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16.1 Introduction 

 The Neolithic transition is defined as the shift from hunting-gathering (Mesolithic) 

into farming and stockbreeding (Neolithic). When did it happen? In Archaeology, years 

Before Present (BP) are defined as years before 1950 AD. The Neolithic arrived from the 

Near East into Southeastern Europe at about 8000 years BP. Then it spread gradually 

westwards and northwards, until about 5000 years BP (Fig. 16.1). Europe is the continent for 

which more Neolithic sites per unit area have been dated. This is the reason why most 

models on Neolithic transitions were originally applied to Europe. The spread of farming in 

Europe can be seen in Fig. 16.1, which is an spatial interpolation of the dates of 918 early 

Neolithic sites [1] based on a database gathered by archaeologist M. vander Linden [29].  

 As pointed out by Lemmen and Gronenborn (Chap. 17, this volume), it is always 

important to attempt higher levels of data density and quality. However, the arrival times of 

the Neolithic at several areas (e.g., Greece, southern Italy, Germany and England) are similar 

in Figs. 16.1 and 17.1. Note that Fig. 16.1 uses years BP, whereas Fig. 17.1 uses years before 

Christ (BC).  

 In this chapter, our first aim is to use an interpolation map (Fig. 16.1) to obtain a 

mathematically justified map of local speeds of the Neolithic front (this is not possible using 

drawings such as Fig. 17.1). Once we have a speed map, we will explore possible 

explanations in terms of human behavior by making use of the appropriate generalized 

diffusion equations. 

 Figure 16.1 shows at once that we are dealing with a gradual spread. Of course, 

there are some anomalously old/young regions (e.g., the patch inside the black rectangle in 

Fig. 16.1). Different interpolation methods yield some differences for small anomalous 

regions, but those of the size of that inside the rectangle in Fig. 16.1 and larger 

usually appear independently of the interpolation method used. The existence of rivers, 

mountains, different types of soils, etc., probably makes some areas more attractive for 

farmers than others. This is one of the reasons why the presence of anomalously old or 

young regions in interpolation maps is probably unavoidable (even if we had a database 

totally free of errors and with all dates corresponding exactly to the earliest farming activity 

at each site). A very clear example are the Alps. These mountains cause an anomalously 
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young region (as compared to its surroundings) in Fig. 16.1. This Alpine region contains 

many sites and is anomalously young, independently of the interpolation method and also 

of the database used. Thus anomalous regions are not necessarily artifacts arising from 

limitations of the database and/or the interpolation technique. Nevertheless, some of them 

may certainly be artifacts, especially if they contain few or no sites and their presence 

depends on the interpolation method and/or database used. This is probably the case for 

the anomalously old region inside the rectangle in Fig. 16.1. It is possible that using future 

databases this region will not appear (e.g., because a site inside it is erroneously too old 

and/or some sites at the right of it are erroneously too early). However, practice in spatial 

interpolation of Neolithic dates shows that some such anomalous regions always appear 

(and usually we have no means to know their origin). But this should not be a problem after 

all. Smoothing techniques are well established in geographic analysis. They yield, with 

increasing coarse graining, maps with decreasing subtleness, where sufficiently small 

anomalous regions gradually disappear without substantially modifying the overall spread 

pattern. For example, Fig. 16.2.b has been obtained from Fig. 16.1 by applying 10 times a 

smoothing procedure that simply replaces the date of each spatial point in the interpolation 

grid by the average of that date and those of the 8 surrounding points. It is seen that the 

isochrones in Fig. 16.2b are smoother than those in Fig. 16.1. By repeating this smoothing 

procedure more times, we obtain still smoother isochrones (Fig. 16.2c). This makes it 

possible to analyze the overall spatial trends by getting rid of irrelevant local features that 

are likely artifacts due to our limited knowledge (not all sites have been discovered, and 

sources of error exist). For example, the anomalously old region in the rectangle in Fig. 16.1 

has disappeared in Fig. 16.2c but the continental trend in the dates (i.e., the gradual 

decrease westwards and northwards) remains. It is worth to mention that in this way, a 

totally disordered map of speed vectors becomes a coherent, meaningful directional map of 

the Neolithic spread (Figs. S1 and 2 in Ref. [1]). For these reasons, smoothing seems a 

reasonable procedure to estimate local speed directions and magnitudes (in kilometers per 

year) [1], as we will see below. Note that this is obviously impossible from drawings such as 

Fig. 17.1. The aim of Chap. 17 is a different one, because it is based on a mathematical 

model that their authors have compared, similarly to other researchers [2-4], to the average 

speed implied by the dates obtained by radiocarbon dating (Sec. 17.3 in this volume and 

Ref. [5]). At the end of this chapter, we will discuss the mathematical model used in Chapter 

17. 

 The spread of the Neolithic in Europe was clearly gradual, because as we move 

westwards and northwards, we find more and more recent dates (Figs. 16.1 and 17.1). This 

suggests that it may make sense to apply diffusive models to the spread of the Neolithic. A 

quantitative justification is the following. We know from Chap. 2 that diffusion equations 

provide large-scale descriptions of systems where there are, at the small scale, molecules or 

individuals following random walks (see Fig. 2.5). Does this scenario apply to the spread of 

the Neolithic? For the moment, assume a very simple model in which agriculture would 
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have spread only due to the dispersal of farmers. Then each random walk is the trajectory 

obtained by joining, e.g., the birthplaces of an individual’s parent, the individual in question, 

one of his/her children, and so on. Looking at Fig. 16.1, we can easily estimate that 

agriculture spread from Greece to the Balkans and Central Europe at a speed of roughly 

1 km/year. Thus, assuming a generation time of about 32 year [6], farming spread about 

32 km per generation. This is much less than the scale of Fig. 16.1 (about 3000 km). This 

comparison provides a quantitative justification for the use of diffusion-type equations in 

models of the Neolithic spread. 

 

 

 

Fig. 16.1. Interpolation of the dates of 918 early Neolithic sites (circles). Each color corresponds to a 250-year interval. We 

see that the oldest sites are located in the southeast. Note also that farming propagated faster westwards than 

northwards. Moreover, slowdowns in the Alps and Northern continental Europe are clearly displayed. The patch inside the 

black rectangle is an example of an anomalously old region, as compared to its surroundings. Due to the paucity of sites, 

the contours are less detailed in some regions (e.g., upper right and lower left). This map was obtained by means of 

universal linear kriging interpolation. Dates are given in calibrated years Before Present (BP), as defined in the main text 

(calibration is a well-known correction, due to the fact that the percentage of radioactive carbon in the atmosphere is not 

constant). Adapted from Ref. [1]. 
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Fig. 16.2. Isochrones obtained by smoothing (“coarse graining”) the map in Fig. 16.1 a single time (a), 10 times (b) and 20 

times (c) (i.e. with 1, 10 and 20 iteration steps, where each step consists in replacing the date of each individual point of 

the map by the average of that date and those of the 8 surrounding points of the interpolation grid). A map obtained by 

smooting 40 times is included as Fig. 16.4a. Note that anomalous regions (such as that inside the black rectangle in 

Fig. 16.1) gradually disappear. This is useful to perform quantitative estimates of local speed vectors and magnitudes (see 

Fig. 16.4b for the latter). Adapted from Ref. [1], Supp. Info. Appendix, Sect. S1 

(a) 

(b) 

(c) 
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 Ammerman and Cavalli-Sforza [7] were the first to apply a diffusive model to the 

spread of the Neolithic. They used Fisher's wave-of-advance model. In this model, the speed 

of the Neolithic front is given by Eq. (2.17), 

������� = 2√��,     (16.1) 

where � is the diffusion coefficient and � the initial growth rate (i.e., the net reproduction 

rate at low population densities). This relation has already been introduced as Eq. (2.17) in 

chapter 2. Following Ref. [2] we sketch, for the interested reader, the line of reasoning 

leading, eventually, to this relation. 

 Let �(�, �, �) stand for the population density of Neolithic individuals (i.e., farmers), 

where � and � are Cartesian coordinates and � is the time. We assume that a well-defined 

time scale � between two successive migrations occurs. This model (to be improved in Sec. 

16.3) is based on the assumption (see Ref. [8], Sec. 11.2) that, between the values � and 

� + �, we can add up the changes in the number of individuals in an area differential 

�� = ��	�� due to migrations (sub index m) and to population growth (sub index g), 

 [�(�, �, � + �) − �(�, �, �)]�� = [�(�, �, � + �) − �(�, �, �)	]��� +   

          

[�(�, �, � + �) − �(�, �, �)	]���.              (16.2) 

 Let Δ� and Δ� stand for the coordinate variations of a given individual during �. We 

introduce the  dispersal kernel �� (∆�, ∆�), defined such that �� (∆�, ∆�) is the probability 

per unit area to move from �� + ∆�, � + ∆�� at time t to (�, �) at time � + �. We can 

rewrite the parentheses in the first term on the right as 

[�(�, �, � + �) − �(�, �, �)]� = � � �∆

�

��

	��

�

��

	�∆�	�∆� − �(�, �, �) 

        ≈
����

�
�
���

���
+

���

���
�,      

 (16.3) 

where �∆ stands for ��� + ∆�, � + ∆�, ��, and �� for ���∆�, ∆��. In the last line in Eq. 

(16.3) we have performed a second-order Taylor expansion in Δ� and Δ�, and taken into 

account that ∫ ∫ ��	�∆�	�∆�= 1.
�

��
	

�

��
 We have also assumed that the kernel is isotropic, 

i.e., 

���∆�, ∆�� = ���−∆�, ∆�� = ���∆�,−∆��,   (16.4) 

and introduced the mean-squared displacement as 

< Δ� >= ∫ ∫ Δ�
�

��
	��

�

��
�∆�, ∆��	�∆�	�∆�,    (16.5)  
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where Δ� = ∆�
� + ∆�

� . Note that Eq. (16.4) implies that < ∆� 		>= 0, < 	∆� 	>= 0, 

< ∆� 	∆� 	>= 0 and < ∆�
�	>=< ∆�

�	>, which has been applied in the last step in Eq. 

(16.3).  This is Einstein’s approach to diffusion [9]. 

 Finally we rewrite the parentheses in the last term in Eq. (16.2) as a Taylor 

expansion, 

 [�(�, �, � + �) − �(�, �, �)	]� = ��	�(�, �, �) +
��

�

��

��
+ ⋯�   (16.6) 

where �(�, �, �) is the change in population density per unit time, due to births and deaths. 

 Expanding the left-hand side of Eq. (16.2) up to first order and collecting terms, we 

arrive at Fisher's reaction-diffusion equation, 

��

��
= � �

���

���
+

���

���
� + �(�, �, �),     (16.7) 

where we have introduced the diffusion coefficient, 

� =
����

��
.      (16.8) 

which is the two-dimensional analogue of the one-dimensional Eq. (2.3). Concerning the net 

reproduction function �(�, �, �), in chapter 2 an example is presented such that  

�(�, �, �) = �	�(�, �, �)      (16.9) 

(see the last term in Eq. (2.15)). This reproduction function corresponds to exponential 

growth, because without diffusion (� = 0) Eq. (16.7) yields � = ��exp[��], with 

�� = �(� = 0). Thus Eq. (16.9) is an example of interest, but the population density would 

never stop  growing. A biologically  more realistic case is the so-called logistic growth 

function,  

�(�, �, �) = �	�(�, �, �) �1 −
�(�,�,�)

����
�,          (16.10) 

were ���� is the saturation density, i.e. the population density at which net reproduction 

vanishes (note that �(�, �, �) = 0 if �(�, �, �) = ����). The functions of exponential and 

logistic growth are compared in Fig. 16.3. A more detailed introduction into the formalism of 

logistic growth is provided by section 3.4.1 of chapter 3, with an example of the benefit of 

this reasoning on predicting the spreading of technological innovations given in section 

14.2.2 of chapter 14. 

 Equation (16.7) with the logistic growth function (16.10) is called Fisher's equation. 

For our purposes here, we can consider the simple case in which all parameters (�, �	and 

����) are independent of �, � and �. Travelling wave solutions (also called fronts or waves 

of advance) are defined as constant-shape solutions, i.e. those depending not on �, � and � 
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separately but only on � = � − ��, where � is the front speed and � = ��� + �� the radial 

coordinate.  

 Kolmogorov et al. [10] showed that in Fisher's model, a front is formed and its speed 

is given by Eq. (16.1), assuming that initially the population density �(�, �, �) has compact 

support. In practice, this assumption means that �(�, �, � = 0) = 0 everywhere except in a 

finite region. This is biologically realistic, in contrast to solutions such that �(�, �, � = 0) ≠

0 for all values of �, � (−∞ < � < ∞, −∞ < � < ∞). The latter solutions are not biologically 

realistic, because in practical applications we always want to analyze the spread of 

organisms that are initially present in a finite region of space.  

 Using variational methods, Aronson and Weinberger [11] also showed that the speed 

of front solutions to Fisher's equation is given by Eq. (16.1) (see Sec. IV.A in Ref. [12] for a 

simple derivation based on variational principles). 
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Fig. 16.3. Plots of population density � versus time �. The dashed line corresponds to exponential growth, � = ���
�� (see 

the text below Eq. (16.9)), and the full line to logistic growth, � = ��	����	�
��	/(���� + ��	(�

�� − 1)	) (see Eq. (16.12)). 

 

 Importantly, Fisher's wave-of-advance speed (16.1) does not depend on ����. 

Moreover, this speed is the same as for exponential growth (Eq. (16.9)), see Eq. (2.17). Thus 

the wave-of-advance speed is the same in both the logistic and the exponential models. 

However, their shape is different, because for exponential growth the population density 

keeps growing in time, whereas for logistic growth it stops growing at � = ���� (see Fig. 

16.3). Thus the waves of advance under logistic growth have the profile shown in Fig. 2.6, 

where we can see that the population density stops growing once � = ����. In contrast, 

for exponential growth the population density keeps growing forever everywhere (see Ref. 

[13], Figs. 3.3 and Fig. 3.6).  
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 Returning to the spread of the farming, Ammerman and Cavalli-Sforza [7] noted from 

archaeological dates that the speed of the Neolithic wave of advance was about 1 km/yr. 

They next asked the following interesting question: what speed does Fisher's model [Eq. 

(16.1)] predict? In order to answer this, empirical values for < Δ� > and � are needed to 

estimate � using Eq. (16.8). Additionally, an empirical value for � is needed to estimate the 

speed from Eq. (16.1). Ethnographic observations of preindustrial populations have 

measured the displacement of individuals and found the average for the mean-squared 

displacement per generation < Δ� >= 1288 km2 [1,14] and the mean generation time 

(defined as the age difference between a parent and his/her children) � = 32	yr [6]. Thus 

we obtain from Eq. (16.8) � = 10 km2/yr. On the other hand, for populations which settle in 

empty space, � << ���� and Eq. (16.10) reduces to (16.9), so that we can fit exponential 

curves (graphically, we can understand this because both curves in Fig. 3 overlap in the left-

hand side). Ethnographic data yield the average exponent � = 0.028 yr-1 [14]. Using these 

values into Eq. (16.1) we estimate a front speed of about 1 km/yr, which is similar to the 

speed obtained from the archeological observations. Indeed, as mentioned above, looking 

at Fig. 16.1 we can easily estimate that agriculture spread from Greece to the Balkans and 

Central Europe at a speed of roughly 1 km/yr (more precise estimations with recent data, 

based on regression analysis [3] and geostatistical techniques [1], agree with this average). 

This agreement was first noted by Ammerman and Cavalli-Sforza [7,4]. In this way, 

Ammerman and Cavalli-Sforza noted that diffusive models are useful not only because they 

make it possible to describe mathematically a major event in prehistory (the spread of 

agriculture), but also because they indicate a possible mechanism for it, namely the spread 

of people (i.e., of populations of farmers). They called this demic diffusion (from the Greek 

word demos, which means people). In contrast, most authors at the time advocated for the 

learning of farming by hunter-gatherers (i.e., for the spread of agriculture without 

substantial spread of people) [15]. The latter mechanism is called cultural diffusion. 

 

16.2 First improvement: beyond the second-order approximation 

 In the derivation of Eq. (16.7) we have performed Taylor expansions up to first order 

in time and second order in space. Without those approximations we obtain, instead of Eq. 

(16.7), 

�(�, �, � + �) − �(�, �, �) = ∫ ∫ �∆
�

��
	��

�

��
	�∆�	�∆� − �(�, �, �) + ��[�(�, �, �)]),  

(16.11) 

                   

where the joint effects of reproduction and survival are, again, well-described by the 

solution to a logistic growth function, namely [8] 

��[�(�, �, �)] =
���	����	�(�,�,�)	

�����(�����)	�(�,�,�)
.     (16.12) 
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 When observed dispersal data are used, the kernel per unit length ��(∆) is defined 

as the probability to disperse into a ring of radius Δ and width �Δ, divided by �Δ. If 

individuals of the population N have probabilities �� to disperse at distances �� (j=1,2,...,M), 

we can write 

��(∆) = ∑ ���
(�)(��)

�
��� ,    (16.13) 

where �(�)(��) is the 1D Dirac delta centered at �� (i.e., a function that vanishes everywhere 

except at ∆= ��). Since the total probability must be one, 

1 = ∫ ��
�

�
(Δ)	�Δ,         (16.14) 

and ��(∆) is clearly a probability per unit length. In contrast, the kernel ���∆�, ∆�� in 

equation (16.11) is a probability per unit area (because it is multiplied by �∆�	�∆�, which 

has units of area). The normalization condition for  ���∆�, ∆�� is therefore 

1 = ∫ ∫ ��
�

��
�∆�, ∆��	

�

��
	�∆�	�∆�= 2� ∫ ��(Δ)	Δ

�

�
	�Δ,   (16.15) 

where we have used polar coordinates ∆= �∆�� + ∆�� , � = �����
∆�

∆�
 and assumed the kernel 

is isotropic, ���∆�, ∆�� = ��(Δ). Comparing equations (16.14) and (16.15), we see that the 

dispersal probability per unit length (i.e., into a ring of area 2�Δ	�Δ) ��(Δ) is related to that 

per unit area ��(Δ) as [16] 

��(Δ) = 2�Δ	��(Δ)     (16.16) 

and equation (16.13) yields 

��(∆) = ∑ ��
�(�)(��)

��∆

�
���  .     (16.17) 

 For homogeneous parameter values, the speed will not depend on direction and can 

thus be more easily computed along the �-axis (� = 0). Consider a coordinate frame 

� = � − �� moving with the wave of advance (� is the front speed). The population density 

of farmers will be equal to its saturation density in regions where the Neolithic transition is 

over, and it will decay to zero in regions where few farmers have arrived. Thus we assume 

as usual the ansatz [16] �(�, �, �) ≈ ��exp	[−��] → 0 for � → ∞ (with � > 0). Then, 

assuming that the minimum speed is that of the front (which has been verified by numerical 

simulations), we obtain for the speed � of front solutions to Eq. (16.11)  
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������� = ���
��� 	���	���	����∑ ��	��(���)

�
��� �	

��
,     (16.18) 

where the sub index ���ℎ�� indicates that this is not a cohabitation model (see the next 

section), and ������� is the modified Bessel function of the first kind and order zero. In this 

model, the speed can be found by plotting the fraction in Eq. (16.18) as a function of � and 

finding its minimum. 

 In Ref. [14] it has been shown that the differences in the front speed obtained from 

Eq. (16.13) and Fisher's approximation, Eq. (16.1), are up to 49% for human populations. So 

the effect of higher-order terms is not negligible. 

 

16.3 Second improvement: cohabitation equations 

 For human populations, newborn children cannot survive on their own. However, 

when they come on age they can move away from their parents. This point has led some 

authors to use an equation of the so-called cohabitation type, namely 

�(�, �, � + �) = ∫ ∫ ��[�∆]
�

��
	��

�

��
	�∆�	�∆�,   (16.19) 

where ��[�] is again given by Eq. (16.12). Then the speed of front solutions is [14,17] 

������ = ���
��� �	��	���	∑ ��	��(���)

�
��� �	

��
.   (16.20) 

 The reason why Eq. (16.19) is more appropriate than Eq. (16.11) is that, clearly, Eq. 

(16.11) assumes that individuals born at (�, �) at time � (last-but-one term) will not move at 

all, i.e. they will all still be at (�, �) on coming of age (time � + �, left-hand side). Thus, for 

example, in the simple case in which all parents move, they will leave all of their children 

alone. Such an anthropologically unrealistic feature makes it clear that Eq. (16.11) is less 

accurate than Eq. (16.19). For additional derivations and figures showing that Eq. (16.11) is 

less realistic than the cohabitation Eq. (16.19), see especially Fig. 1 in Ref. [14], Fig. 17 in Ref. 

[16], and Ref. [17].   

 A more direct way to see the limitations of Fisher's speed (16.1) is to note that it 

yields ������� → ∞ for � → ∞. In contrast, it has been shown that the cohabitation speed 

(16.20) yields for � → ∞ the value ������ = ����/�, i.e. the maximum dispersal distance 

divided by the generation time (see Fig. 2 in Ref. [14]), which is physically reasonable. 

Moreover, the error of Fisher's speed (16.1)  relative to Eq. (16.20) reaches 30% for realistic 

human kernels and parameter values [14]. This error is still larger when cultural diffusion is 

included [1] (next section). 
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16.4 Demic-cultural model 

 Up to now we have only considered equations with a single mechanism for the 
spread of the Neolithic, namely the dispersal of farmers (demic diffusion). But agriculture 
can be also learnt by hunter-gatherers (cultural diffusion). When this conversion of hunter-
gatherers into farmers (cultural transmission) is taken into account, we might be tempted to 
generalize Eq. (16.19) into  

�(�, �, � + �) = ∫ ∫ ��[�∆]
�

��
	��

�

��
	�∆�	�∆� +

																													∫ ∫ �[�∆, �∆]
�

��
	��

���������

��
	�∆�	�∆�	,

        (16.21) 

where �∆ = ��� + ∆�, � + ∆��. The cultural transmission function �[… ] in Eq. (16.21) is due 

to the conversion of hunter-gatherers into farmers. Thus a similar equation for the 
population density of hunter-gatherers P(�, �, � + �) could be proposed, with a minus sign 
in the last term. A recent derivation has found for the cultural transmission function �[… ] 
(see Ref. [19], Eq. (1)) 

�[�(�, �, �), �(�, �, �)] = �
�(�,�,�)	�(�,�,�)

�(�,�,�)	�	�	�(�,�,�)
,   (16.22) 

where � and � are cultural transmission parameters. The kernel ��
��������(∆�, ∆�) in Eq. 

(16.22) is the dispersal kernel of hunter-gatherers that have been converted into farmers. 

Since they now behave as farmers, let us assume that this kernel is the same as �� (∆�, ∆�). 

Then Eq. (16.22) becomes 

�(�, �, � + �) = ∫ ∫ ��[�∆]
�

��
	��

�

��
	�∆�	�∆� +

																																					∫ ∫ �
�∆	�∆

�∆�	�	�∆

�

��
	��

�

��
	�∆�	�∆�.

         (16.23) 

 A model of this kind was applied recently (see Eq. 5 in Ref. [19]). It is an 
approximation that may be valid in some regions (with mainly demic diffusion) but it cannot 
lead to a purely cultural model of Neolithic spread (because according to Eq. (16.23) there is 
no front propagation in the absence of demic diffusion, i.e. for ��(∆�, ∆�) ≠ 0 only at 

vanishing distance, i.e. for Δ = (Δ�
� + Δ�

�)	�/� = 0	). Thus we will here consider a more 

realistic model in two ways. Firstly we take into account that, according to ethnographic 
observations, hunter-gatherers can learn agriculture from farmers located some distance 
away [1]. Then Eq. (16.23) is generalized into 

�(�, �, � + �) = ∫ ∫ ��[�∆]
�

��
	��

�

��
	�∆�	�∆� +

	∫ ∫ ��	�∆�	�∆�
�

��
	∫ ∫ ��

� 	�∆′�	�∆′�
�

��
	�

�

��

�

��

�∆�∆�		�∆

�∆�∆�	�	�	�∆
,
   (16.24) 

where �∆�∆�  stands for 	���+∆� + ∆�
� , � + ∆� + ∆�

� , �� . 

 In practice, the cultural kernel ��
� �∆′�, ∆′�� (which is abbreviated as ��

�  in Eq. 

(16.24)) is a set of probabilities �� for hunter-gatherers to learn agriculture from farmers 

living at distances �� = (Δ′�
� + Δ′�

�)	�/�, during a generation time �. This is similar to the 

fact, mentioned above Eq. (16.13), that in practice the demic kernel �� �∆�, ∆�� is a set of 
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probabilities �� for farmers to disperse at distances �� = (Δ�
� + Δ�

�)	�/�, also during a 

generation time �. 

 Secondly we note that after a generation time �, reproduction will have led to new 
individuals not only in the population of farmers (first line in Eq. (16.24)) but also in the 
population of hunter-gatherers converted into farmers (second line in Eq. (16.24)). Thus we 
finally generalize Eq. (16.24) into 

�(�, �, � + �) = ∫ ∫ ��[�∆]
�

��
	��

�

��
	�∆�	�∆� +

	∫ ∫ ��	�∆�	�∆�
�

��
	∫ ∫ ��

� 	�∆′�	�∆′�
�

��
	��

�

��

�

��
��

�∆�∆�		�∆

�∆�∆�	�	�	�∆
� .

   (16.25) 

 The speed of front solutions to Eq. (16.25) is [1] 

� = ���
��� �	��	����∑ ��	�������

�
��� ������∑ ��	��(���)

�
��� ���	

��
,        (16.26) 

 with � = �/�. This reduced parameter � was called the intensity of cultural transmission 
[19] because, according to Eq. (16.22), � = �/� is the number of hunter-gatherers 
converted per farmer at the front leading edge (i.e. in regions such that � ≪ �). Without 
cultural transmission (� = 0), the demic-cultural front speed, given by Eq. (16.26), reduces 
to the purely-demic speed, Eq. (16.20), as it should. With frequency-dependent cultural 
transmission, Eq. (16.22) is more complicated and the equations are longer, but the final 
results are exactly the same [1]. 

 It is important to note that cultural transmission (the factor in brackets [� … ] at the 
end of the second line in Eq. (16.25)) is applied in a term that also contains the effects of net 

reproduction (��) and dispersal (the kernel of farmers ���∆�, ∆��). Thus some hunter-

gatherers will learn agriculture from farmers located a distance �∆′�, ∆′��, and the children 

of those converted hunter-gatherers will possibly move a distance �∆�, ∆�� (similarly to the 

children of farmers, first line). Therefore, some hunter-gatherers can learn agriculture from 
farmers and the next generation (i.e., the children) of those hunter-gatherers will be 
farmers, in agreement with ethnographic data [20].  

 Finally, a purely cultural model means no demic diffusion. In this model, the front 

speed can be obtained from Eq. (16.26) without demic diffusion (�� = 0 and �� = 1), 

namely 

�� = ���
��� �	��	�������∑ ��	��(���)

�
��� ��	

��
,       (16.27) 

where the sub index � stands for purely cultural diffusion. This is the purely cultural 
analogue to the purely demic speed given by Eq. (16.20). Both of them are, of course, 
cohabitation models. 

 

16.5 Demic versus cultural diffusion in the spread of the Neolithic in Europe 
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 What do the models above imply for the relative importance of demic and cultural 
diffusion in the spread of the Neolithic in different regions of Europe? Let us first summarize 
a proposal [1] and later we will discuss an alternative possibility. First of all, we need ranges 
for the parameters appearing in our equations.  

 The ranges for � and � that have been measured for preindustrial farming 
populations are 0.023	���� ≤ � ≤ 0.033	���� and 29	�� ≤ � ≤ 35	�� (see the SI 
Appendix to Ref. [19] for details).  

 The dispersal kernel ��(∆�, ∆�) has been measured for each of the following 5 

preindustrial farming populations [14]. For each population we give its purely demic speed 
range, as predicted by the cohabitation model, Eq. (16.20), using its dispersal kernel as well 
as � = 0.023	��� and � = 35	� (slowest speed) or � = 0.033	��� and � = 29	� (fastest 
speed). 

Population A (Gilishi 15)): purely demic speed range 0.87-1.15 km/yr.  

Population B (Gilishi 25): purely demic speed range 0.92-1.21 km/yr. 

Population C (Shiri 15) in Ref. (11): purely demic speed range 1.14-1.48 km/yr. 

Population D (Yanomamö) in Ref. (11): purely demic speed range 1.12-1.48 km/yr.  

Population E (Issongos) in Ref. (11): purely demic speed range 0.68-0.92 km/yr. 

 We see that demic diffusion predicts Neolithic front speeds of at least 0.68 km/yr. 
Demic-cultural diffusion will be still faster. Thus it has been suggested that perhaps cultural 
diffusion could be responsible for the Neolithic spread in regions with speeds below 0.68 
km/yr [1]. For simplicity, let us consider purely cultural diffusion, Eq. (16.27), although a 
short-range demic kernel can be also included (Sec. S6 in Ref. [1]). In order to estimate the 
speeds predicted by purely cultural diffusion, we need the following cultural parameters. 

 The cultural transmission intensity � from hunter-gathering to farming has been 
estimated from several case studies in Ref. [19] and the overall range is 1.0 ≤ � ≤ 10.9. 

 The cultural kernel has been estimated for each of the following 5 populations, from 
distances from hunter-gatherers camp locations to the villages of farmers, where the 
hunter-gatherers practice agriculture [1]. For each population, we report the purely-cultural 
speed range obtained from Eq. (16.27) using its cultural kernel as well as � = 0.023	���, 
� = 35	� and � = 1 (slowest speed) or � = 0.033	���, � = 29	� and � = 10.9 (fastest 
speed). 

Population 1 (Mbuti, band I): speed range 0.17-0.36 km/y. 

Population 2 (Mbuti, band II): speed range 0.30-0.57 km/y. 

Population 3 (Mbuti, band III): speed range 0.32-0.66 km/y. 

Population 4 (Aka): speed range 0.09-0.19 km/y. 

Population 5 (Baka): speed range 0.03-0.07 km/y. 

 Thus the purely cultural model yields 0.03-0.66 km/y. Note that this is slower than 
the purely demic speed range found above (0.68-0.92 km/yr). 

 Finally, for the demic-cultural model, Eq. (16.26), the slowest speed is obviously 0.68 
km/y (see the purely demic model above). The fastest speed corresponds to the strongest 
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value observed for the intensity of cultural transmission (� = 10.9), the fastest cultural 
kernel (population 3), the fastest demic kernel (population C or D), the highest observed 
value of � (0.033	���) and the lowest observed value of � (29	�). Using these data in Eq. 
(16.25) we find that the fastest speed is obtained for the demic kernel of population D 
yielding 3.04 km/y.  

 

 

 
 

 
Fig. 16.4. Isochrones obtained by smoothing 40 times the map in Fig. 16.1 (a). Note that most anomalously old/recent 

areas have been disappeared. Smoothing 60 times yields almost the same map. (b) displays the speed ranges obtained 

from (a). Closer isochrones correspond to slower speeds. Adapted from Ref. [1], Supp. Info. Appendix, Fig. S4. 

 

(b) 

(a) 
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 In Fig. 16.4.b, the color scale has been chosen so that the red color corresponds to 
the regions that can be explained by purely cultural diffusion (0.03-0.66 km/y, from the 
purely cultural model above). The demic and demic-cultural models predict speeds above 
0.68 km/y, and are thus too fast to be consistent with the archeological data in the red 
regions in Fig. 16.4.b. This suggests that cultural diffusion could explain the Neolithic 
transition in Northern Europe, as well as in the Alps and west of the Black Sea. The analysis 
of the areas where demic diffusion played a role is less straightforward, but it is possible to 
determine the regions where the speed was mainly demic (i.e. where the cultural effect was 
< 50%) [1]. They correspond to the yellow regions in Fig. 16.4.b. The regions where either 
demic or cultural diffusion could have dominated are the blue regions in Fig. 16.4 b. The 
blue regions appear because we have used parameter ranges and several kernels (they 
would not appear if we had used a single value for each parameter, a single demic kernel, 
and a single cultural kernel). Finally, in the green regions in Fig. 16.4 the speed is too fast to 
agree with any of the three models in the present paper, but in continental Europe those 
regions contain very few sites and will probably disappear using more complete databases 
(i.e., with more archeological sites).  

 In order to discuss an alternative possibility, let us note that the models presented in 
this paper are simple in the sense that there are few parameters but, in spite of this, their 
estimation is remarkably difficult. Indeed, so far it has not been possible to estimate 
dispersal kernels, cultural kernels neither cultural transmission intensities from purely 
archaeological data. Therefore, for the time being the only possibility is to use ethnographic 
data instead (as already done by Ammerman and Cavalli-Sforza [4] for the parameters in 
Fisher's model). As long as it is not possible to overcome this limitation, an open possibility 
will always be that prehistoric parameter values might have been substantially different 
than those estimated from present pre-industrial populations. Recently, archaeological data 
have been used to perform a rough estimation of the growth rate α in Scandinavia, and it 
leads to a mainly demic spread in spite of the front speed being slow (0.44-0.66 km/yr) [30]. 
This opens a very interesting possibility: if in the future it were possible to estimate growth 
rates from archaeological data for different regions of Europe, the map in Fig. 16.4b could 
be refined by using a space-dependent growth rate. Thus, if the growth rate α were smaller 
in northern Europe (as it seems to be in Scandinavia), it is possible that some of the slow 
regions could be perhaps explained by a mainly demic model (i.e, some of the red regions in 
Fig. 16.4b could perhaps not be purely cultural). Unfortunately such a study has not been 
performed yet, because the estimation of regional Neolithic growth rates from 
archaeological data is still in its infancy. But this could be an interesting topic of future 
research. 

 In recent years, speeds of Neolithic fronts have been measured in continents other 
than Europe. This work has led to the proposal of the following general laws of Neolithic 
spread [31,32]. 

 1. First law. The Neolithic spreads inland at a rate of about 1 km/yr, although there is 
substantial variation (0.44-3.6 km/yr). This law is satisfied in at least the following 13 case 
studies. It clearly holds for the Neolithic in overall Europe [4,3], southern Asia [33], the 
Balkans [34,35], 3 European ceramic culture areas (namely the Eastern Linear Pottery [34], 
the LinearBandKeramik [73] and the Trichterbeckerkultur [73]) as well as for the eastern 
Bantu expansion in Africa [97], the spread of domesticated rice in China and southeastern 
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Asia [98], and the Saladoid-Barrancoid and Incised-Punctuate expansions in tropical South 
America [90]. In my view, the spread of the Neolithic in Scandinavia [99], the southern 
Bantu spread and the expansion of Khoi-khoi herders also support this law, because there is 
no inconsistency with the facts that: (i) the last two case studies also agree with the second 
law below; and (ii) the Scandinavian one supports the fifth law below.  

 2. Second law. If in addition to demic diffusion there is substantial cultural diffusion, 
the Neolithic spreads more rapidly. This law has strong support from mathematical models 
(Sec. 16.4) and it is consistent with the observed rates for two expansions in which cultural 
diffusion has been proposed to be of importance, namely those of Khoi-khoi herders in 
southern Africa [39] and the southern Bantu spread in East Africa [36]. For both case studies 
(Khoi-khoi and southern Bantu), the lower bounds (1.2 km/yr and 1.3 km/yr, respectively) 
are close to 1 km/yr, so they also agree with the first law. 

 3. Third law. Neolithic spread rates over the sea take place at about 10 km/yr. Such 
very fast speeds have been observed in the spread of the Neolithic in the western 
Mediterranean [23] and Austronesia [40]. 

 4. Fourth law. Most inland and coastal Neolithic spreads are mainly demic. The only 
examples known up to now that might be perhaps mainly cultural are the spread of maize in 
America [41] and the expansion of Khoi-khoi herders in southern Africa [39]. Anyway, the 
fourth law is valid for all 13 case studies of farmers listed in the first law, as well as for the 
coastal spread of the Neolithic along the western Mediterranean [23]. 

 5. Fifth law. The Neolithic tends to spread more slowly at higher latitudes. This law is 
supported by a well-known slowdown in northern continental Europe (Fig. 16.4b) and, as 
mentioned above, by a study on the spread of the Neolithic in Scandinavia. In the latter 
case, it has been noted that the slowness may be due to a small value of the growth rate α, 
which was estimated directly from archaeological data [30]. A low growth rate is perhaps 
not very surprising, given the fact that in modern human populations reproduction is also 
known to decrease with increasing latitude [42]. However, it is not yet established by 
archaeological data if the slowness at higher latitudes is (always) due to reduced values of 
the growth rate or not, so the statement above of the fifth law does not include any 
explanation for the slowness. The upper bound for the spread rate in Scandinavia (0.84 
km/yr) is close to 1 km/yr, so this case study also agrees with the first law. 

 6. Sixth law. The Neolithic spreads later and more slowly at higher altitudes above 
sea level (compared to surrounding regions). This is clearly suggested by the following 
results. An interpolation has shown that the Neolithic first surrounded the Alps completely 
and only later begun to climb up those mountains (Fig. 16.1). It did so from all directions 
(Fig. 2 in Ref. [1]) and at clearly slower speeds (Figs. 16.1 and 16.4.b). 

 

16.6 Conclusions 

The models reviewed in this chapter suggest that the spread of the Neolithic in 
Europe was: (i) fast and mainly demic in the Balkans and Central Europe; (ii) slow and 
perhaps mainly cultural in Northern  Europe, the Alpine region and west of the Black Sea 
(Fig. 16.4b) [1]. As seen in Fig. 16.4b, the process was fast (speeds above 0.68 km/y) in 
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Greece, Italy, the Balkans, Hungary, Slovakia, Czechia and central Germany. This wide region 
includes a substantial part of the Linearbandkermic (LBK) culture in Central Europe. This is in 
agreement with the fact that the LBK is widely regarded as demic by archeologists. Also in 
agreement with our results, some archeologists have argued for the importance of demic 
diffusion in the Neolithic spread from the Aegean northwards and across the Balkans. On 
the other hand, in Northern Europe, the Alps and West of the Black Sea (red color in Fig. 
16.4b) the transition was slow (speeds below 0.66 km/y) and, according to our models, 
possibly not driven by demic neither demic-cultural diffusion. Some archeologists have 
previously suggested that cultural diffusion had a strong role in the spread of the Neolithic 
in Northern Europe, the Alps and West of the Black sea. Note that these are the possibly 
cultural diffusion regions according to our models (red color in Fig. 16.4b). For detailed 
archeological references on the importance of demic and cultural diffusion in different 
regions of Europe see, e.g., Sec. 3 in Ref. [1]. Ancient genetics also indicates that cultural 
diffusion was more important in Northern Europe [21]. But it is worth to note that those 
ancient genetic data were obtained in Latvia and Ukraine, outside Fig. 16.4. Moreover, we 
have stressed that non-homogeneous reproduction (still to be confirmed or refused using 
archaeological data) could provide an alternative (mainly demic) explanation for the slow 
areas (red color in Fig. 16.4b). 

 The slowness of cultural diffusion (as compared to demic diffusion) is due to the fact 
that, according to ethnographic observations, the distances appearing in the cultural kernel 

��
� �∆′�, ∆′�� are substantially shorter than those appearing in the demic kernel ���∆�, ∆�� 

[1]. The intuitive reason may be that that agriculture is a difficult cultural trait to learn, and 
this leads to shorter cultural than demic diffusion distances. Note that the cultural distances 
are defined as those separating hunter-gatherers from the farmers who teach them how to 
farm. Indeed, according to ethnographic data, in the spread of farming cultural diffusion 
distances were short as compared to demic diffusion distances [1]. The latter are those 
along which the children of farmers disperse away from their parents. Such demic distances 
can obviously be larger than cultural distances, because the children of farmers have already 
learnt agriculture before leaving their parents.  

 Models similar to those summarized here have been applied to Paleolithic waves of 
advance [22], language substitution fronts [24], etc. 

 All models considered in this chapter operate with a minimum of parameters. In the 
demic model, for instance, the only parameters are the initial growth rate α, the generation 
T and the dispersal kernel. Crucially, all three have been estimated from ethnographic or 
archeological data. With such constraints one is able to largely avoid any unjustified bias in 
modeling which may easily occur by the use of too many parameters which, finally, 
degenerate to simple fitting parameters. Using many free parameters, it often turns out that 
the observed data can be reproduced but the model is based on wrong premises. For 
example, in some models of virus infection fronts, it was possible to reproduce some 
experimental front speeds by choosing several parameter values [25,26]. However, this was 
not possible for realistic parameter values [26,27]. Later, different models reproduced the 
data without choosing any parameter values [28]. Thus the old models were not appropriate 
(and missed crucial aspects) because they agree with only some data, by using non-realistic 
equations and parameter values. Again, in the case of Neolithic spread we have to be aware 
that one may introduce very large parameter sets as demonstrated in Chap. 17. But there, 
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most of the 8 parameter values used are chosen (not derived from independent data) to 
replicate the observed arrival times of the Neolithic at several regions (this is clearly 
stated in Ref. [5], p. 3462, and summarized here in Table 17.2 and Fig. 17.6). Thus their 
parameter values become questionable with the lack of possibilities for their determination 
from reliable, independent sources. Besides the parameter values, there are also 
hypothetical assumptions in some models (e.g., Fig. 17.3). Using as few as possible untested 
assumptions and unknown parameters in the models often makes them more realistic (we 
stress that a very clear example is that of virus infection fronts). 

 Recently, the author has suggested some general laws of Neolithic spread around 
the world (last part of Sec. 16.5). It is worth to mention that ancient genetic data can be 
used to constrain better the models by, e.g., estimating the cultural transmission intensity � 
[43]. In the future, surely many more archaeological and genetic data will become available 
and lead to further conclusions. 
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