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1. Introduction 

This paper surveys the main existing mathematical models of 
the Neolithic transition. They are presented in their 
historical context, in a self-contained way, and using as little 
mathematics as possible. Still, we reproduce all necessary 
formulae to reach the results reviewed.  

Section 2 presents the classical model by Ammerman and 
Cavalli-Sforza. Some later refinements of their model are 
surveyed in sections 3 to 6. We also compare the speed 
predicted by each model to that implied by the archaeological 
data. Section 7 contains a new derivation of a recent model. 
Regional variability is discussed in sections 8 and 9 (using 
archaeological data and mathematical models, respectively). 
Finally, section 10 is devoted to concluding remarks. 

2. The model by Ammerman and Cavalli-Sforza 

While working at Fisher’s laboratory in Cambridge from 
1949 until 1951, Cavalli-Sforza (1990) learnt about Fisher’s 
model. It was initially conceived to describe the spread of 
advantageous genes (Fisher, 1937), and later applied to 
biological invasions (Skellman, 1951). Cavalli-Sforza noted 
that, if the Neolithic transition was not a process of cultural 
adoption but mainly due to the dispersal of populations, 
then: (i) Fisher’s equation could hold, and (ii) the values of its 
parameters could be estimated from anthropological data. 
This was the first mathematical model of the Neolithic 
transition. Indeed, according to Fisher’s model the 
population front speed (in kilometers per year) is predicted as 
(Fisher, 1937; Skellman, 1951) 

predicted 2c aD= , (1) 

where a is called the initial growth rate of the population 
number (per year) and D is the population diffusion 
coefficient (in km2 per year).  

The faster a population reproduces, the higher its value of a 
will be, and according to Equation (1) the invasion front will 
spread faster. Similarly, the further away individuals disperse 
from their parents, the higher the value of D will be and, 
again, Equation (1) predicts a faster invasion.  

Ammerman and Cavalli-Sforza (1971) gathered the 
archaeological data available and used them to estimate an 
observed speed of  

observed 1.0 0.2c = ±  km/year.   (2) 
They also estimated the diffusion coefficient as Ammerman 
and Cavalli-Sforza (1984) 

2

D
T

< Δ >
≈ , (3) 

where 2< >Δ  is the mean of the squared distance Δ2 moved
by individuals in a generation time, T. Finally, Ammerman 
and Cavalli-Sforza (1984) also found anthropological 
observations in the literature for human reproduction, 
mobility and the generation time T. Those anthropological 
observations yield the characteristic values 

0.032a =  year - 1,       (4) 
2< >=1544Δ  km2,         (5) 
25T =  year.                        (6)

Using these values in Equations (3) and (1) yields  

predictedc =  2.8 km/year.       (7) 

The prediction (7) is much faster than the speed (2) observed 
from the archaeological record.  

The characteristic mobility value (5) was obtained from 
individual mobility data per generation for pre-industrial 
agriculturalists (Stauder, 1971). Some mating data (distances 
between birthplaces between husbands and wives) yield much 

lower values of 2< >Δ , and thus of the predicted speed (1)
(Ammerman and Cavalli-Sforza, 1984). However, mating 
data seem inappropriate because derivations of Fisher’s model 
(Okubo and Levin, 2001; Fort and Méndez, 1999) show that 

2< >Δ  corresponds to distances Δ  moved per individual 
during the generation time T (i.e., distances moved by 
individuals from their birthplace until the place where they 
have children). 

This theoretical model, proposed by Ammerman and Cavalli-
Sforza (1984), was the first mathematical computation of the 
predicted speed of the Neolithic transition. 
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3. Fisher’s model in two-dimensional space 

Equation (3) gives an order-of-magnitude estimation of the 
diffusion coefficient D. However, its precise value depends on 
the number of dimensions, as follows: 
 (i) For a one-dimensional space (e.g., a population of 
birds dispersing along a coast) (Okubo and Levin, 2001), 

2

2
D

T
< Δ >

= ;       (8) 

 (ii) For a two-dimensional space (e.g., a population of 
humans invading Europe) (Fort and Méndez, 1999), 

2

4
D

T
< Δ >

= ;       (9) 

 (iii) For a three-dimensional space (e.g. a fish population 
in an ocean), 

2

6
D

T
< Δ >

= .       (10) 

As it might be expected intuitively, D and therefore the 
invasion speed (1) are lower the higher the number of 
available dimensions into which the population can disperse. 

Using the observed values (5)-(6) in the two-dimensional 
formula (9) yields  

2 2km km386 15.44
gen yr

D = = ,  (11) 

which used into Equation (1) (with the same values of a and 
T as above) leads to 

predictedc =  1.4 km/year. (12) 

This is a more accurate estimation than (7). However, it is 
still outside the observed range from the archaeological 
observations quoted in Equation (2), namely 0.8-1.2 km/year 
(Ammerman and Cavalli-Sforza, 1971). 

4. Time-delayed model 

A more refined approach (Fort and Méndez, 1999) noted 
that Fisher’s speed (1) does not take into account the fact 
that newborn children spend some time T with their parents 
until they become adults and can migrate. If this effect is 
taken into account, the predicted speed is 

predicted  2
1

2

T
aDc aT=
+

,   (13) 

instead of Fisher’s speed (1). Note that if the effect of the 
dispersive delay is neglected ( 0T = ), Equation (13) reduces
to Fisher’s speed (1), as it should. 

Using the same parameter values as above, the more refined 
prediction (13) yields a speed of  

predicted  Tc = 1.0 km/year,      (14) 

which is consistent with the observed range (0.8-1.2 
km/year).  

5. Mathematical models versus archaeological
observations 

Figure 1 shows the distances to Jericho (the presumed center 
of the Neolithic population dispersal) versus the oldest date 
of archaeological sites, according to the data used by 
Ammerman and Cavalli-Sforza (1971, 1984). The full line is 
their fit to the data. The distance-versus-dates and dates-
versus-distances regressions (not shown) yield the observed 
speed quoted in Equation (2), namely 1.0±0.2 km/year (95% 
confidence interval) (Fort and Méndez, 1999). Each of the 
three other lines in Figure 1 gives the best fit using the speed 
predicted by each of the three models above, namely (7), (12) 
and (14). The values of χ2 are the errors of the models relative 
to the data (i.e., the sum of the squared distances). Clearly the 
prediction of Equation (14) gives a lower error than those 
from the non-delayed models (7) and (12).  

Figure 1. Comparison between observations (from 
archaeology) and predictions (from mathematical models), 
after (Fort and Méndez, 1999). The data points (one per 
archaeological site) and their principal-axis regression are 
from Ammerman and Cavalli-Sforza (1971, 1984). The time-
delayed model, Equation (14), gives a better agreement with 
the data (i.e., a slower rate of spread) than the non-delayed 
models corresponding to Equations (7) and (12). 
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Figure 2. (a) Computation of the speed range using 735 sites, after Pinhasi, Fort and Ammerman (2005). As in Figure 1, great-
circle distances have been used. The speed implied by the distance-versus-time regression (dashed line) is its slope, namely 0.71 ± 
0.04 km/year. The speed implied by the time-versus-distance regression (full line) is the inverse of the corresponding slope, 
namely 1.04 ± 0.05 km/year (95% confidence intervals). Therefore, we estimate the overall speed range as 0.7–1.1 km/year. (b) 
The straight lines are regression fits to 735 sites (the same lines as in Fig. 2.a). However, only sites in Denmark from Fig. 2.a are 
replotted here (38 data points). A consistent delay shows up in this region, because most sites are to the right (more recent 
dates) of the regression lines. Further mathematical models are necessary to describe this observation. 

A sensitivity analysis using the observed error ranges for the 
values of the parameters (4)-(6) was also performed, 
reinforcing the conclusion that the non-delayed models 
(sections 3 and 4) give speeds too fast compared to the 
archaeological record (Fort and Méndez, 1999). 

As mentioned above, the distance-versus-dates and dates-
versus-distances regressions of the 53 sites in Figure 1 lead to 
an observed speed range of 1.0±0.2 km/year. However, that 
dataset is now over thirty-five years old (Ammerman and 
Cavalli-Sforza, 1971). Therefore, it is very important to know 
if archaeological data available today yield a similar speed 
range or not. Gkiasta et al. (2003) performed such an analysis 
with 510 sites and obtained a speed of 1.3 km/year. However, 
they did not compute an error range for this speed. And they 
assumed that Jericho was the origin of the dispersal; a 
different presumed origin will yield a different speed. As 
stressed by Ammerman and Cavalli-Sforza, the most probable 
origin should be that which yields a higher correlation 

coefficient. Such an analysis has been recently performed for 
735 sites (Pinhasi, Fort & Ammerman 2005), and the speed 
range (using again great-circle distances) is 0.7-1.1 km/year. 
Again, this range was computed from combining the 
distance-versus time and the time-versus-distance regressions 
(Figure 2a). This speed range (0.7-1.1 km/year) can be viewed 
as a reassuring result, because it is compatible with that 
obtained by Ammerman and Cavalli-Sforza 35 years earlier 
(0.8-1.2 km/year). There is no inconsistency and, therefore, 
this seems to be a sound line of research. 

6. Cohabitation models 

Let ( , , )p x y t  stand for the population density (i.e., the
number of individuals per unit area centered at the spatial 
point ( , )x y  at time t). Fisher’s speed (1), as well as its time-
delayed generalization (13), can be derived by assuming that, 
for low values of the population density ( , , )p x y t , 
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0( , , ) ( , , ) ( ', ' , ) ( ', ', )p x y t T R p x y t x y x y p x y t+ = + Π →∑  (15)

where the net reproductive rate 0R  depends on the initial

growth rate a (appearing in Equation (1)) as 0
a TR e=

(Fort, Pérez-Losada and Isern, 2007). In the last term, 
( ', ' , )x y x yΠ →  is the net probability than an individual

moves from ( ', ')x y  to ( , )x y . The sum Σ  indicates that

we take into account all possible origins ( ', ')x y . 

Recently it has been argued that a more realistic model should 
be the following (Fort, Pérez-Losada and Isern, 2007) 

0( , , ) ( ', ' , ) ( ', ', )p x y t T R x y x y p x y t+ = Π →∑ . (16) 

Similar models are widely used in ecology (Weinberger, 1978; 
Clark, 1998; Fort, 2007). The difference is that model (15) 
considers that children appear at the same location as the 
parents (first term in Equation 15), and parents migrate away 
from their children (last term). This is not realistic for human 
populations. In contrast, Equation (16) considers that 
children grow up with their parents at their final location. 
Thus Equation (16) is a cohabitation model, whereas (15) is 
not. The same conceptual limitation applies to Fisher’s model 
(1) and its time-delayed generalization (13), because they are 
both special cases of the model (15). The differences between 
the cohabitation model (16) and the model (13) are as large 
as 30% (Fort, Pérez-Losada and Isern, 2007). However, the 
speed range predicted by (16) is still consistent with the 
observed range, namely 0.7-1.1 km/year (from Figure 2a). 

7. Dispersive-variability models 

In this section we present a new derivation of the 
cohabitation model, reviewed in the previous subsection. 
This derivation is motivated by work by other authors 
showing the importance of taking the age-structure of 
populations into account in mathematical models (Pinhasi, 
Fort and Ammerman, 2005), as well as by some recent 
dispersive-variability models (Harris, 2003; Méndez, Ortega-
Cejas and Campos, 2005). 

Any human population can be regarded as composed of three 
sub-populations, with different behaviors: juveniles (e.g., 
individuals τ<  years old, where τ  is the age at first
reproduction), reproducing adults (e.g., aged τ≥  years old 
and reproducing), and non-reproducing adults (because of 
age, sterility, or other reasons). Let ( , , )Jp x y t ,

( , , )Ap x y t  and ( , , )ANp x y t  stand for the
corresponding numbers of individuals per unit area centered 
at position ( , )x y  at time t.

Obviously, the number of juveniles appearing per generation 
should be related to the number of reproducing adults in the 
preceding generation ( , , )Ap x y t , not to the total number
of individuals, i.e. 

( , , ) ( , , ) ( , , )A Jp x y t p x y t p x y t= + + ( , , )ANp x y t . 

How can be write down such a relationship mathematically? 
If we consider (as a useful approximation) a simple, time-
averaged model in which all individuals begin to reproduce at 
once, we can simply write 

1( ', ', ) ( ', ', )J Ap x y t T f p x y t+ = . (17) 

where f is the population fecundity, and 1T   is the mean age
difference between the first and the last child. 

In agreement with anthropological observations (Stauder, 
1971), let juveniles migrate away from their parents after 
some mean time 2T . Then,

1 2 1( , , ) ( ', ' , ) ( ', ', )A Jp x y t T T s x y x y p x y t T+ + = Π → +∑ , (18) 

where s is the fraction of juveniles who will become 
reproducing adults, and  ( ', ' , )x y x yΠ →  is again the

jump probability from ( ', ')x y  to ( , )x y . 

Of course, more complicated models can be considered. But 
this simple model is more detailed than those in the previous 
sections, because here we take into account that the 
reproductive and dispersive behavior may depend on age 
(albeit in the simplest possible way). How does the front 
speed change when considering this more detailed 
description? Interestingly, it does not change at all! Indeed, 
using Equation (17) in the right-hand side of Equation (18), 
and defining 1 2T T T= + , we come to 

0( , , ) ( ', ' , ) ( ', ', )A Ap x y t T R x y x y p x y t+ = Π →∑ , (19)

where 0R s f= . So we obtain again the cohabitation
model, given by Equation (16). The only difference is that 
here the reproducing adult subpopulation ( , , )Ap x y t
appears, instead of the total population ( , , )p x y t . But the
important point is that the speed of invasion front solutions 
is the same as for the cohabitation model in the preceding 
section. This gives further support to the cohabitation model. 
It also shows that it is always possible to build more 
complicated mathematical models, but in some cases this does 
not lead to any new prediction that can be compared to the 
archeological data. So it does not seem worthwhile 
complicating the model from the previous section further (in 
this direction). Instead, a good guide is given by a quote by 
Albert Einstein: "Mathematical models should be kept as 
simple as possible — but not simpler". 

8. Regional variability: archaeological observations 

According to the mathematical models reviewed above, the 
speed of the Neolithic front is a constant. This predicts that 
all data points in Figure 1 should fall on a straight line. 
Clearly this is not the case. Some possible reasons are the 
following: 
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 (i) Errors in the radiocarbon dates and/or the computed 
distances. The latter can be due to the existence of several 
independent spatial origins of agriculture (e.g., an origin for 
wheat, another one for barley, etc.), to the unavailability of 
some regions for human settlement (seas and high 
mountains), etc. 
 (ii) Regional variability in the spread rate. This should 
show up as most data points (for the region considered) 
falling either to the right or to the left of the regression (full 
line in Figure 1). If the spread slows down in a region, sites 
will be younger than average, and fall on the right of the 
regression (more recent dates). Conversely, if the spread 
accelerates in a region, its sites will be older than average and 
fall to the left of the regression. For example, Ammerman and 
Cavalli-Sforza (1971) mentioned a definite slowing down of 
the spread in Scandinavia. Does their observation hold up for 
the archaeological data available today? To answer this 
question, in Figure 2b we repeat the same regressions as in 
Figure 2a, but plot only the 38 sites from Denmark (from the 
735 sites in Figure 2a). Clearly, most data points in Figure 2b 
lie to the right of the regression lines. Therefore, the new data 
confirm that the spread was indeed slower in Denmark. No 
mathematical model has so far explained this observation, let 
alone the value of its delay time in years. 
 
In the next section, we will discuss how regional variability 
could be included in mathematical models. But before doing 
so, let us mention that besides the slowing down of the spread 
in Northern Europe, there are additional archaeological 
observations of regional variation that deserve attention; e.g. 
the delay into the Alpine area (Ammerman and Cavalli-
Sforza, 1984; Gkiasta et al., 2003), the accelerated spread of 
the Bandkeramik in central Europe (Ammerman and Cavalli-
Sforza, 1971), and the extremely fast spread along the 
Western Mediterranean (Ammerman and Cavalli-Sforza, 
1971; Zilhão, 2001). Interestingly, the latter is similar in 
speed to the Neolithic expansion in Oceania (Fort, 2003). 
 
9. Regional variability: mathematical models 
  
Regional variability can be due to many possible reasons, such 
as: 
 (i) Geographic or climatic barriers. They are a possible 
explanation for what appears as a 1,000-year halt in the 
Neolithic spread into Southern Scandinavia, due to a slow 
shift from hunter-gatherer into farming economics, possibly 
because of local difficulties in the practice of agriculture 
(Price, 2003). Such a halt does not appear of purely cultural 
origin, but ultimately due to geographic factors.  
 (ii) Cultural effects. Regions of fast acculturation by 
hunter-gatherers could in principle show a faster spread (and 
reduce the coexistence time between hunter-gatherers and 
farmers, which can be estimated from archaeological data). 
Mathematically, only recently several-population models have 
described cultural diffusion effects (Ortega-Cejas, Fort and 

Méndez, 2006; Ackland et al., 2007; Fort et al., 2008). This is 
a wide topic that deserves further work.  
 (iii) Non-homogeneous values of demographic 
parameters. From a purely mathematical perspective, this may 
correspond either to human dispersal parameters (diffusion 
coefficient D, dispersal probability distribution 

( ', ' , )x y x yΠ → , time interval between subsequent 

migrations T) or reproductive ones (values of a and 0R ). 
However, we are not aware of any anthropological data 
backing such suggestions. 
 (iv) Anisotropic dispersal effects. When the invading 
population front enters a region unsuitable for agriculture, 
humans may have a higher tendency to migrate backwards 
than forwards. There is some anthropological support for this 
suggestion, because migration data for the human 
colonization of Northern America in the XIX century are 
indeed anisotropic. Mathematical models including such 
effects have been recently proposed (Davison et al., 2006; 
Fort and Pujol, 2007). 
 
10. Conclusions 
  
We have surveyed the main mathematical models of the 
Neolithic transition, as well as their comparison to 
archaeological observations.  
 
Some additional models, e.g. models with several values of the 
generation time (Fort, Jana and Humet, 2004), have not been 
reviewed in this paper (mainly because they yield similar 
results for the predicted spread rate to the models surveyed). 
 
As reviewed in section 8, archaeological data show that 
regional variations in the spread rate are important. This is an 
interesting point that deserves further efforts using 
mathematical models, such as those summarized in section 9. 
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