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The foundat ions of information theory are brie¯ y reviewed. This background is applied to

present a self-contained survey on some recent theoretical results on statistical mechanics

and thermodynamics of non-equilibrium radiation-matter systems. Such results generalize

the Planck and Stefan ± Boltzmann laws, and the Wien displacement law. Present and likely

future applications in physics, climatology and industrial processes are discussed in some

detail.

1. Introduction

Information theory has been used in statistical physics for

at least 40 years [1± 4]. It is much simpler mathematically

than those approaches to equilibrium statistical mechanics

that are presented in most textbooks [5± 7]. Information

theory is very appealing because of its simplicity and, most

importantly, because it can be applied to non-equilibrium

systems and is therefore a more general theory. A very clear

example is that, as we shall see, it generalizes the Planck

spectrum to non-equilibrium systems. In fact, information

theory is the cornerstone of many recent ® ndings on non-

equilibrium statistical mechanics and thermodynamics (see,

e.g. [8± 22]). The present paper attempts to introduce brie¯ y

the necessary background on information theory, and to

provide a survey on some of its most recent developments

in the ® eld of non-equilibrium statistical mechanics,

especially those related to blackbody radiation [18± 21].

Therefore, our aim is not here to present a general survey

on the present state of information theory. For a recent

review, see [23]. Fundamental ideas and classic applications

can be found in seminal treatises [24 ± 30] and reports [31 ±

34] on the subject, whereas the connection to irreversible

thermodynamics has been analysed in detail in, e.g. [35].

2. Background: information theory and statistical

mechanics

Information-theoretical statistical mechanics is probably a

relatively novel formulation to many readers of this

journal. In this section we introduce it by providing a

brief, intuitive route that is free from any mathematical

complexity. The reader who is familiar with information

theory can jump to section 3, since the purpose of section 2

is to make the present paper accessible, without the use of

any additional material, to scientists working in other ® elds

as well as undergraduate students.

2.1. Probability and information

Information theory is a mathematical theory of commu-

nication. It was presented by Shannon in 1948 [36]. The key

result from Shannon’s work is the following. Let us

consider a system with n possible states (k= 1,2, . . . , n)

and denote the probability of the system being in state k as

pk . If we know the values of these probabilities p1, p2 , . . . ,

pn , and nothing else, is there some way to measure the

am ount of information we lack in order to know the precise

state of the system? What Shannon showed is that there is

an unique measure of this information i, and that (aside

from an arbitrary constant factor) it is given by the

following quantity

i 5 2
n

k 5 1

pk ln pk . (1)

Shannon derived this result from three very reasonable

assumptions, nam ely: (i) i is a continuous function of the

pk ; (ii) if all the pk are equal (pk= 1/n), then i is a monotonic

increasing function of n (so that the more possible states,

the less information we have about the actual state); and

(iii) if a choice between possible states is broken into two

successive choices, the original i is the weighted sum of the

two individual values of i. We shall refrain from giving the

proof of the well-known result (1) [37]. What we would like

to present here is a set of simple examples that will make

the meaning of equation (1) absolutely clear. The following
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examples will also be used in order to check an important

step in section 3.

Let us consider a system formed by two switches. Each

switch can have two positions: position 0 (or `oŒ’ ) and

position 1 (or `on’ ). A state of the system is determined if

the positions of both switches are given. For example, 01 is

the state of the system in which the ® rst switch is oŒand the

second switch is on. The system has therefore four possible

states, namely 00, 01, 10 and 11. Let us denote their

respective probabilities as p00 , p01 , p10 and p11 .

First example: A very simple case is that in which we

know the state of the system for sure. For example,

assume that we know that the system is in state 00. What

amount of information do we lack in order to know the

state of the system? In this case we can give the answer

without need of any calculation: we do not lack any

information. Does equation (1) agree with this? Since in

the considered case we have p00 = 1 and p10= p11 = 0,

equation (1) yields i= 0 (note that an indeterminacy

appears, so that the l’HoÃ pital rule may used:

limp k ® 0 pk ln pk = limp k ® 0 [(ln pk)/(1/pk)] = limp k ® 0

[(1/pk)/( Ð 1/p
2
k)]= 0. Therefore, equation (1) gives the

right result in this trivial case.

Second example: Let us consider a case that is opposite to

the previous one. Assume that the probabilities of all

states are the same, i.e. p00= p01 = p10 = p11= 1
4. This

corresponds to the case in which we do not know

anything about the state of the system (so that we assign

equal probabilities to all possible states). In such a

situation, what amount of information would we need in

order to determine the state of the system? In this case it

is not possible to ® nd out an answer intuitively. All we

can say is that this missing information must clearly be

higher than before, i.e. i> 0. However, equation (1) gives

a quantitative result, namely i= Ð 41
4 ln 1

4 = ln 4= 1.39.

Third example: We now consider a case that is inter-

mediate between the two previous ones. Let us assume

that p00 = 2
5 and p01 = p10 = p11 = 1

5. Intuitively, we can only

conclude that the missing information must be lower than

in the second example (because in that case we did not

know anything about the state of the system) and higher

than in the ® rst example, i.e. we should have 0 < i< 1.39.

Equation (1) yields i= 3
5 ln 5+ 2

5 ln 5
2= 1.33, which satis® es

that 0 < i< 1.39, as it should. These three examples, as well

as some generalizations, are visualized in ® gure 1.

Shannon considered problems in which the values of the

pk are known, and then applied equation (1). Jaynes [2]

turned this procedure around by making use of equation (1)

in order to determine the values of the probabilities pk . His

criterion is the following: if we have some partial

information on the state of the system, the least biased

(i.e. most reasonable) probabilities are those such that they

maximize the missing information (1): any other probabil-

ities would correspond to assuming additional information,

which we do not have. This is the so-called Principle of

Maximum Entropy (PME). It is to be noted that the word

`entropy’ is not justi® ed at this point, since for the moment

we are dealing with a problem of probability theory, not of

physics at all. Let us illustrate how the PME works.

Figure 1. (a) is a plot of the missing information i for a system

with four possible states and p01 = p10 = p11 , as a function of the

probability p00 . Point 1 corresponds to the ® rst example

discussed in the text: the state of the system is known, thus

there is no missing information. Point 2 corresponds to the

second example: in a state of absolute ignorance the lack of

information is maximum. Point 3 exempli® es a state of

incomplete knowledge. (b) generalizes the plot in ® gure 1 (a) to

systems with a diŒerent number of states. The more possible

states, the higher the lack of information is (for a given value of

p00). On the other hand, if the number of states n is given, the

missing information is maximum for p00 = 1/n (thus all

probabilities are the same).
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Fourth example: We consider the sam e system as the

three previous examples. Assume, however, that we do

not know the values of the probabilities pk, but we only

know that state 00 has probability p00 = 1
2. What are the

values of p01, p10 and p11? At ® rst glance there is no way

to solve this problem: we only know that p00 = 1
2 and,

clearly, that p00+ p01+ p10+ p11 = 1. We apparently need

two more equations in order to go ahead, i.e. there is

some information we lack. However, we can make a

reasonable (in fact, the most reasonable) determination

of the probabilities under this state of incomplete

knowledge: we apply the PME by maximizing the

missing information (1) under the conditions k

pk Ð 1= 0 and p00 Ð 1
2= 0. The solution to this variational

problem can be easily found out by means of standard

calculus techniques [38] by setting ­ /­ p j

( 2 k pk ln pk 2 ¹ [ k pk 2 1] 2 m [p00 2 1
2]) 5 0, with ¹

and m being Lagrange multipliers. This yields

p00 5 exp ( 2 1 2 ¹ 2 m ) and p j 5 exp ( 2 1 2 ¹) (for

j ¤5 00). Since p00 5 1
2, we obtain exp 2 m 5

exp (1 1 ¹) /2, so the normalization condition

kp k 5 1 yields p j 5 1
6 (for j ¤5 00). This result was to

be expected intuitively as the least-biased one: under the

speci® c state of incomplete information considered, there

is no reason to assume any diŒerence between the three

probabilities p01 , p10 and p11 . Note that if we had

considered, instead of the constraint p00= 1
2, a more

complicated one, e.g. k k pk 5 1.83, it would not have

been possible to solve the problem intuitively, whereas

the PME provides a unique, simple method to cope with

such cases.

2.2. Applicability to statistical mechanics

Up to now we have dealt with probability theory. The value

of the PME in statistical mechanics was shown by Jaynes in

1957 [2], who was motivated by the desire to free statistical

mechanics from its often apparent dependence on physical

hypotheses. Jaynes noted that macroscopic experiments

impose constraints on the microstates of physical systems,

and that such constraints can be written as expectation

values, i.e. as expressions of the form k pk f (k) , with f(k)

the value of a property of state k (e.g. the energy of the

system if in state k). Let us illustrate this by considering a

matter gas. Let n (x,t) stand for the number density of

molecules at position x and time t. We de® ne the

distribution function fm (x,pm ,t) by requiring that the

quotient fm (x,pm ,t)/n(x,t) gives the probability that a particle

of the system that has position in d
3
x (centred at x has also

momentum in d
3
pm (centred at pm , divided by d

3
pm/h

3
, with

h the Planck constant. This probability is normalized, i.e.

(d3pm /h3)(f m (x, pm , t) /n (x, t)) 5 1 (it is not necessary to

include h
3
, though in this way fm is dimensionless). The

positions and velocities of the molecules of the system are

not ® xed by the probability distribution f m x, pm , t( ) /n x, t( ) .

Indeed, the missing information in order to know the

microstate of the system is, from equation (1),

i 5 2
d3

pm

h 3

f m

n
ln

f m

n
, (2)

where the discontinuous probabilities pk have been replaced

by the continuous probability distribution fm/n. If an

experimentalist can control the number density n and

internal energy density um of the gas, namely

n 5
d3pm

h3 f m , (3)

u m 5
d3pm

h3

p2
m

2m
f m º 3

2
n kT (4)

(k is the Boltzmann constant and T the temperature [39]),

then it is clear from the explanations in the previous section

that the least biased distribution function fm will be the one

that maximizes the missing information (2), subject to the

constraints (3) and (4). This yields

f m 5 n exp 2 1 2 ¸n 2 b
n p2

m

2m
, (5)

with ¸ and b Lagrange multipliers. They may be easily

found out by substitution of equation (5) into (3) and (4)

and integration. This leads to

f m 5 h3n
1

2p m kT

3 /2

exp 2
p2

m

2m kT
, (6)

which is nothing but the Maxwell± Boltzmann distribution

[6], a well-known result also from other methods that are

presented in any textbook on standard statistical mechanics

or the kinetic theory of dilute gases.

3. Non-normalized probabilities. Radiation gas

Jaynes [2], as well as other authors (see, e.g. [40] and

references therein), remarked that the maximum entropy

approach is not restricted to equilibrium situations, and

applied it to derive more general results. An interesting

possibility which has been considered in the literature

[9,41,42] is to generalize the Planck distribution to non-

equilibrium states. Let us therefore consider a system that

contains radiation. This situation is very diŒerent from that

in the previous section, because the number density of

photons cannot be chosen at will. We can see this as

follows. Consider a solid enclosure containing a gas. If the

temperature is su� ciently high, the enclosure will shine

because of the radiation it emits. We can remove gas

molecules until the enclosure is (almost) empty of gas, but

not of photons, because the internal walls emit photons

into the cavity. Thus the number density of photons is not a
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quantity that may be independently controlled by the

experimentalist. It is true that she can do so if she alters the

temperature, but this means changing the internal energy,

which has already been taken into account as a constraint

on the system (see, e.g. equation (4)). Therefore, in the case

of radiation we need to set up a diŒerent framework. The

one that is presented below is new: it makes explicit use of

non-normalized probabilities. Moreover, it can also be

applied to matter systems.

Let us go back to the information-theoretical discussion

presented in section 2. There it was assumed that the

probabilities were normalized, i.e.
n
k 5 1 pk 5 1, simply

because this is the most familiar case. However, it turns

out that the requirement of normalization is not a necessary

condition for the applicability of information theory. After

this is shown, we shall see that the description of radiation

and matter becomes uni® ed, and that such a uni® ed

statistical framework is essential to recent research on

non-equilibrium radiative systems.

The question is now: if we de® ne a non-normalized

probability Pk as

Pk 5 C pk (7)

(with C > 0 an arbitrary constant), so that we have
n
k 5 1 Pk 5 C instead of

n
k 5 1 pk 5 1, is the equation

corresponding to (1), namely

I 5 2
n

k 5 1

Pk ln Pk , (8)

still a valid measure of the amount of information we lack

in order to know the precise state of the system?

Substitution of equation (7) into (8) and use of

equation (1) yields

I 5 2 C ln C 1 C i , (9)

which implies that I is a growing function of i. This means

that I measures the am ount of information with another

scale of measurement. This can be easily checked by going

back to the three ® rst examples in the former section: making

use of equation (9) (or (8)), we ® nd i= Ð C ln C in the ® rst

exam ple, I= Ð C ln C+ 1.39 C in the second one, and

I= Ð C ln C+ 1.33 C in the third example. Thus the value of

I in the third example is higher than in the ® rst one and lower

than in the second one, as expected. We therefore see that it

is not in fact necessary to deal with normalized probabilities

in information theory: making use of non-normalized

probabilities leads to diŒerent ways to measure the amount

of missing information. But if one am ount of information is

higher than another one, this does not change with the use of

non-normalized probabilities. Since, as we have explained,

one is interested in the probability distribution that yields

the maximum possible value for this missing information,

the results will not be aŒected. Thus we may interpret the

single-particle distribution function f(x,pm ,t) and the quo-

tient f(x,pm ,t)/n(x,t) as a non-normalized probability and a

normalized probability, respectively. We shall make use of

these results in order to present a statistical-mechanical

procedure that copes both with matter and radiation

systems. We stress that in the case of radiation, no a priori

normalization condition can be imposed.

It is simple to repeat the calculation leading to the

Maxwell± Boltzmann distribution (6) making use of an

equation analogous to equation (8), namely

I 5 2
d3pm

h3 f m ln f m , (10)

instead of equation (2): maximization of the missing

information (10) under the constraints (3) and (4) leads to

the Maxwell± Boltzmann distribution (6), as expected. It is

also interesting to compare equation (10) with the

Boltzmann formula for the entropy density in the case

considered (a classical ideal gas), namely [6]

s m 5 2 k
d3

pm

h3 f m ln f m , (11)

which shows that sm = kI, i.e. that the entropy density is a

measure of that information on the microstate which is not

provided by the distribution function.

Let us now generalize the case from that of a purely

matter system and tackle an equilibrium problem: consider

a blackbody cavity containing an ideal matter gas. Both the

walls and the gas inside the cavity will emit and absorb

photons. We are interested in deriving the distribution

functions both for the matter and the radiation gases inside

the cavity. In this case the entropy density is given by the

well-known expression [6]

s 5 s m 1 s r 5 2 k
d3

pm

h3 f m ln f m 1

2k
d3p r

h3 1 1 f r( ) ln 1 1 f r( ) 2 f r ln f r[ ] (12)

where the sub-indices m and r stand for matter and

radiation, respectively. The energy density of the system is

u 5 u m 1 u r 5
d3pm

h3

p2
m

2m
f m 1 2

d3p r

h3 p r cf r , (13)

where use has been made of the fact that the energy of a

photon is prc, with pr its momentum and c the speed of light

in vacuo. The factor 2 in each of the second terms in

equations (12) and (13) appears because of the two

independent polarizations of the photon [6]. We have seen

that the most probable distribution functions are those

which maximize the entropy density under the macroscopic

constraints that can be controlled by an experimentalist.

Thus we must maximize the entropy density (12) under the

energy density constraint (13) and the constraint on the

matter number density (3) (but not under any additional

constraint on the radiation number density because, as
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stressed above, it cannot be controlled independently by an

experimentalist). In this way one easily ® nds out the

distribution functions

f m 5 exp 2 1 2 ¸ 2 b
p2

m

2m
, (14)

f r 5
1

exp ( b p r c) 2 1
, (15)

with ¸ and b Lagrange multipliers. As in the example in the

previous section, they can be determined by insertion of the

matter distribution function (14) into equations (3) and (4)

and integration. In this way, the distribution functions (14)

and (15) become

f m 5 h3
n

1
2p m kT

3
2

exp 2
p2

m

2m kT
, (16)

f r 5
1

exp (p r c /kT ) 2 1
, (17)

which are the Maxwell± Boltzmann and Planck distribution

functions, respectively, as expected. This con® rms that,

within information theory, use may be made of non-

normalized probabilities. It is on this basis that the recent

results mentioned in section 1 may be understood, and the

rest of the present paper is devoted to survey them.

4. Non-equilibrium blackbody radiation

If the temperature of a blackbody is uniform, the radiation

it emits is Planckian, in agreement with the predictions of

equilibrium statistical mechanics. Recent research has been

directed towards generalizing this result [18 ± 21]: after all,

most (if not all) of the radiation we observe has not been

emitted by uniform-temperature blackbodies! The ® rst step

is to consider a blackbody cavity in a non-equilibrium state:

as depicted in ® gure 2, we assume that the temperature is

not uniform. We will here, for the sake of simplicity, neglect

heat convection by assuming that the temperature increases

upwards (TB >  TA ). Heat conduction inside the cavity may

also be neglected if the thermal conductivity of the matter

gas inside the enclosure is low enough. However, heat will

certainly be transported by radiation: since the temperature

is higher in the upper part of the enclosure, we expect

intuitively that the internal walls will emit more radiation

(per unit area and time) in the upper part than in the lower

one. Thus we expect a radiative energy ¯ ux F in the

direction shown in ® gure 2, i.e. F= (0,0,F), with F > 0 (the z-

axis is taken positive downwards). This energy ¯ ux F is

essentially a sum of the photon energies prc (per unit

volume) times their velocity c, i.e. [43]

F 5 2
d3

p r

h3 p r ccz f r , (18)

with cz the z-component of c. The radiative heat ¯ ux F is a

quantity that can be controlled experimentally, since we

have seen that it should be related to the temperature

gradient, which may be externally modi® ed by heating

mechanisms (e.g. electrical resistances). Thus in order to

® nd out the most probable distribution functions for this

system, we can maximize its entropy density (12) under the

sam e constraints as before, namely those given by

equations (13) and (3), and the additional constraint (18).

This yields for fm the same result as before (equation (14)),

which when used in equations (3) and (4) leads again to the

matter distribution (16): as far as fm is concerned, the only

diŒerence with the case dealt with in the former section is

that now the distribution (16) is locally Maxwellian,

because T depends on position. On the other hand, for

the radiation distribution function fr we obtain

f r 5
1

exp
pr c

kT 2 c p r ccz 2 1
5

1
exp

pr c

kT 2 p r c c . c 2 1
, (19)

Figure 2. Cavity containing a matter ideal gas. If the

temperature is not uniform but increases upwards, there is a

radiative heat ¯ ux F in the direction shown in the ® gure. The

cavity may in general have some small apertures, such as those

shown in the ® gure (A and B), which are crossed by photons

leaving and entering the cavity. In case the enclosure does have

one or several apertures, the radiation leaving the cavity may be

detected by an external observer. Then the internal walls have to

be assumed highly absorbing in order to ful® ll the de® nition of a

blackbody (i.e. in order to ensure that radiation going into the

cavity is not re¯ ected and leaves it again).
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with c = (0,0, c ) the Lagrange multiplier corresponding to

constraint (18). There are several ways to simplify the

problem of relating c to measurable quantities [18,21]. We

will present here an extremely simple derivation, because

several of the results thus obtained will be useful in the

context of applications (to be discussed in the next section).

The Planck distribution corresponds to the limit c ® 0 in

equation (19). Thus states which are su� ciently near

equilibrium can be described simply by performing the

® rst-order Maclaurin expansion in c of the distribution

(19),

f
(1)
r 5

1
exp (pr c /kT ) 2 1

1 1
exp (p r c /kT )

exp (p r c /kT ) 2 1
c pr ccz .

(20)

In practice, one is always interested in the radiation

intensity, nam ely [44],

I m 5
2h m 3

c2 f r , (21)

t being the frequency. I m is an energy per unit area, time and

solid angle, and it can be directly measured by means of a

spectrophotometer. If the system is in a steady state, the

intensity must satisfy the usual radiative transfer equation

[43,45],

cz

c

dI m

dz
5 2 r I m 1 j m , (22)

where j m and r are the emission and absorption coe� cients,

respectively (for the sake of mathematical simplicity,

scattering has not been included here and r has been

assumed independent of frequencyÐ the latter assumption

is the gray approximation [43,45]). Multiplication of

equation (22) by cz/c and integration over all possible

values of the photon frequency m and direction of motion

c/c º yields, after taking into account that

d
3
pr= p2

r d X = (h
3
m

2
/c

3
) d m d X (with d the diŒerential of

solid angle),

c
dP r z z

dz
5 2 r F , (23)

with F given by equation (18) and we have de® ned

Pr z z º 2
c

d3p r

h3 pr c2
z f r . (24)

Use of the distribution function (20) into (24) and (18) and

integration yields respectively

Pr z z
aT 4

3
, (25)

F 5
4ac2kT

5

3
c , (26)

with a 5 8p 5k4 /15c3h3 the blackbody constant (the Stefan ±

Boltzmann constant is ac/4). Finally, insertion of equations

(25) and (26) into (23) allows us to relate c to measurable

quantities as

c 5 2
1

r ckT 2

dT

dz
, (27)

so that the radiation distribution function (20) reads

f
(1)
r 5

1
exp (p r c /kT ) 2 1

1 1
exp (pr c /kT )

exp (p r c /kT ) 2 1

dT

dz

r kT 2 p r cz , (28)

where we have taken into account that in the situation

depicted in ® gure 2 we have assumed that the temperature

increases upwards and the z-axis is de® ned positive

downwards, so that dT/dz < 0. Let us mention that the

derivation of equation (28) we have just presented is much

simpler than the original one [18].

Before going into some applications, we may note the

following properties of equation (28): (i) in equilibrium (dT /
dz= 0) it reduces to the Planck distribution function (17), as

expected; (ii) it depends on the photon direction of motion

through cz and is therefore anisotropic, in contrast with the

Planck distribution (17): this was to be expected intuitively,

since it corresponds to the fact that, in the non-equilibrium

situation depicted in ® gure 2, we have F > 0, and this implies

that there are more photons moving downwards (cz > 0)

than upwards (cz < 0), which is consistent with equation (28);

(iii) the distribution (28) is closer to Planckian the higher the

absorption coe� cient of radiation by matter r is: this

corresponds to the fact that if r is high, then more photons

are absorbed by matter, their energy being re-emitted

isotropically (the last term in the radiative transfer equation

(22) corresponds to the emission and does not depend on I m ,

i.e. is independent of direction).

In order to illustrate the diŒerence between the Planck

distribution (17) and its generalization (28), we make use of

equations (21) and (28), and integrate in order to obtain the

intensity due to photons that, coming from all possible

directions, leave the cavity in ® gure 2. This yields for the

spectral intensity ¯ uxes through apertures A and B in ® gure

2 [18]

i¸A 5 i ¸ P lanck T A( ) 1 i
(1)

¸ T A( ) , (29)

i¸B 5 i ¸ P lanck T B( ) 2 i
(1)

¸ T B( ) , (30)

where

i ¸ P lanck T( ) 5
2p c2h

¸5
1

exp ( hc /kT )̧ 2 1
(31)

is the usual Planckian (or equilibrium) spectral intensity

¯ ux, and

i
(1)

¸ T( ) 5
2hc

3k r T 2¸

exp (hc /kT ¸)

exp (hc /kT ¸) 2 1
dT

dz
i ¸ P lanck T( )
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corresponds to the non-equilibrium correction. In the

absence of a temperature gradient, the second term in the

right-hand side of equations (29) and (30) vanishes and we

recover Planck’ s blackbody spectrum (31). If expansion

(20) had been carried out up to second order, we would

have obtained an additional term in dT /dz| |2 [18]. This has

consequences related to the meaning of temperature in non-

equilibrium systems. They will be discussed in section 5.3,

but for the moment let us consider situations such that

second- and higher-order terms may be neglected. In ® gure

3 we plot the spectra (29) and (30) for a speci® c case. It may

be tested that higher-order terms are indeed negligible [18],

and the maximum corrections with respect to the Planck

spectrum (dashed line in ® gure 3) are of about 8.5% . Such

high corrections show that the predictions of information

theory are susceptible to being tested experimentally. This

example is in contrast with the belief according to which

information theory has not led to concrete new results

beyond those already obtained by equilibrium approaches.

Such a belief was reasonable some time ago [25], but is still

widespread at present. On the other hand, looking at ® gure

Figure 3. Spectra of the radiation emitted through the

apertures A and B of the blackbody enclosure shown in

® gure 2. The dashed curve is included for comparison and

corresponds to equilibrium (or Planckian) spectra with tempera-

tures TA and TB (both spectra are not distinguishable from each

other in the ® gure). Full lines correspond to non-equilibrium

spectra (equations (29) and (30)).

Figure 4. The ® gure at the right corresponds to the physical state of the system in ® gure 2, and illustrates the explanation of ® gure 3

given in the text. Arrows represent the magnitude of the radiation intensity at a given point and direction. The emission is anisotropic and

the radiation leaving the cavity through aperture A is more intense than through B. As explained in the text, it is very important to note

that the ® gure at the left gives a confusing description of radiative emission.
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3 the reader may be surprised that the intensity of radiation

leaving the cavity shown in ® gure 2 may be higher for

aperture A than for aperture B: after all, we have assumed

that TB > TA , and we may expect hotter regions to emit a

more intense radiation (see ® gure 2). This reasoning would

be right if the emission were isotropic (see ® gure 4 (a)).

However, according to equation (28) there are more

photons moving downwards (cz > 0) than upwards

(cz < 0). Thus the radiation intensity is not only inhomo-

geneous but also anisotropic (see ® gure 4 (b)), and this

explains the fact that more photons cross aperture A than

aperture B per unit time. A simple illustration is provided

by a small part of a star: in such a physical system, the

downward direction in ® gures 2 and 4 (decreasing-

temperature direction) corresponds to the outward radial

direction, which is the direction of maximum radiation

intensity, in agreement with ® gure 4 (b).

Integration of equations (29) and (30) over all possible

wavelengths yields the following results for the total energy

¯ uxes q 5
¥
0 i¸ d¸ leaving the cavity in ® gure 2 [18]

qA 5
ac

4
T

4
A 1

2ac

3r
T

3
A

dT

dz
,

qB 5
ac

4
T

4
B 2

2ac

3r
T

3
B

dT

dz
,

where a 5 p 2k4 /15c3 ±h3
is the blackbody constant

( ±h 5 h /2p is the reduced Planck constant). In equilibrium

(dT /dz 5 0) , the former expressions reduce to the Stefan ±

Boltzmann law (q= ac/4T
4
), as expected. These results are

illustrated in ® gure 5, where we observe that the higher the

value of the temperature gradient is, the more important

non-equilibrium corrections become. From ® gure 5 we can

also note that a lower value for the absorption coe� cient r
corresponds to further away from equilibrium state, in

agreement with the discussion given below equation (28).

5. Applications

5.1. The Wien displacement

An important statistical-mechanical result for equilibrium

radiation is Wien’ s displacement law, which follows directly

from Planck’ s spectrum (7) and states that the wavelength

¸max of maximum blackbody radiation is given by (see, e.g.

[6])

ch

kT ¸max
5 4.9651 . (32)

This equilibrium law can be generalized to non-equilibrium

states by making use of the spectral distributions (29) and

(30) instead of the Planck distribution (31). We quote the

results for the apertures A and B shown in ® gure 2, which

are [19]

ch

kT A¸max A
5 4.9651 1 3.3101

dT

dz

r T A

, (33)

ch

kT B ¸max B
5 4.9651 2 3.3101

dT

dz

r T B

, (34)

with TA and TB the temperatures at the apertures A and B

in ® gure 2, respectively. Equation (33) predicts that outside

equilibrium, an observer who detects the radiation looking

along the direction of the temperature gradient (e.g. an

observer located at the aperture A in ® gure 2) will ® nd a

decrease of the wavelength of maximum radiation intensity

with respect to the equilibrium value, which is given by

Wien’ s displacement law (32). According to equation (34),

an observer looking in the opposite direction (e.g. an

observer located at B) will detect an increase for this

wavelength. In ® gure 6 we illustrate the non-equilibrium

spectrum through aperture A for several temperatures. In

the inset of ® gure 6 we see that the wavelength of maximum

intensity is lower than in the case of an equilibrium system

at the same temperature, in agreement with equation (33) .

The Wien displacement and the Planck spectrum are very

interesting from a conceptual perspective. Moreover, they

also have important applications in systems where the

temperature is so high that it cannot be measured by means

of a contact thermometer. Some examples are furnaces

(such as those used in, e.g. high-temperature processing

metal industries [46,47]), sonoluminescence [48] and stellar

atmospheres [49]. However, in such systems the tempera-

ture is not uniform and any description based on

equilibrium approximations may be very crude. In order

to illustrate this point, let us assume that a small part of

Figure 5. Total heat ¯ ux (i.e. integrated intensity of radiation)

leaving the cavity in ® gure 2, as a function of the temperature

gradient and for two values of the absorption coe� cient r . The

temperature at the considered aperture (A or B) is 2000 K in all

cases depicted. The plotted quantities are ¯ uxes relative to those

which follow from the Stefan± Boltzmann law (q= (ac/4)T
4
),

which only in the case of equilibrium (dT/dz= 0) is an exact
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some physical system (such as an industrial furnace, a

sonoluminescent bubble or an outer layer of a star [19]) can

be approximately represented by ® gure 2. Consider the

speci® c case in which we observe the system looking in the

direction of the temperature gradient (aperture A in ® gure

2). If the values of the relevant parameters are, e.g.

r = 0.1 m
Ð 1

[18] and dT /dz| | = 10 km
Ð 1

, and the observed

wavelength of maximum intensity is ¸max A 5 1.4021¹m,

then equation (33) can be used to estimate a temperature of

TA = 2000 K. What would the diŒerence be had we simply

applied the Wien displacement law? The estimated tem-

perature would then be obtained from equation (32). This

yields 2067 K. Therefore, the diŒerence is of about 3.5% .

Such an error should not be neglected, and provides a

simple illustration of the relevance of extending the

equilibrium description based on the Planck spectral and

the Wien’ s displacement laws.

5.2. Temperature measurements in shock waves and

industrial processes

It would be rather incomplete to refer here only to

Wien’ s displacement law in the context of radiation-based

temperature measurement. Additional, very interesting

methods exist. One such method is the so-called

temperature colour measurement, which has become very

important in the context of shock waves. Shock waves

are used in order to obtain experimental information on

the equation of state of hot dense matter [50], which is

useful, e.g. in inertial con® nement fusion research. In

some of these experiments, a target made of aluminium is

irradiated by a laser. The incident laser radiation causes a

shock wave that propagates through the target and

gradually heats it up: if the shock wave is strong enough,

the target becomes completely vaporized [51]. The rear-

face of the target emits a sudden ¯ ash at the arrival of

the high-temperature wave. This radiation can be

recorded and analysed in order to estimate the tempera-

ture. Colour temperature estimations rely on the use of

® lters, which are used in order to measure the radiation

intensity at diŒerent wavelengths. Consider a case in

which a red (¸ » 600 nm) and a blue (¸ » 400 nm) ® lter

are used [51]. Let us call the corresponding intensities i r

and i b . The experimental ratio i r /ib and Planck’ s law (31)

may be used in order to obtain a rough estimate of the

temperature. For example, for i r /ib = 0.49 this yields a

temperature of 0.823 eV. The question is to what extent

this result, stemming from an equilibrium hypothesis, is

reliable. In fact very high temperature gradients are well-

known to appear in shock waves [51,52]. Since in these

experiments the radiation that is recorded comes from a

cooler plasma that obscures the higher-temperature

material behind it [51], the observation takes place in

the direction of the temperature gradient and we may

therefore carry out a non-equilibrium estimation making

use of equation (29). The absorption coe� cient can be

calculated, and even measured, independently of the

shock-wave experiments, and is known to be frequency-

dependent [53]. Equation (29) can be applied to this case,

with the only change that r now depends on frequency.

We denote the absorption coe� cients in the red and blue

wavelengths as r r and r b, respectively. For the same

value of ir/ib as above, a temperature gradient of

dT /dz| | 5 1.3 ´ 10
6

eV m
Ð 1

, r r = 8.9 ´ 10
4

cm
Ð 1

and

r b = 3.8 ´ 10
4

cm
Ð 1

, equation (29) yields a temperature

of 0.800 eV. The diŒerence between this result and the

estimation based on neglecting the in¯ uence of the

temperature gradient is therefore of about 3% , which

again indicates the usefulness of the non-equilibrium

results in a speci® c application.

Similar estimations can be performed for other optical

methods of temperature measurement, such as the ratio

thermometers used in some steel and aluminium industries

(these thermometers in fact carry out colour temperature

measurements, on the same principle as that described

above [46], which is also useful in astrophysics [54]), the

brightness and emissivity method (which has been used in

shock waves [55]), spectral-band thermometry (which is the

method on which many radiation thermometers are based,

including some ® bre-optic thermometers [46]) and total

radiation thermometry [46]. The latter three methods are

based on direct comparisons to Planckian spectra, but in

Figure 6. Non-equilibrium (solid curves) spectra for diŒerent

temperatures and aperture A in ® gure 2. In all cases (1/ r TA )

(dT/dz)= 0.025. Planckian spectra are included for comparison

(dashed curves). The inset shows the range around the maxima

in detail, for a speci® c temperature. Note the shift D k m in

the maximum, which corresponds to the generalized Wien

displacement (33).
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the case of systems with a non-uniform temperature

distribution the emission spectra (such as those plotted in

® gures 3 and 6) are not Planckian, and from the estimations

presented below equation (31) it is clear that non-negligible

corrections can easily arise [18].

5.3. What does a thermometer measure outside equilibrium?

In sections 5.1 and 5.2 we have discussed the in¯ uence of

non-equilibrium corrections on radiation temperature

measurements. However, up to this point only ® rst-order

corrections have been taken into account. We have already

mentioned that in general second-order terms are not

negligible, so that an additional term appears in equations

(29) and (30),

i¸A 5 i¸ P lanck T A( ) 1 i
(1)

¸ T A( ) 1 i
(2)

¸ T A( ) , (35)

i ¸B 5 i ¸ P lanck T B( ) 2 i
(1)

¸ T B( ) 1 i
(2)

¸ T B( ) , (36)

where i
(2)

¸ T( ) corresponds to the second-order correction.

This correction has been recently shown to depend on how

the temperature is de® ned [20]. In non-equilibrium systems,

there are several ways to de® ne a temperature-like variable.

For radiative systems, one way is to assume that the usual

equilibrium law for the radiation energy density ur holds,

i.e. [6]

u r 5 aT
4
r . (37)

The parameter T r is well known to correspond to the

temperature, provided that the system is in equilibrium. Is

this so also in non-equilibrium states? A general thermo-

dynam ic de® nition for the temperature T is [35]

T
2 1 5

­ s

­ u
, (38)

where s and u are the entropy and the energy of the

system per unit mass. From the de® nitions (37) and (38) it

follows that diŒerent results are obtained if we write, e.g.

the intensity (35) in terms of the thermodynamic

temperature TA than if we write it in terms of the local-

equilibrium temperature TrA [20]. This is illustrated in

® gure 7. The meaning of this ® gure is the following. If use

is made of a contact thermometer (in order to determine

the temperature) and of a spectrophotometer (in order to

measure the radiation intensities) in the system depicted in

® gure 2, then comparison with the information-theoretical

predictions in ® gure 7 may make it possible to determine

experimentally whether T or T r is the quantity measured

by a thermometer outside equilibrium. This is one of the

most controversial debates in non-equilibrium thermo-

dynam ics at present [56,57]. In this context, the impor-

tance of information theory is that it can be applied in

order to ® nd out how this subtle question might be solved

experimentally [14,20].

5.4. Climatology

From equations (26) and (27) we ® nd that the radiative heat

¯ ux is related to the temperature gradient in the following

way

F 5 2 ¸
dT

dz
, (39)

with ¸ 5 4acT 3 /3r . This is a Fourier-type equation for

heat radiation (instead of the more familiar case of heat

conduction). It follows, as we have seen, from information

theory, but it is in agreement with some phenomenological

descriptions [58]. However, the starting point is always

equation (22), which is the radiative transfer equation in the

special case of steady states. The radiative transfer equation

has also been widely used for systems that evolve in time,

and is given by [45]

1
c

­ I m

­ t
1

cz

c

dI m

dz
5 2 r I m 1 j m , (40)

where the ® rst term includes a time derivative and is

therefore absent in the case of steady states (equation (22)).

Figure 7. Spectra of the light emitted through aperture A in

® gure 2 according to the predictions of information theory and

assuming T (full line) or Tr (dashed-dotted line) is the

measurable temperature. Only a narrow wavelength range near

the maxima is shown. The temperature is 2000 K and the

temperature gradient is 15 K m
Ð 1

.
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It is not di� cult to make use of the information-theoretical

result (20) into equation (40), instead of (22). This yields

[21]

s
dF

dt
1 F 5 2 ¸

dT

dz
, (41)

where s has units of time. This result generalizes equation

(39) to non-steady states. It has also been derived

phenomenologically for extremely anisotropic radiation

® elds [59,60].

Thermodynamic climate models make it possible to

reduce the number of variables and, in this way, to identify

the basic parameters aŒecting the evolution of climate [61].

Because the climate is driven by the radiation ® eld, it has

been stressed that the role of radiative heat transport

should not be neglected [62]. With this perspective, Pujol

and Llebot have analysed the role of the ® rst term in

equation (41) (which does not appear in the steady-state

equation (39)) on the climate system. In this way, they have

been able to analyse the in¯ uence of the ratio s / k on the

response of climatic states with respect to small perturba-

tions [63], thereby enlarging the range of applicability of

previous approaches [64]. In this context, it is worth

mentioning that use of a generalized equation of the form

(41) for the matter heat ¯ ux shows that certain values of the

relevant parameters can lead to self-sustained periodic

oscillations in one-dimensional models of the climate

system [65].

Another very interesting approach to the modelling of

the climate is based on the rate of entropy production, r
s
.

The meaning of r
s

can be understood by saying that it

corresponds, in the case of an isolated system, to the

entropy increase per unit time and volume. For the speci® c

case in which equation (41) holds, the rate of entropy

production is of the form [21]

r
s 5

F 2

¸T 2 , (42)

which satis ® es that r
s > 0. This is as expected, because

according to the second law of thermodynamics the

entropy of an isolated system is an increasing function of

time. The application of approaches of this kind to the

study of climate goes back to Paltridge, who derived

distributions of temperature and cloud-cover from the

maximization of the rate of entropy production [61].

Although a rigorous proof of the validity of such a

procedure is still lacking, the distributions thus obtained

showed a remarkably good agreement with observations.

This has motivated many studies on the climate behaviour

in which the rate of entropy production is a fundamental

point. However, no expression of the type of (42) was used

in the original studies. In fact, Paltridge considered only the

entropy production corresponding to the matter part of the

system, whereas equation (42) is an expression for the

radiative part. The role of the radiation entropy production

has been recently taken into account, and this has lead to

reasonable, more general results for temperature and cloud

distributions [66]. More recent models extend this approach

in order to predict the role of greenhouse gases, and

additional eŒects, in future climatic scenarios [67].

5.5. Astrophysics

Since the photon energy is prc= hv, according to equations

(21) and (28) the intensity of radiation has the form

I m 5 a m 1 bm cos h , (43)

were av and bv are functions of frequency and cz= c cos h ,

i.e. h is the angle between the photon velocity c and c (or

between c and the temperature gradient, see equation (27)).

However, it is to be stressed that an intensity of this form

can be expected to give a realistic description of radiation

only near equilibrium. Otherwise, use should be made of

the distribution (19) , which combined with equation (21)

yields an intensity of the form

I m 5
2h m 3 /c2

exp ( A m 2 B m cos h ) 2 1
, (44)

instead of (43).

It is very interesting that the form (43) for the radiation

intensity is well known in astrophysics. It is known as the

Eddington approximation, and can be derived by means of

phenomenological theories [45,68]. The Eddington approx-

imation (43) corresponds to equations (29) and (30) (for the

case of the system depicted in ® gure 2 instead of the Sun)

and is said to give a rather good description of non-

Star

T

F

Figure 8. Stellar limb darkening. An observer at O sees less light

the higher the angle of sight h is. This is a consequence of the

anisotropy of non-equilibrium radiation. Experimental data are

compared to the predictions of two theoretical approaches in

® gure 9.
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equilibrium radiation [45]. However, information theory

tells us that this should be so only near equilibrium. We can

see this in a very well-known astrophysical application of

radiative transfer: the solar limb darkening. This phenom-

enon is illustrated in ® gure 8, and it explains why in the

photographs of the Sun, the edge appears darker than the

centre. According to the Eddington approximation (43),

the relative eŒect should be of the form

I m h( )

I m 0( )
5

a m 1 bm cos h

a m 1 bm

, (45)

where we have used the current notation in astrophysics

and written Iv ( h ) instead of Iv, and Iv (0)= Iv ( h = 0) for the

maximum intensity. According to equation (45), the

Eddington model predicts that a plot of Iv ( h )/Iv (0) versus

cos h should yield a straight line (for a given frequency).

From the experimental data [69] reproduced in ® gure 9, it is

seen that this is a reasonable approximation (the dotted line

in ® gure 9 is a ® t to equation (45)) . On the other hand, the

information-theoretical intensity (44) predicts for the limb

darkening

I m h( )

I m 0( )
5

exp (A m 2 B m ) 2 1
exp (A m 2 B m cos h ) 2 1

, (46)

which is a more general description than the near-

equilibrium approximation (45). The full line in ® gure 9 is

a ® t to equation (46). Note that both ® ts make use of the

same number of free parameters (namely, two of them), but

the information-theoretical prediction is more accurate.

Such a result is very encouraging. In contrast to some well-

known approaches [70], it is not based on the phenomen-

ological assumption of radiative local thermodynamic

equilibrium (i.e. the approximation j m ! r I m P lanck [45]).

This gives a hint about possible future applications of

information theory in astrophysics. Here some brief

comments may be appropriate. Let us note that Bv will be

related to the temperature distribution in the star (see

equation (27), which holds in the simplest model), so that

comparisons between information-theoretical predictions,

such as (46) , and observed limb darkenings can be used, if

reliable values for the absorption coe� cient are available

[71], in order to infer temperature distributions. In fact,

more general laws than (46) can be derived by the use of

additional constraints besides (18), in complete analogy to

similar analysis for matter systems [72]. We have used the

Sun as an illustration, but comparison between observed

and calculated intensities are of special interest when

considering stars for which few observational data are

available [73].

5.6. Further applications

There are many other systems in which non-equilibrium

radiation is of importance, although the di� culty of

carrying out direct, detailed comparisons between theory

and experiments might in some cases make some theoretical

predictions of little practical use at present.

One example is sonoluminescence, which consists of very

fast light ¯ ashes emitted from a liquid under high-intensity

sound waves. In this situation, acoustical energy is

transformed into radiative energy, temperature gradients

are very high and thermal spectra have been reasonably

invoked as one possible explanation [48]. In spite of this,

the absorption of light by water for wavelengths below

190 nm does not make it possible to map out the complete

spectrum [74], and this is an important problem in order to

carry out conclusive comparisons between experimental

spectra and theoretical ones (such as those predicted by

information theory, for some examples see ® gures 3 and 6).

Before closing this section we would like to mention

another example: the cosmic microwave background

radiation. It has been proposed that it may be used as a

test of generalized Planckian spectra [75], speci® cally of

those that arise in the context of a very interesting

generalization of the usual statistical mechanics (in the

latter the additivity of the entropy of independent systems

holds) [76], but again a practical problem arises, since the

measured spectrum is almost Planckian [77] and, in fact,

the experimental deviations may be due entirely to

instrumental eŒects [75].

6. Concluding remarks

We have surveyed how Jaynes’ information theory leads to

non-equilibrium extensions of the well-known theoretical

results on radiation due to Planck, Wien and Boltzmann.

Some applications have been presented. They can be seen

as an expression of our motivation when undertaking this

Figure 9. The squares are measurements of the solar limb

darkening. The dotted line is a ® t of these experimental points to

the ® rst-order approximation (equation (45)) and the full line is a

® t to the more general information-theoretical result (46).
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work: most of the radiation around us (in the climate

system [62], in the stars [43], in practical blackbodies [46],

etc.) is not in equilibrium.

It has also been our intention to persuade the reader of

the great predictive potential of information theory.

Information theory is simpler than the more traditional

approaches, and it can deal with non-equilibrium systems.

We would like to emphasize that the results surveyed

cannot be derived making use of any statistical-mechanical

method of those which appear in textbooks of equilibrium

statistical mechanics [5± 7], simply because the validity of

such methods is restricted to equilibrium situations. In this

context, it is interesting to mention that the textbook by

Huang [5] includes some very interesting discussions on the

method of the most probable distribution, and follows a

classical approach (the maximization of the volume in

phase space). As noted by Jaynes [78], this is a method

advanced by Boltzmann himself, but in order to deal with

non-equilibrium systems it should be replaced by the

maximization of the entropy density. Jaynes’ approach

has been summarized in section 2 and shows that, in

contrast to what is stated in [5], the method of maximum

probability can indeed be applied to obtain predictive

results for non-equilibrium systems. An example of such an

application is the generalization of the Planck distribution

function, as illustrated in ® gures 3 and 6.
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