, vol. 83, p. 056124, 2011.  

[95]  J. Fort, "Demic and cultural diffusion propagated the Neolithic transition across 

different regions of Europe," J. R. Soc. Interface, vol. 12, no. 20150166, 2015.  

[96]  R. A. Fisher, "The wave of advance of advantageous genes," Ann. Hum. Genet., vol. 7, 

pp. 353-369, 1937.  

[97]  D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to 

applications, San Diego: Academic Press, 1996.  

[98]  A. Einstein, Investigations on the theory of the Brownian movement, New York: Dover, 

1956.  

[99]  A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, "Étude de l'équation de la 

diffusion avec croissance de la quantité de matière et son application à un problème 

biologique," Moscow Univ. Math. Bull., vol. 1, pp. 1-26, 1937.  

[100]  R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, New York: John 

Wiley & Sons, 1976.  

[101]  J. Crank, The mathematics of diffusion, 2nd ed., Oxford: Oxford University Press, 1975.  

[102]  H. C. Berg, Random walks in Biology, Princeton: Princeton Univ. Press, 1993.  

[103]  B. S. Bokshtein, M. I. Mendelev and D. J. Srolovitz, Thermodynamics and Kinetics in 

Materials Science, Oxford: Oxford University Press, 2005, pp. 165-175. 

[104]  J. Murray, Mathematical Biology, 3rd ed., New York: Springer-Verlag, 2002.  

[105]  G. F. Gause, The struggle for existence, Baltimore, Maryland: The Williams & Wilkins 

company, 1934.  

[106]  N. J. Gotelli, A primer of ecology, 4th ed., Sunderland, Massachusetts: Sinauer 

Associates Inc., 2008.  



161 

 

[107]  J. G. Skellam, "Random dispersal in theoretical populations," Biometrika, vol. 38, pp. 

196-218, 1951.  

[108]  N. Shigesada and K. Kawasaki, Biological invasions: theory and practice, Oxford: 

Oxford Univ. Press, 1997.  

[109]  L. L. Cavalli-Sforza, "Recollections of Whittingehame Lodge," Theor. Popul. Biol., vol. 

38, pp. 301-305, 1990.  

[110]  J. Fort, T. Pujol and L. Cavalli-Sforza, "Palaeolithic populations and waves of advance," 

Cambridge Archaeol. J., vol. 14, pp. 53-61, 2004.  

[111]  M. Hamilton and B. Buchanan, "Spatial gradients in Clovis-age radiocarbon dates 

across North America suggest rapid colonization from the north," Proc. Natl. Acad. Sci. 

U.S.A., vol. 104, pp. 15625-15630, 2007.  

[112]  V. Ortega-Cejas, J. Fort and V. Méndez, "Role of the delay time in the modelling of 

biological range expansions," Ecology, vol. 85, pp. 258-264, 2004.  

[113]  S. R. Dunbar, "Travelling wave solutions of diffusive Lotka-Volterra equations," J. 

Math. Biol., vol. 17, pp. 11-32, 1983.  

[114]  G. J. Bauer, J. S. McCaskill and H. Otten, "Traveling waves of in vitro evolving RNA," 

Proc. Natl. Acad. Sci. U.S.A., vol. 86, pp. 7937-7941, 1989.  

[115]  V. Ortega-Cejas, J. Fort, V. Méndez and D. Campos, "Approximate solution to the speed 

of spreading viruses," Phys. Rev. E, vol. 69, no. 031909, 2004.  

[116]  J. Fort, J. Pérez-Losada, E. Ubeda and F. J. García, "Fronts with continuous waiting-

time distributions & virus infections," Phys. Rev. E, vol. 73, no. 021907, 2006.  

[117]  N. Isern and J. Fort, "Time-delayed reaction-diffusion fronts," Phys. Rev. E, vol. 80, no. 

057103, 2009.  

[118]  S. J. Russell, K. W. Peng and J. C. Bell, "Oncolytic virotherapy," Nat. Biotechnol., vol. 

30, pp. 658-670, 2012.  

[119]  R. H. I. Andtbacka, H. L. Kaufman, F. Collichio, T. Amatruda, N. Senzer, et. al., 

"Talimogene laherparepvec improves durable response rate in patients with advanced 

melanoma," J. Clin. Oncol., vol. 33, pp. 2780-2788, 2015.  

[120]  H. L. Kaufman, F. J. Kohlhapp and A. Zloza, "Oncolytic viruses: a new class of 

immunotherapy drugs," Nat. Rev. Drug Discov., vol. 14, pp. 642-662, 2015.  



162 

 

[121]  I. A. Rodriguez-Brenes, A. Hofacre, H. Fan and D. Wodarz, "Complex dynamics of 

virus spread from low infection multiplicities: implications for the spread of oncolytic 

viruses," PLoS Comput. Biol., vol. 13, no. e1005241, 2017.  

[122]  B. Vogelstein and K. Kinzler, "Cancer genes and the pathways they control," Nat. Med., 

vol. 10, pp. 789-799, 2004.  

[123]  R. A. Weinberg, The Biology of Cancer, New York: Garland Science, 2007.  

[124]  Cancer Genome Atlas Network, "Comprehensive molecular portraits of human breast 

tumors," Nature, vol. 490, pp. 61-70, 2012.  

[125]  R. Meza, J. Jeon, S. H. Moolgavkar and E. G. Luebeck, "Age-specific incidence of 

cancer: Phases, transitions, and biological implications," Proc. Natl. Acad. Sci. U.S.A., 

vol. 105, p. 16284–16289, 2008.  

[126]  A. S. Novozhilov, F. S. Berezovskaya, E. V. Koonin and G. P. Karev, "Mathematical 

modeling of tumor therapy with oncolytic viruses: Regimes with complete tumor 

elimination within the framework of deterministic models," Biology Direct, vol. 1, no. 

6, 2006.  

[127]  G. P. Karev, A. S. Novozhilov and E. V. Koonin, "Mathematical modeling of tumor 

therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics," 

Biology Direct, vol. 1, no. 30, 2006.  

[128]  N. L. Komarova and D. Wodarz, "ODE models for oncolytic virus dynamics," J. Theor. 

Biol., vol. 263, pp. 530-543, 2010.  

[129]  R. M. May and R. M. Anderson, "Population biology of infectious diseases: Part II," 

Nature, vol. 280, pp. 455-461, 1979.  

[130]  E. Beretta and Y. Kuang, "Modeling and analysis of a marine bacteriophage infection," 

Math. Biosci., vol. 149, pp. 57-76, 1998.  

[131]  V. Childe, The dawn of European civilisation, London: Routledge, 1925.  

[132]  V. G. Childe, What happened in history, Harmondsworth: Penguin Books, 1942.  

[133]  M. S. Edmonson, "Neolithic diffusion rates," Curr. Anthropol., vol. 2, pp. 71-102, 1961.  

[134]  J. G. D. Clark, "Radiocarbon dating and the spread of the farming economy," Antiquity, 

vol. 39, pp. 45-48, 1965.  

[135]  E. Neustupný, "Absolute chronology of the Neolithic and Aeneolithic periods in central 

and south-eastern Europe," Slovenská archeológia, vol. 16, pp. 19-56, 1968.  



163 

 

[136]  P. Ucko and G. W. Dimbleby, The domestication and exploitation of plants and animals, 

London: Duckworth, 1969.  

[137]  K. Davison, P. Dolukhanov, G. R. Sarson and A. Shukurov, "The role of waterways in 

the spread of the Neolithic," J. Archaeol. Sci., vol. 33, pp. 641-652, 2006.  

[138]  J. Bernabeu Aubán, C. M. Barton, S. Pardo Godó and S. M. Bergin, "Modeling initial 

Neolithic dispersal. The first agricultural groups in west Mediterranean," Ecol. Modell., 

vol. 307, pp. 22-31, 2015.  

[139]  J. Fort, J. Pérez-Losada and N. Isern, "Fronts from integrodifference equations and 

persistence effects on the Neolithic transition," Phys. Rev. E, vol. 76, no. 031913, 2007.  

[140]  M. A. Zeder, "Domestication and early agriculture in the Mediterranean basin: Origins, 

diffusion, impact.," Proc. Natl. Acad. Sci. U.S.A., vol. 1015, pp. 11597-11604, 2008.  

[141]  K. Kujit and N. Going-Moris, "Foraging, farming, and social complexity in the pre-

pottery of the Neolithic of the southern Levant: A review and synthesis," J. World 

Prehist., vol. 16, pp. 361-440, 2002.  

[142]  L. L. Cavalli-Sforza, African pygmies, Orlando: Academic Press, 1986, pp. 361-426. 

[143]  R. A. Bentley, R. H. Layton and J. Tehrani, "Kinship, marriage, and the genetics of past 

human dispersals," Hum. Biol., vol. 81, pp. 159-179, 2009.  

[144]  L. You and J. Yin, "Amplification and spread of viruses in a growing plaque," J. Theor. 

Biol., vol. 200, pp. 365-373, 1999.  

[145]  D. R. Amor and J. Fort, "Cohabitation reaction-diffusion model for virus focal 

infections," Physica A, vol. 416, pp. 611-619, 2014.  

[146]  S. A. Gourley and Y. Kuang, "A delay reaction-diffusion model of the spread of 

bacteriophage infection," SIAM J. Appl. Math., vol. 65, pp. 550-566, 2005.  

[147]  D. A. Jones, H. L. Smith, H. R. Thieme and G. Röst, "On spread of phage infection of 

bacteria in a petri dish," SIAM J. Appl. Math., vol. 72, pp. 670-688, 2012.  

[148]  H. W. Ackermann, "La classification des phages caudés des entérobacteries," Pathol. 

Biol., vol. 24, pp. 359-380, 1976.  

[149]  H. Fricke, "A mathematical treatment of the electric conductivity and capacity of 

disperse systems I. The electric conductivity of a suspension of homogeneous 

spheroids," Phys. Rev., vol. 24, pp. 575-587, 1924.  



164 

 

[150]  T. D. Brock and M. T. Madigan, Biology of Microorganisms, 6th ed., Englewood Cliffs: 

Prentice-Hall, 1991, p. 40. 

[151]  B. R. Ware, T. Raj, W. H. Flygare, J. A. Lesnaw and M. E. Reichmann, "Molecular 

weights of Vesicular Stomatitis Virus and its defective particles by laser light-scattering 

spectroscopy," J. Virol., vol. 11, pp. 141-145, 1973.  

[152]  A. M. Stein, D. A. Vader, T. S. Deisboeck, E. A. Chiocca, L. M. Sander and D. A. 

Weitz, "Directionality of glioblastoma invasion in a 3D in vitro experiment," 

http://arxiv.org/pdf/q-bio/0610031.pdf (accessed 30 September 2012), 2006.  

[153]  A. M. Stein, T. Demuth, D. Mobley, M. Berens and L. M. Sander, "A mathematical 

model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro 

experiment," Biophys. J., vol. 92, pp. 356-365, 2007.  

[154]  K. Shishido, A. Watarai, S. Naito and T. Ando, "Action of bleomycin on the 

bacteriophate T7 infection," J. Antibiot., vol. 28, pp. 676-680, 1975.  

[155]  G. Wollmann, M. D. Robek and A. N. van den Pol, "Variable deficiencies in the 

interferon response enhance susceptibility to vesicular stomatitis virus oncolytic actions 

in glioblastoma cells but not in normal human glial cells," J. Virol., vol. 81, pp. 1479-

1491, 2007.  

[156]  H. Ikeda, R. J. de Boer, K. Sato, S. Morita, N. Misawa, et al., "Improving the estimation 

of the death rate of infected cells from time course data during the acute phase of virus 

infections: application to acute HIV-1 infection in a humanized mouse model," Theor. 

Biol. Med. Model., vol. 11, pp. 22-35, 2014.  

[157]  S. Arnold, M. Siemann, K. Scharnweber, M. Werner, S. Bauman and S. Reuss, "Kinetic 

modeling and simulation of in vitro transcription by phage T7 RNA polymerase," 

Biotechnol. Bioeng., vol. 72, pp. 548-561, 2001.  

[158]  A. N. van den Pol and J. N. Davis, "Highly attenuated recombinant vesicular stomatitis 

virus VSV-12'GFP displays immunogenic and oncolytic activity," J. Virol., vol. 87, pp. 

1019-1034, 2013.  

[159]  E. L. Haseltine, V. Lam, J. Yin and J. B. Rawlings, "Image-guided modeling of virus 

growth and spread," Bull. Math. Biol., vol. 70, pp. 1730-1748, 2008.  

[160]  H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore and J. Darnell, 

Molecular cell Biology, 4th ed., New York: W. H. Freeman, 2000.  

[161]  R. Rockne, J. K. Rockhill, M. Mrugala, A. M. Spence, I. Kalet, et al., "Predicting the 

efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical 

modeling approach," Phys. Med. Biol., vol. 55, pp. 3271-3285, 2010.  



165 

 

[162]  S. E. Eikenberry, T. Sankar, M. C. Preul, E. J. Kostelich, C. J. Thalhauser and T. Kuang, 

"Virtual glioblastoma: Growth, migration and treatment in a three-dimensional 

mathematical model," Cell Prolif., vol. 42, pp. 511-528, 2009.  

[163]  A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca and J. Wang, "Glioma virotherapy: 

Effects of innate immune suppression and increased viral replication capacity," Cancer 

Res., vol. 66, pp. 2314-2319, 2006.  

[164]  S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, et al., "High-density 

mapping of single-molecule trajectories with photoactivated localization microscopy," 

Nat. Methods, vol. 5, pp. 155 - 157, 2008.  

[165]  E. Fernández, A. Pérez-Pérez, C. Gamba, E. Prats, P. Cuesta, et al., "Ancient DNA 

analysis of 8,000 B.C. Near Eastern farmers supports an early Neolithic pioneer 

maritime colonization of mainland Europe through Cyprus and the Aegean Islands," 

PLoS Genet., vol. 10, no. e1004401, 2014.  

[166]  C. Gamba, E. Fernández, M. Tirado, M. Deguilloux, M. Pemonge, et al., "Ancient DNA 

from an Early Neolithic Iberian population supports a pioneer colonization by first 

farmers," Mol. Ecol., vol. 21, pp. 45-56, 2012.  

[167]  M. Hervella, N. Izagirre, S. Alonso, R. Fregel, A. Alonso, et al., "Ancient DNA from 

hunter-gatherer and farmers groups from Northern Spain supports a random dispersion 

model for the Neolithic expansion into Europe," PLoS ONE, vol. 7, no. e34417, 2012.  

[168]  H. Malmström, M. Gilbert, M. Thomas, M. Brandström, J. Stora, et al., "Ancient DNA 

Reveals Lack of Continuity between Neolithic Hunter-Gatherers and Contemporary 

Scandinavians," Curr. Biol., vol. 19, pp. 1758-1762, 2009.  

[169]  W. Haak, O. Balanovsky, J. J. Sánchez, S. Koshel, V. Zaporozhchenko, et al., "Ancient 

DNA from European early Neolithic farmers reveals their Near Eastern affinities," PLoS 

Biol., vol. 8, no. e1000536, 2010.  

[170]  Ç. Çilingiroglu, "The concept of 'Neolithic package': considering its meaning and 

applicability," Documenta Praehistorica, vol. 32, pp. 1-13, 2005.  

[171]  Z. Hofmanová, S. Kreutzer, G. Hellenthal, C. Sell, Y. Diekmann, et al., "Early farmers 

from across Europe directly descended from Neolithic Aegeans," Proc. Natl. Acad. Sci. 

U.S.A., vol. 113, pp. 6886-6891, 2016.  

[172]  A. Szécsény-Nagy, G. Brandt, W. Haak, V. Keerl, J. Jakucs, et al., "Tracing the genetic 

origin of Europe's first farmers reveals insights into their social organizations," Proc. R. 

Soc. B, vol. 282, no. 20150339, 2015.  



166 

 

[173]  I. Olalde, H. Schroeder, M. Sandoval-Velasco, L. Vinner, I. Lobón, et al., "A common 

genetic origin for early farmers from Mediterranean cardial and central european LBK 

cultures," Mol. Biol. Evol., vol. 32, pp. 3132-3142, 2015.  

[174]  H. Chandler, B. Sykes and J. Zilhão, "Using ancient DNA to examine genetic continuity 

at the Mesolithic-Neolithic transition in Portugal," in Actas dell III Congreso del 

Neolítico en la Península Ibérica, vol. 1, P. Arias, R. Ontañón and C. García-Moncó, 

Eds., Santander: Monografías del Instituto internacional de Investigaciones 

Prehistóricas de Cantabria, 2005, pp. 781-786. 

[175]  H. Chandler, Using Ancient DNA to Link Culture and Biology in Human Populations, 

Oxford: University of Oxford, 2003.  

[176]  H. Malmström, A. Linderholm, P. Skoglund, J. Stora, P. Sjödin, et al., "Ancient 

mitochondrial DNA from the northern fringe of the Neolithic farming expansion in 

Europe sheds light on the dispersion process," Philos. Trans. R. Soc. Lond., B, Biol. Sci., 

vol. 370, no. 20130373, 2015.  

[177]  P. Skoglund, H. Malmström, A. Omrak, M. Raghavan, C. Valdiosera, et al., "Genomic 

diversity and admixture differs for stone-age scandinavian foragers and farmers," 

Science, vol. 344, pp. 747-750, 2014.  

[178]  J. Stauder, The Majangir. Ecology and Society of a Southwest Ethiopian People, 

London: Cambridge University Press, 1971.  

[179]  J. Fort, J. Pérez-Losada, J. J. Suñol, L. Escoda and J. M. Massaneda, "Integro-difference 

equations for interacting species and the Neolithic transition," New J. Phys., vol. 10, no. 

43045, 2008.  

[180]  J. Steele, J. M. Adams and T. Sluckin, "Modeling Paleoindian dispersals," World 

Archaeol., vol. 30, pp. 286-305, 1998.  

[181]  J. Alroy, "A multispecies overkill simulation of the end-Pleistocene megafaunal mass 

extinction," Science, vol. 292, pp. 1893-1896, 2001.  

[182]  J. Fort, D. Jana and J. M. Humet, "Multidelayed random walks: Theory and application 

to the neolithic transition in Europe," Phys. Rev. E, vol. 70, no. 031913, 2004.  

[183]  N. Isern, J. Fort and J. Pérez-Losada, "Realistic dispersion kernels applied to 

cohabitation reaction–dispersion equations," J. Stat. Mech. Theor. Exp., vol. 2008, no. 

10, p. P10012, 2008.  

[184]  J. P. Birdsell, "Some population problems involving Pleistocene man," Cold Spring 

Harb. Symp. Quant. Biol., vol. 22, pp. 47-69, 1957.  



167 

 

[185]  D. F. Roberts, "Genetic effects of population size reduction," Nature, vol. 220, pp. 1084-

1088, 1968.  

[186]  A. J. Lotka, Elements of Mathematical Biology, New York: Dover, 1956, pp. 64-69. 

[187]  L. L. Cavalli-Sforza, "The distribution of migration distances: models and applications 

to genetics," in Les Deplacements Humains, L. L. Cavalli-Sforza and J. Sutter, Eds., 

Monaco: Editions Sciences Humaines, 1962, pp. 139-158. 

[188]  J. Fort and T. Pujol, "Progress in front propagation research," Rep. Prog. Phys., vol. 71, 

no. 086001, 2008.  

[189]  U. Ebert and W. van Saarloos, "Front propagation into unstable states: Universal 

algebraic convergence towards uniformly translating pulled fronts," Physica D, vol. 

146, pp. 1-99, 2000.  

[190]  W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes: 

The Art of Scientific Computing, New York: Cambridge University Press, 2007.  

[191]  M. G. Weinbauer, "Ecology of prokaryotic viruses," FEMS Microbiol. Rev., vol. 28, pp. 

127-181, 2004.  

[192]  J. Yin, "Spatially resolved evolution of viruses," Ann. N. Y. Acad. Sci., vol. 745, pp. 

399-408, 1994.  

[193]  M. de Paepe and F. Taddei, "Viruses' life history: Towards a mechanistic basis of a 

trade-off between survival and reproduction among phages," PLoS Biol., vol. 4, no. 

e193, 2006.  

[194]  C. E. Zobell and A. B. Cobet, "Growth, reproduction, and death rates of Escherichia coli 

at increased hydrostatic pressures," J. Bacteriol., vol. 84, pp. 1228-36, 1962.  

[195]  J. Fort and V. Méndez, "Reaction-diffusion waves of advance in the transition to 

agricultural economics," Phys. Rev. E, vol. 60, pp. 5894-5901, 1999.  

[196]  A. I. Freeman, Z. Zakay-Rones, J. M. Gomori, E. Linetsky, L. Rasooly, et al., "Phase 

I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma 

multiforme," Mol. Ther., vol. 13, pp. 221-228, 2006.  

[197]  F. Brauer and C. Castillo-Chavez, Mathematical models in population biology and 

epidemiology, New York: Springer, 2001, pp. 123-125. 

[198]  T. L. Stepien, E. M. Rutter and Y. Kuang, "A data-motivated density-dependent 

diffusion model of in vitro glioblastoma growth," Math. Biosci. Eng., vol. 12, pp. 1157-

1172, 2015.  



168 

 

[199]  C. A. Koks, S. De Vleeschouwer, N. Graf and S. W. Van Gool, "Immune suppression 

during oncolytic virotherapy for high-grade glioma; yes or no?," J. Cancer, vol. 6, pp. 

203-217, 2015.  

[200]  D. J. Mahoney, D. F. Stojdl and G. Laird, "Virus therapy for cancer," Sci. Am., vol. 311, 

pp. 54-59, 2014.  

[201]  R. Pinhasi, J. Fort and A. J. Ammerman, "Tracing the origin and spread of agriculture 

in Europe," PLoS Biol., vol. 3, no. e410, 2005.  

[202]  N. J. Patterson, P. Moorjani, Y. Luo, S. Mallick, N. Rohland, et al., "Ancient admixture 

in human history," Genetics, vol. 192, pp. 1065-1093, 2012.  

[203]  B. Bramanti, M. G. Thomas, W. Haak, M. Unterlaender, P. Jores, et al., "Genetic 

discontinuity between local hunter-gatherers and central Europe's first farmers," 

Science, vol. 326, pp. 137-140, 2009.  

[204]  Q. Fu, C. Posth, M. Hajdinjak, M. Petr, S. Mallick, et al., "The genetic history of Ice 

Age Europe," Nature, vol. 534, pp. 200-205, 2016.  

[205]  Q. Atkinson, "Phonemic diversity supports a serial founder effect model of language 

expansion from Africa," Science, vol. 332, pp. 346-349, 2011.  

[206]  M. Sampietro, O. Lao, D. Caramelli, M. Lari, R. Pou, et al., "Palaeogenetic evidence 

supports a dual model of Neolithic spreading into Europe," Proc. R. Soc. B, vol. 274, 

pp. 2161-2167, 2007.  

[207]  M. Rivollat, S. Rottier, C. Couture, M.-H. Pemonge, F. Mendisco, et al., "Investigating 

mitochondrial DNA relationships in Neolithic Western Europe through serial coalescent 

simulations," Eur. J. Hum. Genet., vol. 25, no. 3, pp. 388-392, 2017.  

[208]  L. Cronk, "From hunters to herders: Subsistence change as a reproductive strategy 

among the Mukogodo," Curr. Anthropol., vol. 30, pp. 224-234, 1989.  

[209]  J. Early and T. Headland, Population dynamics of a Philippine rain forest people: The 

San Ildefonso Agta, Gainesville: University of Florida Press, 1998.  

[210]  L. Excoffier, G. Laval and S. Schneider, "Arlequin ver 3.0: An integrated software 

package for population genetics data analysis," Evol. Bioinform. Online, vol. 1, pp. 47-

50, 2005.  

[211]  F. Tajima, "Statistical method for testing the neutral mutation hypothesis by DNA 

polymorphism," Genetics, vol. 123, no. 3, pp. 585-595, 1989.  



169 

 

[212]  Y. X. Fu, "Statistical tests of neutrality of mutations against population growth, 

hitchhiking and background selection," Genetics, vol. 147, no. 2, pp. 915-925, 1997.  

[213]  L. Excoffier and S. Schneider, "Why hunter-gatherer populations do not show signs of 

pleistocene demographic expansions," Proc. Natl. Acad. Sci. U.S.A., vol. 96, no. 19, pp. 

10597-10602, 1999.  

[214]  L. Pereira, I. Dupanloup, Z. Rosser, M. Jobling and G. Barbujani, "Y-chromosome 

mismatch distributions in Europe," Mol. Biol. Evol., vol. 18, no. 7, pp. 1259-1271, 2001.  

[215]  R. M. Andrews, I. Kubacka, P. F. Chinnery, R. N. Lightowlers, D. M. Turnbull and N. 

Howell, "Reanalysis and revision of the Cambridge reference sequence for human 

mitochondrial DNA," Nat. Genet., vol. 23, no. 2, p. 147, 1999.  

[216]  M. Nei, Molecular evolutionary genetics, New York: Columbia University Press, 1987.  

[217]  J. Elsner, M. Hofreiter, J. Schibler and A. Schlumbaum, "Ancient mtDNA diversity 

reveals specific population development of wild horses in Switzerland after the Last 

Glacial Maximum," PLoS One, vol. 12, no. 5, p. e0177458, 2017.  

[218]  A. R. Rogers and H. Harpending, "Population growth makes waves in the distribution 

of pairwise genetic differences," Mol. Biol. Evol., vol. 9, no. 3, pp. 552-569, 1992.  

[219]  N. Ray, M. Currat and L. Excoffier, "Intra-deme molecular diversity in spatially 

expanding populations," Mol. Biol. Evol., vol. 20, no. 1, pp. 76-86, 2003.  

[220]  L. Excoffier, "Patterns of DNA sequence diversity and genetic structure after a range 

expansion: lessons from the infinite-island model," Mol. Ecol., vol. 13, no. 4, pp. 853-

864, 2004.  

[221]  S. Ramachandran, et al., "Support from the relationship of genetic and geographic 

distance in human populations for a serial founder effect originating in Africa," Proc. 

Natl. Acad. Sci. U.S.A., vol. 102, no. 44, pp. 15942-15947, 2005.  

[222]  M. Slatkin, "Isolation by distance in equilibrium and non-equilibrium populations," 

Evolution, vol. 47, no. 1, pp. 264-279, 1993.  

[223]  M. Mantel, "The detection of disease clustering and a generalized regression approach," 

Cancer Res. , vol. 27, no. 2, pp. 209-220, 1967.  

[224]  P. E. Smouse, J. C. Long and R. R. Sokal, "Multiple regression and correlation 

extensions of the mantel test of matrix correspondence," Syst. Zool., vol. 35, no. 4, pp. 

627-632, 1986.  

[225]  F. Messina, G. Scano, I. Contini, C. Martínez-Labarga, G. F. De Stefano and O. 

Rickards, "Linking between genetic structure and geographical distance: Study of the 



170 

 

maternal gene pool in the Ethiopian population," Ann. Hum. Biol., vol. 44, no. 1, pp. 53-

69, 2017.  

[226]  P. Legendre and M. J. Fortin, "Comparison of the Mantel test and alternative approaches 

for detecting complex multivariate relationships in the spatial analysis of genetic data," 

Mol. Ecol. Resour., vol. 10, no. 5, pp. 831-844, 2010.  

[227]  Ø. Hammer, D. A. T. Harper and P. D. Ryan, "PAST: paleontological statistics software 

package for education and data analysis," Palaeontol. Electron., vol. 4, no. 1, pp. 1-9, 

2001.  

[228]  M. Slatkin and R. R. Hudson, "Pairwise comparisons of mitochondrial DNA sequences 

in stable and exponentially growing populations," Genetics, vol. 129, no. 2, pp. 555-

562, 1991.  

[229]  H. J. Bandelt, P. Forster and A. Röhl, "Median-joining networks for inferring 

intraspecific phylogenies," Mol. Biol. Evol., vol. 16, no. 1, pp. 37-48, 1999.  

[230]  S. Barnabas, Y. Shouche and C. G. Suresh, "High-resolution mtDNA studies of the 

Indian population: implications for palaeolithic settlement of the Indian subcontinent," 

Ann. Hum. Genet., vol. 70, pp. 42-58, 2006.  

[231]  A. J. Drummond, A. Rambaut, B. Shapiro and O. G. Pybus, "Bayesian coalescent 

inference of past population dynamics from molecular sequences," Mol. Biol. Evol., vol. 

22, no. 5, pp. 1185-1192, 2005.  

[232]  R. Bouckaert, J. Heled, D. Kühnert, T. Vaughan, C. H. Wu, et al., "BEAST 2: a software 

platform for Bayesian evolutionary analysis," PLoS Comput. Biol., vol. 10, no. 4, p. 

e1003537, 2014.  

[233]  A. Rambaut, M. Suchard and A. Drummond, "Tracer," 2013. [Online]. Available: 

http://tree.bio.ed.ac.uk/software/tracer/. 

[234]  P. Soares, L. Ermini, N. Thomson, M. Mormina, T. Rito, et al., "Correcting for purifying 

selection: An improved human mitochondrial molecular clock," Am. J. Hum. Genet., 

vol. 84, no. 6, pp. 740-759, 2009.  

[235]  K. R. Zenger, B. J. Richardson and A. Vachot‐Griffin, "A rapid population expansion 

retains genetic diversity within European rabbits in Australia," Mol. Ecol., vol. 12, no. 

3, pp. 789-794, 2003.  

[236]  L. Xu, H. Xue, M. Song, Q. Zhao, J. Dong, et al., "Variation of genetic diversity in a 

rapidly expanding population of the greater long-tailed hamster (Tscherskia triton) as 

revealed by microsatellites," PLoS ONE, vol. 8, no. 1, p. e54171, 2013.  



171 

 

[237]  S.M. Murphy, J.J. Cox, J.D. Clark, B.C. Augustine, J.T. Hast, et al., "Rapid growth and 

genetic diversity retention in an isolated reintroduced black bear population in the 

central appalachians," Wildl. Soc. Bull., vol. 79, no. 5, pp. 807-818, 2015.  

[238]  V. Coia, G. Cipollini, P. Anagnostou, F. Maixner, C. Battaggia, et al., "Whole 

mitochondrial DNA sequencing in Alpine populations and the genetic history of the 

Neolithic Tyrolean Iceman," Sci. Rep., vol. 6, p. 18932, 2016.  

[239]  G. Eriksson, A. Linderholm, E. Fornander, M. Kanstrup, P. Schoultz, et al., "Same 

island, different diet: Cultural evolution of food practice on Öland, Sweden, from the 

Mesolithic to the Roman Period," J. Anthropol. Archaeol., vol. 27, no. 4, pp. 520-543, 

2008.  

[240]  M. Malmer, The Neolithic of south Sweden: TRB, GRK, and STR, Stockholm: Royal 

Swedish Academy of Letters History and Antiquities, 2002.  

[241]  P. Legendre and L. Legendre, Numerical Ecology, 3rd ed., Amsterdam: Elsevier 

Science, 2012.  

[242]  F. Messina, A. Finocchio, N. Akar, A. Loutradis, E.I. Michalodimitrakis, et al., 

"Spatially explicit models to investigate geographic patterns in the distribution of 

forensic STRs: Application to the North-Eastern Mediterranean," PLoS ONE, vol. 11, 

no. 11, p. e0167065, 2016.  

[243]  M. S. Rosenberg and C. D. Anderson, "PASSaGE: Pattern analysis, spatial statistics and 

geographic exegesis. Version 2," Meth. Ecol. Evol., vol. 2, no. 3, pp. 229-232, 2011.  

[244]  N. L. Oden, "Assessing the significance of a spatial correlogram," Geogr. Anal., vol. 

16, pp. 1-16, 1984.  

[245]  J. Zilhao, "Radiocarbon evidence for maritime pioneer colonization at the origins of 

farming in west Mediterranean Europe," Proc. Natl. Acad. Sci. U.S.A., vol. 98, pp. 

14180-14185, 2001.  

[246]  J. Fort, T. Pujol and M. Vander-Linden, "Modelling the Neolithic transition in the Near 

East and Europe," Am. Antiq., vol. 77, pp. 203-220, 2012.  

[247]  N. Isern, J. Fort, A. Carvalho, J. Gibaja and J. Ibañez, "The Neolithic transition in the 

Iberian Peninsula: data analysis and modelling," J. Archaeol. Method Th., vol. 21, pp. 

447-460, 2014.  

[248]  H. M. Wobst, "Boundary conditions for paleolithic social systems: A simulation 

approach," Am. Antiq., vol. 39, no. 2, pp. 147-178, 1974.  



172 

 

[249]  Y. Raviv and N. Intrator, "Bootstrapping with noise: An effective regularization 

technique," Connection Science, vol. 8, no. 3-4, pp. 355-372, 1996.  

[250]  B. Efron, The jackknife, the bootstrap and other resampling plans, Montpelier, Vermont: 

The Society for Industrial and Applied Mathematics (SIAM), 1982.  

[251]  P. Dixon, "The bootstrap and the jackknife: describing the precision of ecological 

indices," in Design and analysis of ecological experiments, S. M. Scheiner and J. 

Gurevitch, Eds., New York: Chapman and Hall, 1993, pp. 267-288. 

[252]  Q. Fu, A. Mittnik, P.L.F. Johnson, K. Bos, M. Lari, et al., "A revised timescale for 

human evolution based on ancient mitochondrial genomes," Curr. Biol., vol. 23, no. 7, 

pp. 553-559, 2013.  

[253]  M. Lacan, C. Keyser, F.X. Ricaut, N. Brucato, F. Duranthon, et al. , "Ancient DNA 

reveals male diffusion through the Neolithic Mediterranean route," Proc. Natl. Acad. 

Sci. U.S.A., vol. 108, pp. 9788-9791, 2011.  

[254]  P. Brotherton, W. Haak, J. Templeton, G. Brandt, J. Soubrier, et al., "Neolithic 

mitochondrial haplogroup H genomes and the genetic origins of Europeans," Nat. 

Comm., vol. 4, p. 1764, 2013.  

[255]  Q. Fu, P. Rudan, S. Pääbo and J. Krause, "Complete mitochondrial genomes reveal 

neolithic expansion into Europe," PLoS One, vol. 7, no. 3, p. e32473, 2012.  

[256]  M. Demerec and U. Fano, "Bacteriophage-Resistant Mutants in Escherichia Coli," 

Genetics, vol. 30, pp. 119-136, 1945.  

[257]  V. M. Narasimhan, N. Paerson, P. Moorjani, I. Lazardis, M. Lipson, et al., "The genomic 

formation of south and central Asia," bioRxiv, http://dx.doi.org/10.1101/292581.  

[258]  M. Hervella, M. Rotea, N. Izagirre, M. Constantinescu, S. Alonso, et al., "Ancient DNA 

from South-East Europe Reveals Different Events during Early and Middle Neolithic 

Influencing the European Genetic Heritage," PLoS One, vol. 10, no. e0128810, 2015.  

[259]  I. Lazaridis, N. Patterson, A. Mittnik, G. Renaud, S. Mallick, et al., "Ancient human 

genomes suggest three ancestral populations for present-day Europeans," Nature, vol. 

513, pp. 409-413, 2014.  

[260]  M. F. Deguilloux, L. Soler, M. H. Pemonge, C. Scarre, R. Joussaume and L. Laporte, 

"News From the West: Ancient DNA From a French Megalithic Burial Chamber.," Am. 

J. Phys. Anthropol., vol. 144, p. 108–118, 2011.  



173 

 

[261]  M. Lacan, C. Keyser, F.X. Ricaut, N. Brucato, J. Tarrús, et al., "Ancient DNA suggests 

the leading role played by men in the Neolithic dissemination," Proc. Natl. Acad. Sci. 

U.S.A., vol. 108, pp. 18255-18259, 2011.  

 

 

 

 

  



174 

 

  



175 

 

Appendix A. Supporting Dataset to the paper in 

Chapter 5 

Data S1 
Neolithic mtDNA database with data grouped by regional cultures. Mean coordinates and dates of 

each culture are included at the end of its corresponding table. Cultures 1-8 and 11 are oldest local 

cultures with at least 9 individuals. They have been used to analyze the genetic cline of haplogroup K 

in Chapter 5, and are identified here with a different background color. 

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE5 
mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[165] Tell Halula Syria 36.417 38.167 7400 7500 7300 U 
Middle 
PPNB 

H28 

[165] Tell Halula Syria 36.417 38.167 7400 7500 7300 HV 
Middle 
PPNB 

H53 

[165] Tell Halula Syria 36.417 38.167 7400 7500 7300 K 
Middle 
PPNB 

H25 

[165] Tell Halula Syria 36.417 38.167 7400 7500 7300 K 
Middle 
PPNB 

H4 

[165] Tell Halula Syria 36.417 38.167 7400 7500 7300 K 
Middle 
PPNB 

H7 

[165] Tell Ramad Syria 33.360 35.949 6975 7300 6650 K PPNB R65-14 

[165] Tell Ramad Syria 33.360 35.949 6975 7300 6650 K PPNB R65-1S 

[165] Tell Ramad Syria 33.360 35.949 6975 7300 6650 K PPNB 
R65-

C8-SEB 

[165] Tell Halula Syria 36.417 38.167 7400 7500 7300 H 
Middle 
PPNB 

H49 

[165] Tell Halula Syria 36.417 38.167 7400 7500 7300 H 
Middle 
PPNB 

H68 

[165] Tell Halula Syria 36.417 38.167 7400 7500 7300 R0 
Middle 
PPNB 

H3 

[165] Tell Ramad Syria 33.360 35.949 6975 7300 6650 R0 PPNB R64-4II 

[165] Tell Ramad Syria 33.360 35.949 6975 7300 6650 R0 PPNB R69 

[165] Tell Halula Syria 36.417 38.167 7400 7500 7300 L3 
Middle 
PPNB 

H8 

[165] Tell Halula Syria 36.417 38.167 7400 7500 7300 N 
Middle 
PPNB 

H70 

1 Syria PPNB 35.398 37.427 
7258.

3 
7433.3 

7083.
3 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

                                                           
5 cal BCE is the abbreviaton for calibrated Before Common Era. Common or Current Era (CE) is a year-numbering 

system that refers to the years since the start of this era (since AD 1). The preceding era is referred to as Before 

the Common Era (BCE), which is the one used here (and, therefore, in Chapter 5) because the Neolithic spread 

across Europe began 9,000 years ago. 
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[171] Barcın Turkey 40.300 29.567 
6328.

5 
6419 6238 X2m 

Anatolia
Neolithic Bar31 

[171] Barcın Turkey 40.300 29.567 6121 6212 6030 K1a2 
Anatolia 

Early 
Neolithic 

Bar8 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 
U8b1b

1 

Anatolia 
Early 

Neolithic 
I0745 

[80] Barcın Turkey 40.300 29.567 6350 6500 6200 H5 
Anatolia 
Neolithic 

I1580 

[80] Menteşe Turkey 40.260 29.650 6000 6400 5600 
N1a1a

1 
Anatolia 
Neolithic 

I0725 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 
N1a1a

1 
Anatolia 
Neolithic 

I1096 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 
N1a1a

1a 
Anatolia 
Neolithic 

I0736 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 
N1a1a

1a 
Anatolia 
Neolithic 

I0854 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 T2b 
Anatolia 
Neolithic 

I1099 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 T2b 
Anatolia 
Neolithic 

I1101 

[80] Menteşe Turkey 40.260 29.650 6000 6400 5600 H 
Anatolia 
Neolithic 

I0726 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 J1 
Anatolia 
Neolithic 

I1585 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 J1c11 
Anatolia 
Neolithic 

I0744 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 
K1a or 
K1a1 

Anatolia 
Neolithic 

I0746 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 
K1a or 
K1a6 

Anatolia 
Neolithic 

I1100 

[80] Menteşe Turkey 40.260 29.650 6000 6400 5600 K1a2 
Anatolia 
Neolithic 

I0727 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 K1a2 
Anatolia 
Neolithic 

I1583 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 K1a3a 
Anatolia 
Neolithic 

I1102 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 K1a4 
Anatolia 
Neolithic 

I0707 

[80] Menteşe Turkey 40.260 29.650 6000 6400 5600 K1a4 
Anatolia 
Neolithic 

I0724 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 
K1a-

C150T 
Anatolia 
Neolithic 

I1579 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 
K1b1b

1 
Anatolia 
Neolithic 

I1103 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 N1b1a 
Anatolia 
Neolithic 

I0708 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 U3 
Anatolia 
Neolithic 

I0709 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 U3 
Anatolia 
Neolithic 

I1581 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 
W1-

T119C 
Anatolia 
Neolithic 

I1097 

[80] Barcın Turkey 40.300 29.567 6300 6400 6200 X2d2 
Anatolia 
Neolithic 

I1098 

[80] Menteşe Turkey 40.260 29.650 6000 6400 5600 X2m2 
Anatolia 
Neolithic 

I0723 
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2 Anatolia 40.293 29.582 
6242.

8 
6397.5 

6088.
1 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[172] Vinkovci Nama Croatia 45.286 18.798 5700 6000 5400 HV0 
Starcev

o 
VINK3 

[172] Vinkovci Jugobanka  Croatia 45.283 18.794 5700 6000 5400 K 
Starcev

o 
VINJ2 

[172] Vinkovci Jugobanka  Croatia 45.283 18.794 5700 6000 5400 T2b 
Starcev

o 
VINJ1 

[172] Vukovar Gimnazija  Croatia 45.348 19.000 5700 6000 5400 T2b 
Starcev

o 
VUKG4 

[172] Vinkovci Jugobanka  Croatia 45.283 18.794 5700 6000 5400 V 
Starcev

o 
VINJ3 

[172] Vinkovci Nama Croatia 45.286 18.798 5700 6000 5400 J1c 
Starcev

o 
VINK2 

[172] Vukovar Gimnazija  Croatia 45.348 19.000 5700 6000 5400 J1c 
Starcev

o 
VUKG1 

[172] Vukovar Gimnazija  Croatia 45.348 19.000 5700 6000 5400 J1c 
Starcev

o 
VUKG3 

[172] Vinkovci Nama Croatia 45.286 18.798 5700 6000 5400 K1a 
Starcev

o 
VINK1 

[172] Vinkovci Nama Croatia 45.286 18.798 5700 6000 5400 K1a 
Starcev

o 
VINK5 

[172] Vinkovci Jugobanka  Croatia 45.283 18.794 5700 6000 5400 V6 
Starcev

o 
VINJ4 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5700 6000 5400 H 

Starcev
o 

BAM 
10 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5590 5640 5540 H 

Starcev
o 

BAM 
11 

[172] 
Lánycsók, Gata-

Csotola 
Hungary 45.993 18.581 5700 6000 5400 H5 

Starcev
o 

LGCS3 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5700 6000 5400 J 

Starcev
o 

BAM 
18 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5685 5740 5630 J1c 

Starcev
o 

BAM 
14 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5735 5810 5660 K 

Starcev
o 

BAM 
02 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5595 5650 5540 K 

Starcev
o 

BAM 
04 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5700 6000 5400 K 

Starcev
o 

BAM 
16 

[172] Lánycsók, Csata-alja Hungary 45.996 18.581 5700 6000 5400 K 
Starcev

o 
M6-

116.4 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5700 6000 5400 K1 

Starcev
o 

BAM 
07 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5700 6000 5400 K1 

Starcev
o 

BAM 
24 

[172] 
Lánycsók, Gata-

Csotola 
Hungary 45.993 18.581 5700 6000 5400 K1a 

Starcev
o 

LGCS4 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5700 6000 5400 K1a 

Starcev
o 

BAM 
09 
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[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5700 6000 5400 K1a 

Starcev
o 

BAM 
19 

[172] 
Lánycsók, Gata-

Csotola 
Hungary 45.993 18.581 5700 6000 5400 N1a1 

Starcev
o 

LGCS2 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5630 5710 5550 N1a1a 

Starcev
o 

BAM 
22 

[83] 
Alsonyek-Bataszek, 

Mernoki telep 
Hungary 46.200 18.700 5630 5710 5550 

N1a1a
1 

Starcev
o 

I0174 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5750 5840 5660 T1a 

Starcev
o 

BAM 
17 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5585 5640 5530 T2 

Starcev
o 

BAM 
08 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5580 5640 5520 T2b 

Starcev
o 

BAM 
01 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5700 6000 5400 T2b 

Starcev
o 

BAM 
20 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5610 5680 5540 T2b 

Starcev
o 

BAM 
21 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5750 5840 5660 T2b 

Starcev
o 

BAM 
26 

[172] Lánycsók, Csata-alja Hungary 45.996 18.581 5620 5680 5560 T2c 
Starcev

o 
M6-

116.9 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5545 5620 5470 T2e 

Starcev
o 

BAM 
05 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5700 6000 5400 U3 

Starcev
o 

BAM 
12 

[172] Lánycsók, Csata-alja Hungary 45.996 18.581 5700 6000 5400 U4 
Starcev

o 
M6-

116.1 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5585 5650 5520 V 

Starcev
o 

BAM 
06 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5700 6000 5400 W 

Starcev
o 

BAM 
03 

[172] 
Lánycsók, Gata-

Csotola 
Hungary 45.993 18.581 5700 6000 5400 W 

Starcev
o 

LGCS1 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5630 5710 5550 X2 

Starcev
o 

BAM 
13 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5700 6000 5400 X2 

Starcev
o 

BAM 
15 

[172] 
Alsónyék-Bátaszék, 

Mérnöki telep 
Hungary 46.205 18.705 5560 5630 5490 X2 

Starcev
o 

BAM 
23 

3 Hungary-Croatia Starcevo 45.946 18.722 
5674.

5 
5890.7 

5458.
4 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 H LBK? KAR 11 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 H LBK? KAR 20 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 H LBK KAR 29 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 H LBK KAR 59 

[78] Karsdorf Germany 51.273 11.656 
5049.

5 
5079 5020 H LBK KAR 18 
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[78, 
76] 

Karsdorf Germany 51.273 11.656 
5138.

5 
5207 5070 H1bz LBK KAR 6 

[78, 
80] 

Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 H46b LBK KAR 16 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 HV LBK? KAR 17 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 J LBK? KAR 1 

[78] Naumburg Germany 51.150 11.817 
5137.

5 
5500 4775 J LBK NAU 2 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 J1c LBK? KAR 57 

[78] Karsdorf Germany 51.273 11.656 
5007.

5 
5056 4959 J1c LBK KAR 14 

[78] Karsdorf Germany 51.273 11.656 
5114.

5 
5140 5089 J1c2 LBK KAR 3 

[78] Karsdorf Germany 51.273 11.656 5030 5068 4992 K LBK KAR 10 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 K1a LBK? KAR 54 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 K1a LBK? KAR 7 

[78] Naumburg Germany 51.150 11.817 
5137.

5 
5500 4775 K1a LBK NAU 3 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 K1b1a LBK? KAR 8 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 K2a5 LBK? KAR 55 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 

N1a1a
3 

LBK? KAR 40 

[78] Naumburg Germany 51.150 11.817 
5137.

5 
5500 4775 T2b LBK NAU 1 

[78] Karsdorf Germany 51.273 11.656 5036 5075 4997 T2b LBK KAR 15 

[78] Naumburg Germany 51.150 11.817 
5137.

5 
5500 4775 T2c LBK NAU 5 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 T2e LBK? KAR 13 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 T2f LBK? KAR 9 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 U5a LBK KAR 4 

[78] Karsdorf Germany 51.273 11.656 
5137.

5 
5500 4775 U5b LBK? KAR 19 

[78] 
Oberwiederstedt 1, 
Unterwiederstedt 

Germany 51.660 11.530 
5137.

5 
5500 4775 T2f LBK 

UWS 
11 

[78] 
Oberwiederstedt 1, 
Unterwiederstedt 

Germany 51.660 11.530 
5137.

5 
5500 4775 J LBK UWS 4 

[76] Unterwiederstedt Germany 51.660 11.530 
5139.

5 
5209 5070 J1c17 LBK I0054 

[78] 
Oberwiederstedt 1, 
Unterwiederstedt 

Germany 51.660 11.530 
5137.

5 
5500 4775 J LBK 

UWS 
8b 

[78] 
Oberwiederstedt 1, 
Unterwiederstedt 

Germany 51.660 11.530 
5137.

5 
5500 4775 

N1a1a
3 

LBK UWS 6 

[78] 
Oberwiederstedt 1, 
Unterwiederstedt 

Germany 51.660 11.530 
5137.

5 
5500 4775 

T2b23
a 

LBK UWS 7 
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[78] 
Oberwiederstedt 1, 
Unterwiederstedt 

Germany 51.660 11.530 
5137.

5 
5500 4775 

N1a1a
3 

LBK 
UWS 
5.2 

[78, 
76] 

Oberwiederstedt 1, 
Unterwiederstedt 

Germany 51.660 11.530 
5137.

5 
5500 4775 K LBK UWS 3 

[78, 
76] 

Oberwiederstedt 1, 
Unterwiederstedt 

Germany 51.660 11.530 
5137.

5 
5500 4775 K LBK UWS 2 

4 Eastern Germany LBK 51.356 11.642 
5125.

1 
5425.9 

4824.
2 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[169] 
Derenburg-

Meerenstieg II 
Germany 51.871 10.908 5183 5207 5159 H LBK deb21 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5137.

5 
5500 4775 H LBK deb09 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 5263 5300 5226 HV LBK deb20 

[76] 
Derenburg-

Meerenstieg II 
Germany 51.871 10.908 5122 5171 5073 HV LBK deb05 

[76] 
Derenburg-

Meerenstieg II 
Germany 51.871 10.908 5112 5185 5039 HV LBK deb04 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5137.

5 
5500 4775 J LBK deb26 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5137.

5 
5500 4775 J LBK deb30 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5137.

5 
5500 4775 J LBK deb37l 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5137.

5 
5500 4775 K LBK deb38 

[76] 
Derenburg-

Meerenstieg II 
Germany 51.871 10.908 5075 5500 4650 K LBK deb02 

[169] 
Derenburg-

Meerenstieg II 
Germany 51.871 10.908 4982 5020 4944 K LBK 

deb29l
l 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5137.

5 
5500 4775 K1a LBK deb10 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 4978 5023 4933 N1a LBK deb22 

[76] 
Derenburg-

Meerenstieg II 
Germany 51.871 10.908 5024 5064 4984 N1a1 LBK deb01 

[76] 
Derenburg-

Meerenstieg II 
Germany 51.871 10.908 5117 5186 5048 N1a1a LBK deb03 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5137.

5 
5500 4775 T LBK 

deb35l
l 

[169] 
Derenburg-

Meerenstieg II 
Germany 51.871 10.908 5112 5185 5039 T LBK deb32 

[169] 
Derenburg-

Meerenstieg II 
Germany 51.871 10.908 

4951.
5 

4997 4906 T LBK deb11 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 5183 5207 5159 T2 LBK deb39 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5137.

5 
5500 4775 T2 LBK deb15 
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[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5137.

5 
5500 4775 T2 LBK deb33 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5137.

5 
5500 4775 U5a1a LBK deb36 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5039.

5 
5075 5004 V LBK deb12l 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5137.

5 
5500 4775 W LBK deb23 

[78, 
169] 

Derenburg-
Meerenstieg II 

Germany 51.871 10.908 
5137.

5 
5500 4775 W LBK 

deb34l
l 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 H LBK HAL 11 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 5053 5080 5026 H1e LBK HAL 39 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 H23 LBK HAL 36 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 H26 LBK HAL 32 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 J LBK HAL 35 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 K LBK HAL 12 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 K LBK HAL 18 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 5122 5171 5073 K LBK HAL 31 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 K1a LBK HAL 20 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 K1a LBK HAL 9 

[78, 
83] 

Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 5129 5206 5052 K1a LBK I0048 

[78, 
80] 

Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 K1a2 LBK I1550 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 5041 5079 5003 N1a1 LBK HAL 7 

[78, 
83] 

Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 5137 5207 5067 
N1a1a

1 
LBK I0057 

[78, 
83] 

Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 4989 5032 4946 
N1a1a

1a 
LBK I0100 

[78, 
83] 

Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 5038 5079 4997 
N1a1a

1a2 
LBK I0659 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 

N1a1a
3 

LBK HAL 27 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 4989 5030 4948 
N1a1a

3 
LBK HAL 15 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 T2b LBK HAL 21 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 T2b LBK HAL 22 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 T2b LBK HAL 30 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 T2b LBK HAL 40 
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[78, 
83] 

Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 5129 5206 5052 T2b LBK I0056 

[78, 
76] 

Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 5122 5171 5073 T2b LBK HAL 3 

[78, 
83] 

Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 5105 5206 5004 T2c1 LBK I0046 

[78, 
76] 

Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 5183 5207 5159 V LBK HAL 1 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 V LBK HAL 16 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 V LBK HAL 17 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5137.

5 
5500 4775 V LBK HAL 38 

[78] 
Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 
5272.

5 
5298 5247 W LBK HAL 37 

[78, 
83] 

Halberstadt-
Sonntagsfeld 

Germany 51.890 11.040 4988 5034 4942 X2d1 LBK_EN I0821 

5 Western Germany LBK 51.881 10.981 
5114.

8 
5332.6 

4896.
9 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[166] Can Sadurni Spain 41.334 1.922 5390 5475 5305 H 
Cardial 
Culture 

CSA16 

[166] Can Sadurni Spain 41.334 1.922 5390 5475 5305 K 
Cardial 
Culture 

CSA15
2223 

[173] 
Cova Bonica, 

Barcelona  
Spain 41.370 1.894 5415 5470 5360 K1a2a 

Early 
Neolithic 

CB13 

[166] Can Sadurni Spain 41.334 1.922 5390 5475 5305 N 
Cardial 
Culture 

CSA05
11 

[166] Can Sadurni Spain 41.334 1.922 5390 5475 5305 N 
Cardial 
Culture 

CSA29 

[166] Can Sadurni Spain 41.334 1.922 5390 5475 5305 X1 
Cardial 
Culture 

CSA26 

[173] 
Cova Bonica, 

Barcelona  
Spain 41.370 1.894 5415 5470 5360 X2c 

Early 
Neolithic CB14 

[166] Cueva de Chaves Spain 42.212 -0.138 5164 5329 4999 K 
Cardial 
Culture 

1CH01
02 

[166] Cueva de Chaves Spain 42.212 -0.138 5164 5329 4999 H 
Cardial 
Culture 

2CH01
02 

[166] Cueva de Chaves Spain 42.212 -0.138 5164 5329 4999 H 
Cardial 
Culture 

3CH01 

[83] Els Trocs  Spain 42.452 0.564 5258 5310 5206 
N1a1a

1 
Iberia 

EN 
Troc5 

[83] Els Trocs  Spain 42.452 0.564 5122 5178 5066 T2c1d 
Iberia 

EN 
Troc3 

[83] Els Trocs  Spain 42.452 0.564 
5253.

5 
5303 5204 V 

Iberia 
EN 

Troc7 

[83] Els Trocs  Spain 42.452 0.564 
5264.

5 
5311 5218 J1c3 

Iberia 
EN 

Troc1 

[83] Els Trocs  Spain 42.452 0.564 
5122.

5 
5177 5068 K1a2a 

Iberia 
EN 

Troc4 
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6 North-Eastern Spain Cardial 41.887 1.054 
5286.

2 
5372.1 

5200.
3 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 H 

Early 
Neolithic 
farming 

CAS-
173 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 H 

Early 
Neolithic 
farming 

CAS-
182 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 H 

Early 
Neolithic 
farming 

CAS-
193S 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 H 

Early 
Neolithic 
farming 

CAS-
194 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 H 

Early 
Neolithic 
farming 

CAS-
196 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 H 

Early 
Neolithic 
farming 

CAS-21 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 H 

Early 
Neolithic 
farming 

CAS-
222 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 H 

Early 
Neolithic 
farming 

CAS-33 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 H 

Early 
Neolithic 
farming 

CAS-
341 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 H 

Early 
Neolithic 
farming 

CAS-48 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 H 

Early 
Neolithic 
farming 

CAS-
497 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 H 

Early 
Neolithic 
farming 

CAS-90 

[78, 
167] 

Paternanbidea 
(Navarra) 

Spain 42.795 -1.758 
4967.

5 
5207 4728 H 

Early 
Neolithic 
farming 

PAT-
1E3 

[78, 
167] 

Paternanbidea 
(Navarra) 

Spain 42.795 -1.758 
4967.

5 
5207 4728 H 

Early 
Neolithic 
farming 

PAT-
1E5 

[78, 
167] 

Paternanbidea 
(Navarra) 

Spain 42.795 -1.758 
4967.

5 
5207 4728 H 

Early 
Neolithic 
farming 

PAT-
2E1 

[78, 
167] 

Paternanbidea 
(Navarra) 

Spain 42.795 -1.758 
4967.

5 
5207 4728 H3 

Early 
Neolithic 
farming 

PAT-
1E4 

[78, 
167] 

Paternanbidea 
(Navarra) 

Spain 42.795 -1.758 
4967.

5 
5207 4728 H3 

Early 
Neolithic 
farming 

PAT-
4E2 

[78, 
167] 

Paternanbidea 
(Navarra) 

Spain 42.795 -1.758 
4967.

5 
5207 4728 HV 

Early 
Neolithic 
farming 

PAT-
3E2 
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[78, 
167] 

Paternanbidea 
(Navarra) 

Spain 42.795 -1.758 
4967.

5 
5207 4728 I 

Early 
Neolithic 
farming 

PAT-
4E1 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 J 

Early 
Neolithic 
farming 

CAS-
179 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 J 

Early 
Neolithic 
farming 

CAS-
203 

[78, 
167] 

Paternanbidea 
(Navarra) 

Spain 42.795 -1.758 
4967.

5 
5207 4728 K 

Early 
Neolithic 
farming 

PAT-
2E2 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 K1a 

Early 
Neolithic 
farming 

CAS-
181 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 K1a 

Early 
Neolithic 
farming 

CAS-
202 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 K1a 

Early 
Neolithic 
farming 

CAS-
191 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 T2 

Early 
Neolithic 
farming 

CAS-
180 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 U 

Early 
Neolithic 
farming 

CAS-
148 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 U 

Early 
Neolithic 
farming 

CAS-
183 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 U 

Early 
Neolithic 
farming 

CAS-
216 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 U 

Early 
Neolithic 
farming 

CAS-
254 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 U 

Early 
Neolithic 
farming 

CAS-
258 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 U 

Early 
Neolithic 
farming 

CAS-
517 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 U 

Early 
Neolithic 
farming 

CAS-70 

[78, 
167] 

Paternanbidea 
(Navarra) 

Spain 42.795 -1.758 
4967.

5 
5207 4728 U 

Early 
Neolithic 
farming 

PAT-
1E1 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 U5 

Early 
Neolithic 
farming 

CAS-
204 

[78, 
167] 

Los Cascajos 
(Navarra) 

Spain 42.559 -2.188 
4932.

5 
5310 4555 X 

Early 
Neolithic 
farming 

CAS-
257 

7 Spain Navarre 42.618 -2.081 
4941.

3 
5284.3 

4598.
3 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 
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[78, 
174, 
175] 

Gruta do Caldeirão Portugal 39.651 -8.414 
5161.

5 
5480 4843 U 

Neolithic 
Portugal 

CALO1
140 

[78, 
174, 
175] 

Gruta do Caldeirão Portugal 39.651 -8.414 
5161.

5 
5480 4843 V 

Neolithic 
Portggal 

CALP1
2130 

[173] Almonda cave  Portugal 39.505 -8.615 5265 5310 5220 H4a1a 
Early 

Neolithic 
F19 

[78, 
174, 
175] 

Gruta do Caldeirão Portugal 39.651 -8.414 
5161.

5 
5480 4843 H 

Neolithic 
Portugal 

CALN1
424 

[78, 
174, 
175] 

Gruta do Caldeirão Portugal 39.651 -8.414 
5161.

5 
5480 4843 H 

Neolithic 
Portugal 

CALO1
174 

[78, 
174, 
175] 

Gruta do Caldeirão Portugal 39.651 -8.414 
5161.

5 
5480 4843 H 

Neolithic 
Portugal 

CALO1
436 

[78, 
174, 
175] 

Gruta do Caldeirão Portugal 39.651 -8.414 
5161.

5 
5480 4843 H 

Neolithic 
Portugal 

CALP1
1317 

[78, 
174, 
175] 

Gruta do Caldeirão Portugal 39.651 -8.414 
5161.

5 
5480 4843 H 

Neolithic 
Portugal 

CALP1
2151 

[78, 
174, 
175] 

Gruta do Caldeirão Portugal 39.651 -8.414 
5161.

5 
5480 4843 H 

Neolithic 
Portugal 

CALQ1
2181 

[173] Almonda cave  Portugal 39.505 -8.615 5280 5330 5230 H3 
Early 

Neolithic 
G21 

8 Portugal coastal Early Neolithic 39.621 -8.454 
5183.

7 
5448.0 

4919.
4 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[258] Cârcea Romania 44.272 23.898 6000 6500 5500 H 
Starcev

o 
Ca1 

[258] Cârcea Romania 44.272 23.898 6000 6500 5500 T1a 
Starcev

o 
Ca2 

[258] Gura Baciului Romania 46.775 23.503 6000 6500 5500 J 
Starcev

o 
GB2 

[258] Gura Baciului Romania 46.775 23.503 6000 6500 5500 HV 
Starcev

o 
GB3 

[258] Negrileşti Romania 45.936 26.704 6000 6500 5500 H 
Starcev

o 
NE-1 

9 Romania Starcevo 45.606 24.301 
6000.

0 
6500.0 

5500.
0 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[259] 
Viesenhaeuser Hof, 

Stuttgart-
Muehlhausen 

Germany 48.780 9.180 4950 5100 4800 T2c1d1 LBK 
Stuttgar

t 
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[83] 
Viesenhaeuser Hof, 

Stuttgart-
Muehlhausen 

Germany 48.780 9.180 5150 5500 4800 T2e LBK I0022 

[83] 
Viesenhaeuser Hof, 

Stuttgart-
Muehlhausen 

Germany 48.780 9.180 5150 5500 4800 T2b LBK I0025 

[83] 
Viesenhaeuser Hof, 

Stuttgart-
Muehlhausen 

Germany 48.780 9.180 5150 5500 4800 T2b LBK I0026 

10 Southern Germany LBK 48.780 9.180 
5100.

0 
5400.0 

4800.
0 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[176] Resmo Sweden 56.538 16.446 2326 2451 2201 H TRB Res20 

[176] Linköping Sweden 58.408 15.625 2501 2851 2151 
N1a1a1

a BAC Ber2 

[176] Resmo Sweden 56.538 16.446 2651 2851 2451 J1d5 TRB Res15 

[176, 
177] 

Gökhem  Sweden 58.183 13.400 2751 2851 2651 H24 TRB Gök7 

[78, 
176] 

Gökhem  Sweden 58.183 13.400 3150 3400 2900 J2b1a TRB Ste9 

[176, 
177] 

Gökhem  Sweden 58.183 13.400 2951 3101 2801 K1a5 TRB Gök5 

[78, 
176, 
177] 

Gökhem  Sweden 58.183 13.400 3000 3100 2900 H TRB Gök4 

[78, 
176] 

Gökhem  Sweden 58.183 13.400 3150 3400 2900 T2b TRB Ste7 

[176, 
177] 

Gökhem  Sweden 58.183 13.400 2951 3101 2801 H TRB Gök2 

11 Sweden 57.842 14.324 
2825.

7 
3011.8 

2639.
6 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[258] 
Sultana-Valea-

Orbului 
Romania 44.259 26.853 4900 5300 4500 U 

Middle 
Neolithic 

Su13 

[258] 
Sultana-Valea-

Orbului 
Romania 44.259 26.853 4900 5300 4500 U 

Middle 
Neolithic 

Su3 

[258] 
Sultana-Valea-

Orbului 
Romania 44.259 26.853 4900 5300 4500 U4 

Middle 
Neolithic 

Su1 

[258] Curăteşti Romania 44.277 26.830 4900 5300 4500 U5 
Middle 

Neolithic 
Cu1 

[258] 
Sultana-Valea-

Orbului 
Romania 44.259 26.853 4900 5300 4500 U5b 

Middle 
Neolithic 

Su8 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 H5 
Middle 

Neolithic 
Va12 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 HV 
Middle 

Neolithic 
Va10 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 J 
Middle 

Neolithic 
Va2 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 J 
Middle 

Neolithic 
Va5 
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[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 J 
Middle 

Neolithic 
Va9 

[258] Curăteşti Romania 44.277 26.830 4900 5300 4500 K 
Middle 

Neolithic 
Cu2 

[258] 
Sultana-Valea-

Orbului 
Romania 44.259 26.853 4900 5300 4500 K 

Middle 
Neolithic 

Su4 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 H 
Middle 

Neolithic 
BV1 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 H 
Middle 

Neolithic 
BV2 

[258] 
Sultana-Valea-

Orbului 
Romania 44.259 26.853 4900 5300 4500 H 

Middle 
Neolithic 

Su11 

[258] 
Sultana-Valea-

Orbului 
Romania 44.259 26.853 4900 5300 4500 H 

Middle 
Neolithic 

Su12 

[258] 
Sultana-Valea-

Orbului 
Romania 44.259 26.853 4900 5300 4500 H 

Middle 
Neolithic 

Su14 

[258] 
Sultana-Valea-

Orbului 
Romania 44.259 26.853 4900 5300 4500 H 

Middle 
Neolithic 

Su15 

[258] 
Sultana-Valea-

Orbului 
Romania 44.259 26.853 4900 5300 4500 H 

Middle 
Neolithic 

Su16 

[258] 
Sultana-Valea-

Orbului 
Romania 44.259 26.853 4900 5300 4500 H 

Middle 
Neolithic 

Su7 

[258] 
Sultana-Valea-

Orbului 
Romania 44.259 26.853 4900 5300 4500 H 

Middle 
Neolithic 

Su9 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 H 
Middle 

Neolithic 
Va11 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 H 
Middle 

Neolithic 
Va3 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 H 
Middle 

Neolithic 
Va4 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 H 
Middle 

Neolithic 
Va6 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 H 
Middle 

Neolithic 
Va8 

[258] Sultana-Malu Roşu Romania 44.259 26.853 4250 4500 4000 R 
Middle 

Neolithic 
SMR-2 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 T1a 
Middle 

Neolithic 
Va1 

[258] Vărăşti Romania 44.237 26.248 5000 5500 4500 W6 
Middle 

Neolithic 
Va7 

12 Romania Middle Neolithic 44.250 26.559 
4925.

9 
5369.0 

4482.
8 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[258] Sultana-Malu Roşu Romania 44.259 26.853 4250 4500 4000 H 
Middle 

Neolithic 
SMR-1 

[258] Sultana-Malu Roşu Romania 44.259 26.853 4250 4500 4000 H 
Middle 

Neolithic 
SMR-

10 

[258] Sultana-Malu Roşu Romania 44.259 26.853 4250 4500 4000 H 
Middle 

Neolithic 
SMR-3 

[258] Sultana-Malu Roşu Romania 44.259 26.853 4250 4500 4000 H 
Middle 

Neolithic 
SMR-4 

[258] Sultana-Malu Roşu Romania 44.259 26.853 4250 4500 4000 H 
Middle 

Neolithic 
SMR-5 

[258] Sultana-Malu Roşu Romania 44.259 26.853 4250 4500 4000 H 
Middle 

Neolithic 
SMR-6 
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[258] Sultana-Malu Roşu Romania 44.259 26.853 4250 4500 4000 H 
Middle 

Neolithic 
SMR-7 

[258] Sultana-Malu Roşu Romania 44.259 26.853 4250 4500 4000 H 
Middle 

Neolithic 
SMR-8 

[258] Sultana-Malu Roşu Romania 44.259 26.853 4250 4500 4000 H 
Middle 

Neolithic 
SMR-9 

13 Romania Late-Middle Neolithic 44.259 26.853 
4250.

0 
4500.0 

4000.
0 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[172] 
Budakeszi 4/8 

Szőlőskert-
Tangazdaság  

Hungary 47.502 18.910 5200 5500 4900 H LBK 
BUD 
10 

[172] 
Budakeszi 4/8 

Szőlőskert-
Tangazdaság  

Hungary 47.502 18.910 5200 5500 4900 H LBK BUD 7 

[172] 
M85 Enese elkerülő 
02. Kóny, Proletár-

dűlő II 
Hungary 47.639 17.365 5200 5500 4900 H LBK KON 1 

[80, 
75] 

Debrecen Tocopart 
Erdoalja 

Hungary 47.520 21.589 
5217.

5 
5291 5144 H 

Alföld 
Linear 

Pottery 
I1498 

[172] 
Balatonszemes-

Bagódomb  
Hungary 46.789 17.785 5200 5500 4900 H LBK BAB 3 

[172] 
Balatonszemes-

Bagódomb  
Hungary 46.789 17.785 5200 5500 4900 H LBK BAB 5 

[172] 
Balatonszemes-

Bagódomb  
Hungary 46.789 17.785 5200 5500 4900 H LBK BAB 6 

[172] Bölcske-Gyűrűsvölgy Hungary 46.767 18.879 5200 5500 4900 H LBK 
BÖVÖ 

1 

[172] Bölcske-Gyűrűsvölgy Hungary 46.767 18.879 5200 5500 4900 H LBK 
BÖVÖ 

3 

[172] 
Balatonszárszó-Kis-

erdei-dűlő 
Hungary 46.820 17.858 5200 5500 4900 H LBK BSZ 15  

[172] 
Balatonszemes-

Bagódomb  
Hungary 46.789 17.785 5200 5500 4900 H26b LBK BAB 4 

[172] 
Budakeszi 4/8 

Szőlőskert-
Tangazdaság  

Hungary 47.502 18.910 4955 5060 4850 H5 LBK 
BUD 
13 

[172] 
Budakeszi 4/8 

Szőlőskert-
Tangazdaság  

Hungary 47.502 18.910 5200 5500 4900 H5 LBK 
BUD 
15 

[172] 
Balatonszárszó-Kis-

erdei-dűlő 
Hungary 46.820 17.858 5200 5500 4900 HV LBK BSZ 19  

[172] Bölcske-Gyűrűsvölgy Hungary 46.767 18.879 5200 5500 4900 J LBK 
BÖVÖ 

2 

[172] 
Balatonszárszó-Kis-

erdei-dűlő 
Hungary 46.820 17.858 5200 5500 4900 J LBK BSZ 21  

[172] 
Balatonszárszó-Kis-

erdei-dűlő 
Hungary 46.820 17.858 5200 5500 4900 J LBK BSZ 9  

[80, 
75] 

Kompolt-Kigyoser Hungary 47.167 20.833 
5205.

5 
5295 5116 J1c1 

Late 
Alföld 
Linear 

Pottery 

I1500 
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[80, 
75] 

Polgar Ferenci hat Hungary 47.880 21.192 
5163.

5 
5211 5116 J1c5 

Tiszado
b-Bükk 
Culture 

I1505 

[172] Bölcske-Gyűrűsvölgy Hungary 46.767 18.879 5200 5500 4900 K LBK 
BÖVÖ 

4 

[172] Harta-Gátőrház Hungary 46.705 19.015 5200 5500 4900 K LBK 
HARG 

4 

[172] Tolna-Mözs Hungary 46.407 18.742 5190 5310 5070 K LBK 
TOLM 

4 

[172] 
Budakeszi 4/8 

Szőlőskert-
Tangazdaság  

Hungary 47.502 18.910 5115 5220 5010 K1a LBK 
BUD 
14 

[172] Bölcske-Gyűrűsvölgy Hungary 46.767 18.879 5200 5500 4900 K1a LBK 
BÖVÖ 

5 

[80, 
75] 

Apc-Berekalya I Hungary 47.167 19.833 5104 5206 5002 K1a3a3 LBK I1496 

[172] Harta-Gátőrház Hungary 46.705 19.015 5200 5500 4900 N1a1a LBK 
HARG 

2 

[83] Szemely-Hegyes Hungary 46.400 18.740 5075 5210 4940 
N1a1a

1a3 
Hungar

y EN 
I0176 

[172] 
Balatonszárszó-Kis-

erdei-dűlő 
Hungary 46.820 17.858 5200 5500 4900 

N1a1a
3 

LBK BSZ 5  

[172] Szemely-Hegyes Hungary 46.026 18.323 5105 5210 5000 
N1a1a

3 
LBK SZEH 9 

[172] 
Budakeszi 4/8 

Szőlőskert-
Tangazdaság  

Hungary 47.502 18.910 5200 5500 4900 T1a LBK BUD 4 

[172] 
Budakeszi 4/8 

Szőlőskert-
Tangazdaság  

Hungary 47.502 18.910 5200 5500 4900 T2 LBK BUD 5 

[172] 
Budakeszi 4/8 

Szőlőskert-
Tangazdaság  

Hungary 47.502 18.910 5200 5500 4900 T2b LBK 
BUD 
12 

[172] 
M85 Enese elkerülő 
02. Kóny, Proletár-

dűlő II 
Hungary 47.639 17.365 5200 5500 4900 T2b LBK KON 3 

[172] Harta-Gátőrház Hungary 46.705 19.015 5200 5500 4900 T2b LBK 
HARG 

1 

[172] Harta-Gátőrház Hungary 46.705 19.015 5200 5500 4900 T2b LBK 
HARG 

5 

[172] 
M85 Enese elkerülő 
02. Kóny, Proletár-

dűlő II 
Hungary 47.639 17.365 4940 5050 4830 

T2b23
a 

LBK KON 5 

[172] 
M85 Enese elkerülő 
02. Kóny, Proletár-

dűlő II 
Hungary 47.639 17.365 5200 5500 4900 

T2b23
a 

LBK KON 4 

[172] Harta-Gátőrház Hungary 46.705 19.015 5200 5500 4900 T2c LBK 
HARG 

3 

[172] 
Budakeszi 4/8 

Szőlőskert-
Tangazdaság  

Hungary 47.502 18.910 5130 5220 5040 T2e LBK BUD 3 

[172] Tolna-Mözs Hungary 46.407 18.742 5105 5210 5000 T2e LBK 
TOLM 

3 

[172] 
Budakeszi 4/8 

Szőlőskert-
Tangazdaság  

Hungary 47.502 18.910 5200 5500 4900 U2 LBK BUD 9 
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[172] 
Budakeszi 4/8 

Szőlőskert-
Tangazdaság  

Hungary 47.502 18.910 5200 5500 4900 U5a1 LBK BUD 1 

[80, 
75] 

Polgar Ferenci hat Hungary 47.880 21.192 
5267.

5 
5306 5229 U5b2c 

Alföld 
Linear 

Pottery 
I1506 

[172] 
Budakeszi 4/8 

Szőlőskert-
Tangazdaság  

Hungary 47.502 18.910 5130 5220 5040 V LBK BUD 2 

[80, 
75] 

Garadna Hungary 48.520 21.168 
5206.

5 
5281 5132 

X2b-
T226C 

Bükk 
Culture 

I1499 

14 Hungary LBK 47.124 18.814 
5175.

8 
5406.7 

4944.
9 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[78] Esperstedt Germany 51.420 11.680 
4628.

5 
4705 4552 T2e RSC ESP 13 

[78] 
Oberwiederstedt 3, 

Schrammhoehe 
Germany 51.660 11.530 4619 4686 4552 T2f RSC OSH 8 

[78] 
Oberwiederstedt 3, 

Schrammhoehe 
Germany 51.660 11.530 

4494.
5 

4582 4407 H5b RSC OSH 7 

[78] 
Oberwiederstedt 3, 

Schrammhoehe 
Germany 51.660 11.530 

4437.
5 

4625 4250 HV0 RSC OSH 10 

[78] 
Oberwiederstedt 3, 

Schrammhoehe 
Germany 51.660 11.530 

4437.
5 

4625 4250 K RSC OSH 6 

[78] 
Oberwiederstedt 4, 

Arschkerbe Ost 
Germany 51.660 11.530 

4437.
5 

4625 4250 N1a1a RSC OAO 1 

[78] 
Oberwiederstedt 3, 

Schrammhoehe 
Germany 51.660 11.530 

4437.
5 

4625 4250 H1 RSC OSH 3 

[78] 
Oberwiederstedt 3, 

Schrammhoehe 
Germany 51.660 11.530 

4437.
5 

4625 4250 H16a RSC OSH 1 

[78] 
Oberwiederstedt 3, 

Schrammhoehe 
Germany 51.660 11.530 

4437.
5 

4625 4250 H89 RSC OSH 2 

[78] 
Oberwiederstedt 3, 

Schrammhoehe 
Germany 51.660 11.530 

4437.
5 

4625 4250 X2c RSC OSH 5 

15 Eastern Germany RSC 51.636 11.545 
4480.

5 
4634.8 

4326.
1 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 H SCG 
SALZ 

28 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4006 4045 3967 H SCG 
SALZ 

38 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3983.

5 
4004 3963 H SCG 

SALZ 
107 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 3675 3950 3400 H BAC 
SALZ 

55 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
4130.

5 
4172 4089 H10 SCG 

SALZ 
18 

[83] Esperstedt  Germany 51.422 11.676 3842 3887 3797 H1e1a BAC ESP 30 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 H1e7 SCG 
SALZ 

21 
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[78] Halle-Queis Germany 51.480 12.130 3675 3950 3400 H7d5 BAC HQU 4 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
4009.

5 
4034 3985 HV SCG 

SALZ 
24 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 J SCG 
SALZ 

10 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 J1c SCG 
SALZ 

11 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 J1c SCG 
SALZ 

42 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3983.

5 
4004 3963 J1c SCG 

SALZ 
110 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 J2b1a SCG 
SALZ 

12 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
4148.

5 
4171 4126 K SCG 

SALZ 
30 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
4148.

5 
4171 4126 K SCG 

SALZ 
31 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 K SCG 
SALZ 

40 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 K SCG SALZ 9 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 K1a SCG 
SALZ 

13 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 K1a SCG 
SALZ 

14 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 K1a SCG 
SALZ 

15 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 K1a SCG 
SALZ 

22 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 K1a SCG 
SALZ 

41 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 K1a SCG SALZ 8 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 
N1a1a

3 
SCG 

SALZ 
25 

[78] Karsdorf Germany 51.273 11.656 3675 3950 3400 T1a1'3 BAC KAR 22 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 T2b SCG 
SALZ 

43 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 T2b SCG 
SALZ 

44 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 T2c SCG 
SALZ 

32 

[78] Karsdorf Germany 51.273 11.656 3675 3950 3400 T2c BAC KAR 21 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 T2f SCG 
SALZ 

34 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 
U5b2a

2c 
SCG 

SALZ 
29 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 3982 3996 3968 U5b3 SCG 
SALZ 

27 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 U8b1b SCG 
SALZ 

39 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4095 4134 4056 W1c SCG 
SALZ 

19 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 W1c SCG 
SALZ 

20 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 W1c SCG 
SALZ 

35 
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[78] Salzmünde-Schiebzig Germany 51.520 11.852 4025 4100 3950 
X2b1'2'
3'4'5'6 

SCG 
SALZ 

26 

16 Eastern Germany SCG/BAC 51.503 11.844 
3990.

2 
4074.2 

3906.
3 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 H SMC 

SALZ 
116 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 H SMC 

SALZ 
66 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 3298 3334 3262 H3 SMC 
SALZ 

57 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 H3 SMC 

SALZ 
77 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 H5 SMC SALZ 1 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 H5 SMC 

SALZ 
118 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 H5 SMC SALZ 5 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 H5 SMC SALZ 6 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 H5 SMC SALZ 7 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 HV SMC 

SALZ 
48 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 J SMC 

SALZ 
54 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 J1c SMC 

SALZ 
52 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 J1c SMC 

SALZ 
74 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 J1c SMC 

SALZ 
84 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 3204 3237 3171 J1c SMC 
SALZ 

88 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 J2b1a SMC 

SALZ 
78 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 K1 SMC 

SALZ 
49 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 K1a SMC 

SALZ 
70 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 3302 3339 3265 
K1a4a1

a2 
SMC 

SALZ 
82 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 

N1a1a
3 

SMC 
SALZ 

67 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 

N1a1a
3 

SMC 
SALZ 

90 

[83] Esperstedt  Germany 51.422 11.676 3223 3360 3086 T2b SMC ESP 24 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 T2b SMC 

SALZ 
63 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 3273 3310 3236 U3a SMC 
SALZ 

60 
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[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 U3a SMC SALZ 3 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 U3a SMC SALZ 4 

[80] 
Salzmuende-

Schiebzig 
Germany 51.520 11.852 

3212.
5 

3400 3025 U3a1 SMC I0551 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 3274 3330 3218 U5b SMC 
SALZ 

89 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 V SMC SALZ 2 

[78] Salzmünde-Schiebzig Germany 51.520 11.852 
3212.

5 
3400 3025 

X2b1'2'
3'4'5'6 

SMC 
SALZ 

61 

17 Eastern Germany SMC 51.517 11.846 
3222.

5 
3383.7 

3061.
3 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[78] Quedlinburg IX Germany 51.790 11.140 3675 3950 3400 H BAC QLB 14 

[78] Quedlinburg VII 2 Germany 51.792 11.147 3675 3950 3400 H BAC QLB 4 

[78] Quedlinburg IX Germany 51.790 11.140 3675 3950 3400 HV BAC QLB 15 

[78] Quedlinburg IX Germany 51.790 11.140 3575 3640 3510 J BAC QLB 13 

[78] Quedlinburg VII 2 Germany 51.792 11.147 3675 3950 3400 K1a BAC QLB 1  

[78] Quedlinburg VII 2 Germany 51.792 11.147 3675 3950 3400 K1a BAC QLB 5 

[78] Quedlinburg VII 2 Germany 51.792 11.147 3660 3700 3620 N1a1a BAC QLB 8 

[78] Quedlinburg IX Germany 51.790 11.140 3415 3460 3370 T2b BAC QLB 17 

[78] Quedlinburg VII 3 Germany 51.792 11.147 3675 3950 3400 T2c BAC QLB 9 

[78] Quedlinburg IX Germany 51.790 11.140 3575 3640 3510 T2e BAC QLB 18 

[78] Quedlinburg VII 2 Germany 51.792 11.147 3675 3950 3400 
U5b2a

2 
BAC QLB 6 

[78] Quedlinburg VII 2 Germany 51.792 11.147 3675 3950 3400 U8a1a BAC QLB 2 

[78] Quedlinburg VII 2 Germany 51.792 11.147 3675 3950 3400 X BAC QLB 7 

[78] Quedlinburg IX Germany 51.790 11.140 3670 3710 3630 X2c BAC QLB 11 

18 Western Germany BAC 51.791 11.144 
3640.

7 
3835.7 

3445.
7 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[78] Benzingerode I Germany 51.830 10.860 2875 3100 2650 H BEC 
BENZ 

17 

[78] Benzingerode I Germany 51.830 10.860 2875 3100 2650 H BEC 
BENZ 

36 

[78] Benzingerode I Germany 51.830 10.860 2875 3100 2650 
H1e1a

3 
BEC 

BENZ 
40 

[78] Benzingerode I Germany 51.830 10.860 2875 3100 2650 H5 BEC 
BENZ 

29 

[78] Benzingerode I Germany 51.830 10.860 2875 3100 2650 K1 BEC 
BENZ 

33 

[78] Benzingerode I Germany 51.830 10.860 3010 3101 2919 K1a BEC BENZ 3 

[78] Benzingerode I Germany 51.830 10.860 2875 3100 2650 K1a BEC 
BENZ 

27 

[78] Benzingerode I Germany 51.830 10.860 3010 3101 2919 T2b BEC BENZ 6 
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[78] Benzingerode I Germany 51.830 10.860 2875 3100 2650 T2b BEC 
BENZ 

19 

[78] Benzingerode I Germany 51.830 10.860 
3174.

5 
3251 3098 U5a BEC 

BENZ 
20 

[78] Benzingerode I Germany 51.830 10.860 
3011.

5 
3104 2919 U5a BEC 

BENZ 
14 

[78] Benzingerode I Germany 51.830 10.860 2875 3100 2650 U5b BEC 
BENZ 

35 

[78] Benzingerode I Germany 51.830 10.860 2875 3100 2650 
U5b1c

1 
BEC BENZ 1 

[78] Benzingerode I Germany 51.830 10.860 3010 3101 2919 
U5b2a

1a 
BEC 

BENZ 
18 

[78] Benzingerode I Germany 51.830 10.860 2875 3100 2650 V BEC 
BENZ 

39 

[78] Benzingerode I Germany 51.830 10.860 2875 3100 2650 W BEC 
BENZ 

15 

[78] Benzingerode I Germany 51.830 10.860 2875 3100 2650 X BEC 
BENZ 

37 

19 Western Germany BEC 51.830 10.860 
2924.

5 
3109.3 

2739.
6 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[260] Prissé-la-Charrière France 46.153 -0.484 4206 4336 4076 U5b 
Neolithi

c 
Prissé 

2 

[260] Prissé-la-Charrière France 46.153 -0.484 
4257.

5 
4340 4175 N1a 

Neolithi
c 

Prissé 
4 

[260] Prissé-la-Charrière France 46.153 -0.484 
4255.

5 
4340 4171 X2 

Neolithi
c 

Prissé 
1 

20 Western France Prissé  46.153 -0.484 
4239.

7 
4338.7 

4140.
7 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 H1 TRE 
TRE 
593 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 H1 TRE 
TRE 
596 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 H1 TRE 
TRE 
603 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 H3 TRE 
TRE 
577 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 H3 TRE 
TRE 
581 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 H3 TRE 
TRE 
600 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 HV0 TRE 
TRE 
573 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 HV0 TRE 
TRE 
609 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 J1 TRE 
TRE 
139 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 J1 TRE 
TRE 
209 
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[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 J1 TRE 
TRE 
583 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 J1 TRE 
TRE 
587 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 J1 TRE 
TRE 
612 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 J1 TRE 
TRE 
616 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 K1a TRE 
TRE 
604 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 K1a TRE 
TRE 
614 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 T2b TRE 
TRE 
584 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 T2b TRE 
TRE 
588 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 U TRE 
TRE 
571 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 U5 TRE 
TRE 
137 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 U5 TRE 
TRE 
195 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 U5 TRE 
TRE 
575 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 U5 TRE 
TRE 
579 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 U5b1c TRE 
TRE 
611 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 V TRE 
TRE 
637 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 X2 TRE 
TRE 
570 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 X2 TRE 
TRE 
592 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 X2 TRE 
TRE 
615 

[78, 
253] 

Treilles France 43.930 3.027 2960 3030 2890 X2 TRE 
TRE 
636 

21 South-Eastern France Treilles 43.930 3.027 
2960.

0 
3030.0 

2890.
0 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[78, 
261] 

Avellaner cave Spain 42.058 2.539 
4760.

7 
5069.5 4452 H3 

Epicardial 

Culture AVE03 

[78, 
261] 

Avellaner cave Spain 42.058 2.539 
4760.

7 
5069.5 4452 U5 

Epicardial 

Culture AVE07 

[78, 
261] 

Avellaner cave Spain 42.058 2.539 
4760.

7 
5069.5 4452 T2b 

Epicardial 

Culture AVE04 

[78, 
261] 

Avellaner cave Spain 42.058 2.539 
4760.

7 
5069.5 4452 T2b 

Epicardial 

Culture AVE05 

[78, 
261] 

Avellaner cave Spain 42.058 2.539 
4760.

7 
5069.5 4452 K1a 

Epicardial 

Culture AVE01 
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[78, 
261] 

Avellaner cave Spain 42.058 2.539 
4760.

7 
5069.5 4452 K1a 

Epicardial 

Culture AVE02 

[78, 
261] 

Avellaner cave Spain 42.058 2.539 
4760.

7 
5069.5 4452 K1a 

Epicardial 

Culture AVE06 

22 Catalonia Epicardial 42.058 2.539 
4760.

8 
5069.5 

4452.
0 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[166] Sant Pau del Camp Spain 41.376 2.169 3975 4250 3700 K 
Epicardial 

Culture 
6SP 

0102 

[166] Sant Pau del Camp Spain 41.376 2.169 3975 4250 3700 H20 
Epicardial 

Culture 
26SP 
0102 

[166] Sant Pau del Camp Spain 41.376 2.169 3975 4250 3700 N 
Epicardial 

Culture 
27SP 
0102 

23 Catalonia Late Epicardial 41.376 2.169 
3975.

0 
4250.0 

3700.
0 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[78, 
167] 

Marizulo (Gipuzkoa) Spain 43.247 -1.991 4144 4315 3973 U5 
Neolithic 
farming 

MZ-1 

[78, 
167] 

Fuente Hoz (Arava) Spain 42.802 -2.898 4019 4330 3708 H 
Neolithic 
farming 

FH-3 

[78, 
167] 

Fuente Hoz (Arava) Spain 42.802 -2.898 4019 4330 3708 H 
Neolithic 
farming 

FH-6 

[78, 
167] 

Fuente Hoz (Arava) Spain 42.802 -2.898 4019 4330 3708 U5a 
Neolithic 
farming 

FH-2 

[78, 
167] 

Fuente Hoz (Arava) Spain 42.802 -2.898 4019 4330 3708 U 
Neolithic 
farming 

FH-1 

[78, 
167] 

Fuente Hoz (Arava) Spain 42.802 -2.898 4019 4330 3708 U 
Neolithic 
farming 

FH-4 

[78, 
167] 

Fuente Hoz (Arava) Spain 42.802 -2.898 4019 4330 3708 U 
Neolithic 
farming 

FH-5 

24 Spain Basque country 42.865 -2.768 
4036.

9 
4327.9 

3745.
9 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[78, 
174, 
175] 

Algar do Bom Santo Portugal 39.145 -9.019 3490 3630 3350 H 
Neolithic 
Portugal 

ABS.AE
1.521 

[78, 
174, 
175] 

Algar do Bom Santo Portugal 39.145 -9.019 3490 3630 3350 H 
Neolithic 
Portugal 

ABS.BB
4.250 

[78, 
174, 
175] 

Algar do Bom Santo Portugal 39.145 -9.019 3490 3630 3350 U5a1a 
Neolithic 
Portugal 

ABS.AE
2.175 

25 Portugal coastal Late Neolithic 39.145 -9.019 
3490.

0 
3630.0 

3350.
0 
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Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[78, 
174, 
175] 

Perdigões Portugal 38.430 -7.534 3250 3500 3000 U5a1a 
Neolithic 
Portugal 

Perd1 

[78, 
174, 
175] 

Perdigões Portugal 38.430 -7.534 3250 3500 3000 U5a1a 
Neolithic 
Portugal 

Perd2 

[78, 
174, 
175] 

Perdigões Portugal 38.430 -7.534 3250 3500 3000 H 
Neolithic 
Portugal 

Perd5 

[78, 
174, 
175] 

Perdigões Portugal 38.430 -7.534 3250 3500 3000 H 
Neolithic 
Portugal 

Perd6 

[78, 
174, 
175] 

Perdigões Portugal 38.430 -7.534 3250 3500 3000 H 
Neolithic 
Portugal 

Perd7 

[78, 
174, 
175] 

Perdigões Portugal 38.430 -7.534 3250 3500 3000 H 
Neolithic 
Portugal 

Perd8 

26 Portugal inland Late Neolithic 38.430 -7.534 
3250.

0 
3500.0 

3000.
0 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[173] 
Cova de la Sarsa, 

València  
Spain 38.760 -0.582 5274 5321 5227 K1a4a1 

Early 
Neolithic 

CS767
5 

[173] Cova de l'Or, Alicante  Spain 38.845 -0.364 5335 5360 5310 H4a1a 
Early 

Neolithic 
H3C6 

Spain, Valencia (not taken into account) 38.802 -0.473 
5304.

5 
5340.5 

5268.
5 

   

           

Ref. Location Country Latitude 
Longi-
tude 

cal 
BCE 

mean 

cal BCE 
max 

cal 
BCE 
min 

mtDN
A HG 

Archeol 
context 

sample 
iD 

[171] Paliambela Greece 40.511 22.507 4401 4452 4350 J1c1 
Late 

Neolithic 
Pal7 

[171] Kleitos Greece 40.433 21.854 
4112.

5 
4230 3995 K1a2 

Final 
Neolithic 

Klei10 

[171] Revenia Greece 39.488 20.918 6351 6438 6264 X2b 
Early 

Neolithic 
Rev5 

Greece (not taken into account) 40.144 21.760 
4954.

8 
5040.0 

4869.
7 

   

 

  



198 

 

Data S2 
Numbers of individuals with known mtDNA and classified by regional culture and haplogroup. These 

numbers have been computed from the tables in Data. 

Region 
Number of individuals  

K N1a HV R0 H5 T2 J U3 W X V other total 

1 Syria PPNB 6 0 1 3 0 0 0 0 0 0 0 5 U, L3,N, H 15 

2 Anatolia 10 5 0 0 1 2 2 2 1 3 0 2 U8, H 28 

3 Hungary-Croatia 
Starcevo 

12 3 1 0 1 9 5 1 2 3 3 4 U4, T1a, H 44 

4 Eastern Germany LBK 8 3 1 0 0 7 8 0 0 0 0 9 H, H1, U5 36 

5 Western Germany LBK 11 9 3 0 0 10 4 0 3 1 5 10 
H, H1, H2, T; 
U5 

56 

6 North-Eastern Spain 
Cardial 

4 1 0 0 0 1 1 0 0 2 1 5 H, N 15 

7 Spain Navarre 4 0 1 0 0 1 2 0 0 1 0 27 H, H3, U, U5 36 

8 Portugal coastal Early 
Neolithic 

0 0 0 0 0 0 0 0 0 0 1 9 H, H3, H4, U 10 

9 Romania Starcevo 0 0 1 0 0 0 1 0 0 0 0 3 H, T1a 5 

10 Southern Germany 
LBK 

0 0 0 0 0 4 0 0 0 0 0 0 - 4 

11 Sweden 1 1 0 0 0 1 2 0 0 0 0 4 H, H24 9 

12 Romania Middle 
Neolithic 

2 0 1 1 1 0 3 0 1 0 0 20 
U, U4, U5, H, 
T1a 

29 

13 Romania Late-Middle 
Neolithic 

0 0 0 0 0 0 0 0 0 0 0 9 H 9 

14 Hungary LBK 6 4 1 0 2 10 5 0 0 1 1 15 
H, T1a, U2, 
U5 

45 

15 Eastern Germany RSC 1 1 1 0 1 2 0 0 0 1 0 3 H, H16, H89 10 

16 Eastern Germany 
SCG/BAC 

10 1 1 0 0 5 5 0 3 1 0 12 
H, H10, T1a, 
U5, U8 

38 

17 Eastern Germany 
SMC 

3 2 1 0 5 2 6 4 0 1 1 5 H, H3, U5 30 

18 Western Germany 
BAC 

2 1 1 0 0 3 1 0 0 2 0 4 H, U5, U8 14 

19 Western Germany 
BEC 

3 0 0 0 1 2 0 0 1 1 1 8 
H, H1, U5a, 
U5b 

17 

20 Western France 
Prissé  

0 1 0 0 0 0 0 0 0 1 0 1 U5b 3 

21 South-Eastern France 
Treilles 

2 0 2 0 0 2 6 0 0 4 1 12 
H1, H3, U, 
U5 

29 

22 Catalonia Epicardial 3 0 0 0 0 2 0 0 0 0 0 2 H3, U5 7 

23 Catalonia Late 
Epicardial  

1 0 0 0 0 0 0 0 0 0 0 2 H20, N 3 

24 Spain Basque country 0 0 0 0 0 0 0 0 0 0 0 7 H, U,U5 7 

25 Portugal coastal Late 
Neolithic  

0 0 0 0 0 0 0 0 0 0 0 3 H, U5, U8 3 
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26 Portugal inland Late 
Neolithic 

0 0 0 0 0 0 0 0 0 0 0 6 H, U5 6 

Total 89 32 16 4 12 63 51 7 11 22 14 187  508 
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Data S3 
%K from S2 Data for the 26 regional cultures. Mean dates and locations, from S1 Data, used in Fig. 5.1. 

 Haplogroup 
K (%) 

Number of 
individuals 

Latitude Longitude 
Distance to Ras 

Shamra (km) 
Time (years 

BCE) 
Time error 
(± years) 

 

1 Syria PPNB 40.0 15 35.3978 37.4274 155.01 7258.33 175.00 

2 Anatolia 35.7 28 40.2923 29.5827 751.42 6244.23 154.70 

3 Hungary-Croatia Starcevo 27.3 44 45.9459 18.7219 1831.91 5674.55 216.14 

4 Eastern Germany LBK 22.2 36 51.3561 11.6423 2596.33 5125.08 300.86 

5 Western Germany LBK 19.6 56 51.8814 10.9812 2666.47 5114.77 217.84 

6 North-Eastern Spain 
Cardial 

26.7 15 41.8868 1.0537 3066.24 5286.00 85.90 

7 Spain Navarre 11.1 36 42.6178 -2.0807 3325.90 4941.25 343.00 

8 Portugal coastal Early 
Neolithic 

0.0 10 39.6214 -8.4542 3879.19 5183.70 264.30 

9 Romania Starcevo 0.0 5 45.6062 24.3012 1471.46 6000.00 500.00 

10 Southern Germany LBK 0.0 4 48.7800 9.1800 2613.04 5088.00 287.50 

11 Sweden 11.1 9 57.8425 14.3240 2937.19 2825.67 186.11 

12 Romania Middle 
Neolithic 

6.9 29 44.2500 26.5592 1239.75 4925.86 443.10 

13 Romania Late-Middle 
Neolithic 

0.0 9 44.2594 26.8531 1225.01 4250.00 250.00 

14 Hungary LBK 13.3 45 47.1238 18.8142 1900.66 5176.00 230.90 

15 Eastern Germany RSC 10.0 10 51.6360 11.5450 2619.05 4480.45 154.35 

16 Eastern Germany 
SCG/BAC 

26.3 38 51.5034 11.8444 2593.66 3990.24 83.92 

17 Eastern Germany SMC 10.0 30 51.5168 11.8461 2594.38 3222.47 161.20 

18 Western Germany BAC 14.3 14 51.7909 11.1441 2651.59 3640.71 195.00 

19 Western Germany BEC 17.6 17 51.8300 10.8600 2670.34 2924.47 184.82 

20 Western France Prissé 0.0 3 46.1527 -0.4844 3230.44 4239.67 99.00 

21 South-Eastern France 
Treilles 

6.9 29 43.9303 3.0273 2923.48 2960.00 70.00 

22 Catalonia Epicardial 42.9 7 42.0578 2.5389 2944.35 4760.75 308.75 

23 Catalonia Late 
Epicardial 

33.3 3 41.3761 2.1694 2972.00 3975.00 275.00 

24 Spain Basque country 0.0 7 42.8652 -2.7683 3382.41 4036.86 291.00 

25 Portugal coastal Late 
Neolithic 

0.0 3 39.1447 -9.0186 3934.71 3490.00 140.00 

26 Portugal inland Late 
Neolithic 

0.0 6 38.4295 -7.5341 3819.67 3250.00 250.00 
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Data S4 
Archaeological and simulated arrival times at 8 cultural regions for different sea-travel ranges. Values 

used in Fig. 5.12 (see Sec. 5.8.6). 
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Data S5 
Spread in homogeneous space. Values used in Fig. 5.24 (see Sec. 5.8.13). 

𝜼 
front speed [km/year] 

Eq. (S60) simulation error [%] 

0 1,1047 1,1345 2,6935 

0,01 1,1100 1,1388 2,5907 

0,02 1,1153 1,1439 2,5697 

0,05 1,1304 1,1595 2,5760 

0,1 1,1539 1,1858 2,7599 

0,2 1,1956 1,2309 2,9555 

0,35 1,2473 1,2925 3,6200 

0,5 1,2895 1,3435 4,1879 

0,75 1,3445 1,4098 4,8548 

1 1,3862 1,4605 5,3624 
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Data S6 
Fraction of the population with haplogroup K in each regional culture (from S3 Data) and their 80% 

confidence-level (CL) ranges. Values on white background have at least 9 individuals, and they have 

been used in Figs. 5.2-5.3. 

Oldest Neolithic genetic 
regional data (including 

Sweden) 
%K 

# 
individuals 

CL 80% 
lower bound 

CL 80% 
upper 
bound 

CL 80% error 
- 

CL 80% 
error + 

Distance  to 
Ras Shamra 

(km) 

1 Syria PPNB 40.00 15 26.67 53.33 13.33 13.33 155.01 

2 Anatolia 35.71 28 25.00 46.43 10.71 10.71 751.42 

3 Hungary-Croatia 
Starcevo 

27.27 44 18.18 36.36 9.09 9.09 1831.91 

4 Eastern Germany LBK 22.22 36 13.89 30.56 8.33 8.33 2596.33 

5 Western Germany LBK 19.64 56 12.50 26.79 7.14 7.14 2666.47 

6 North-Eastern Spain 
Cardial 

26.67 15 13.33 40.00 13.33 13.33 3066.24 

7 Spain Navarre 11.11 36 5.56 16.67 5.56 5.56 3325.90 

8 Portugal coastal Early 
Neolithic 

0.00 10 0.00 14.00 0.00 14.00 3879.19 

9 Romania Starcevo 0.00 5     1471.46 

10 Southern Germany 
LBK 

0.00 4     2613.04 

11 Sweden 11.11 9 0.00 22.22 11.11 11.11 2937.19 

More recent genetic 
regional data 

       

12 Romania Middle 
Neolithic 

6.90 29 0.00 13.79 6.90 6.90 1239.75 

13 Romania Late-Middle 
Neolithic 

0.00 9 0.00 15.00 0.00 0.15 1225.01 

14 Hungary LBK 13.33 45 6.67 20.00 6.67 6.67 1900.66 

15 Eastern Germany RSC 10.00 10 0.00 20.00 10.00 10.00 2619.05 

16 Eastern Germany 
SCG/BAC 

26.32 38 18.42 34.21 7.89 7.89 2593.66 

17 Eastern Germany 
SMC 

10.00 30 3.33 16.67 6.67 6.67 2594.38 

18 Western Germany 
BAC 

14.29 14 0.00 28.57 14.29 14.29 2651.59 

19 Western Germany 
BEC 

17.65 17 5.88 29.41 11.76 11.76 2670.34 

20 Western France Prissé 0.00 3     3230.44 

21 South-Eastern France 
Treilles 

6.90 29 0.00 13.79 6.90 6.90 2923.48 

22 Catalonia Epicardial 42.86 7     2944.35 
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23 Catalonia Late 
Epicardial 

33.33 3     2972.00 

24 Spain Basque country 0.00 7     3382.41 

25 Portugal coastal Late 
Neolithic 

0.00 3     3934.71 

26 Portugal inland Late 
Neolithic 

0.00 6     3819.67 
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Data S7 
Early Neolithic K haplotypes relative to rCRS. Data obtained from the sources in S1 Data and used in 

Sec. 5.8.1. 

Sample ID Region 
mtDNA 

haplogroup 
cal BCE Haplotype 

Polymorphisms relative to rCRS 
(nucleotide positions 16106-16390) 

H25 1 Syria PPNB K 7400 H01 T16224C  T16311C 

H4 1 Syria PPNB K 7400 H02 T16311C 

H7 1 Syria PPNB K 7400 H02 T16311C 

R65-14 1 Syria PPNB K 6975 H03 T16224C  T16311C  C16366T 

R65-1S 1 Syria PPNB K 6975 H03 T16224C  T16311C  C16366T 

R65-C8-SEB 1 Syria PPNB K 6975 H03 T16224C  T16311C  C16366T 

Bar8 2 Anatolia K1a2 6121 H01 T16224C  T16311C 

I0746 2 Anatolia K1a or K1a1 6300 H01 T16224C  T16311C 

I1100 2 Anatolia K1a or K1a6 6300 H04 T16224C  T16311C  G16290A 

I0727 2 Anatolia K1a2 6000 H01 T16224C  T16311C 

I1583 2 Anatolia K1a2 6300 H01 T16224C  T16311C 

I1102 2 Anatolia K1a3a 6300 H01 T16224C  T16311C 

I0707 2 Anatolia K1a4 6300 H01 T16224C  T16311C 

I0724 2 Anatolia K1a4 6000 H01 T16224C  T16311C 

I1579 2 Anatolia K1a-C150T 6300 H05 T16189C  T16224C  T16311C 

I1103 2 Anatolia K1b1b1 6300 H01 T16224C  T16311C 

VINJ2 3 Hungary-Croatia Starcevo K 5700 H08 T16224C  C16261T  T16311C 

VINK1 3 Hungary-Croatia Starcevo K1a 5700 H01 T16224C  T16311C 

VINK5 3 Hungary-Croatia Starcevo K1a 5700 H05 T16189C  T16224C  T16311C 

BAM02 3 Hungary-Croatia Starcevo K 5735 H07 T16172C  T16224C  T16311C 

BAM04 3 Hungary-Croatia Starcevo K 5595 H01 T16224C  T16311C 

BAM16 3 Hungary-Croatia Starcevo K 5700 H01 T16224C  T16311C 

M6-116.4 3 Hungary-Croatia Starcevo K 5700 H06 A16166G  T16224C  T16311C 

BAM07 3 Hungary-Croatia Starcevo K1 5700 H01 T16224C  T16311C 

BAM24 3 Hungary-Croatia Starcevo K1 5700 H01 T16224C  T16311C 

LGCS4 3 Hungary-Croatia Starcevo K1a 5700 H05 T16189C  T16224C  T16311C 

BAM09 3 Hungary-Croatia Starcevo K1a 5700 H05 T16189C  T16224C  T16311C 

BAM19 3 Hungary-Croatia Starcevo K1a 5700 H01 T16224C  T16311C 

KAR 10 4 Eastern Germany LBK K 5030 H01 T16224C  T16311C 

KAR 54 4 Eastern Germany LBK K1a 5138 H01 T16224C  T16311C 

KAR 7 4 Eastern Germany LBK K1a 5138 H10 T16209C  T16224C  T16311C 

NAU 3 4 Eastern Germany LBK K1a 5138 H01 T16224C  T16311C 

KAR 8 4 Eastern Germany LBK K1b1a 5138 H11 T16224C  T16311C  G16319A 

KAR 55 4 Eastern Germany LBK K2a5 5138 H01 T16224C  T16311C 

UWS 3 4 Eastern Germany LBK K 5138 H01 T16224C  T16311C 

UWS 2 4 Eastern Germany LBK K 5138 H09 T16224C  T16249C  T16311C 

deb38 5 Western Germany LBK K 5138 H01 T16224C  T16311C 

deb02 5 Western Germany LBK K 5075 H01 T16224C  T16311C 

deb29ll 5 Western Germany LBK K 4982 -- Not Determined 

deb10 5 Western Germany LBK K1a 5138 H01 T16224C  T16311C 
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HAL 12 5 Western Germany LBK K 5138 H01 T16224C  T16311C 

HAL 18 5 Western Germany LBK K 5138 H01 T16224C  T16311C 

HAL 31 5 Western Germany LBK K 5122 H09 T16224C  T16249C  T16311C 

HAL 20 5 Western Germany LBK K1a 5138 H01 T16224C  T16311C 

HAL 9 5 Western Germany LBK K1a 5138 H01 T16224C  T16311C 

I0048 5 Western Germany LBK K1a 5129 H01 T16224C  T16311C 

I1550 5 Western Germany LBK K1a2 5138 H01 T16224C  T16311C 

CSA152223 6 North-Eastern Spain Cardial K 5390 H01 T16224C  T16311C 

CB13 6 North-Eastern Spain Cardial K1a2a 5415 H01 T16224C  T16311C 

1CH0102 6 North-Eastern Spain Cardial K 5164 H01 T16224C  T16311C 

Troc4 6 North-Eastern Spain Cardial K1a2a 5123 H01 T16224C  T16311C 

PAT-2E2 7 Spain Navarre K 4968 H01 T16224C  T16311C 

CAS-181 7 Spain Navarre K1a 4933 H01 T16224C  T16311C 

CAS-202 7 Spain Navarre K1a 4933 H01 T16224C  T16311C 

CAS-191 7 Spain Navarre K1a 4933 H01 T16224C  T16311C 

Gök5 11 Sweden K1a5 2951 H12 T16224C  T16311C  T16362C 
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Appendix B. Copy of original publications derived 

from this thesis 
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