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How long does it take to boil an egg?
A simple approach to the energy
transfer equation
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Abstract. The heating of simple geometric objects immersed in an isothermal bath is analysed
qualitatively through Fourier’s law. The approximate temperature evolution is compared with
the exact solution obtained by solving the transport differential equation, the discrepancies being
smaller than 20%. Our method succeeds in giving the solution as a function of the Fourier modulus
so that the scale laws hold. It is shown that the time needed to homogenize temperature variations
that extend over mean distancesxm is approximatelyx2

m/α, whereα is the thermal diffusivity. This
general relationship also applies to atomic diffusion. Within the approach presented there is no
need to write down any differential equation. As an example, the analysis is applied to the process
of boiling an egg.

1. Introduction

The title of this paper proposes a problem thata priori appears quite difficult to solve for two
main reasons. First, one should be able to solve a non-elementary three-dimensional problem
of non-steady heat conduction. Second, the thermal conductivity and specific heat of the egg
are parameters whose values are not currently available from non-specialized sources. In what
follows we propose reasonable approximations that allow us to reach a satisfactory result.
Along the way, we will obtain an important relationship that applies to non-steady problems
involving both heat and mass transport.

In introductory texts in physics, the problem of heat transport (mass diffusion) is addressed
by giving Fourier’s (Fick’s) law in one dimension:

Jq = −κ ∂T
∂x

(Fourier) Jm = −D ∂c
∂x

(Fick) (1)

which states that the heat fluxJq (mass flux Jm) is proportional to the temperature
gradient,∂T /∂x (concentration gradient∂c/∂x). The proportionality constant is the thermal
conductivity,κ (diffusion coefficientD). These laws are applied to steady-state situations, in
which they allow one to calculate the flux once the temperature gradient (or the concentration
gradient) is known andvice versa. On the other hand, in non-steady situations the temperature
(or concentration) changes with time and solutions are much more difficult to find. For instance,
the net heat that enters the egg per unit time in our problem will be given by Fourier’s law.
However, this flux will increase the egg’s temperature, diminish the temperature gradient
and, consequently, the heat flux. So, we are faced with problems where the temperature will
depend both on time and position, involving complex differential equations. In spite of this
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Figure 1. Scheme of the random walk of a molecule due to thermal
agitation.

difficulty, something is said concerning non-steady diffusion in introductory texts [1]. As a
rough approximation, the time needed to homogenize the concentration variations that extend
over mean distancesxm is

td ≈ x2
m

D
. (2)

This formula is usually justified by the fact that a molecule undergoing a random walk due to
thermal agitation will depart from the initial position after a delayt by a mean distance (see
figure 1)

x =
√

2Dt. (3)

Of course, equation (2) is a very nice and general relationship, but its statement needs to
be justified by an extra piece of information introducedad hoc, which is very far from the
macroscopic phenomenological equations (1) (see [2], which gives a nice view of diffusion at
the atomic level). The case is worse in non-steady thermal conduction. This is presumably
because, in contrast to the diffusion problem, conduction of heat does not occur by a
simple microscopic mechanism similar to the random walk of molecules. However, the
phenomenological equations are formally the same and, consequently, one intuitively expects
that a relationship equivalent to equation (2) can be stated. Indeed, the analysis of the
non-steady problem developed in the next section will lead us to the thermal equivalent of
equation (2).

2. Heating bodies of simple geometry

Once the egg is immersed in a pan of boiling water, its surface will acquire, almost
instantaneously, the water temperature. This temperature will be homogeneous provided
that convection in the water bath due to boiling is sufficiently intense. So, we are faced
with the heating of an object with initial internal homogeneous temperatureT0 and surface
temperatureTs imposed by the water bath. For simple geometric shapes, such as an infinite
plate, an infinite cylinder or a sphere, the exact solution can be obtained by solving the
corresponding differential equation.

2.1. Exact solution

The law of conservation of internal energy states that the internal energy density,u, changes
according to the divergence of the heat fluxJq [3]:

du

dt
= −∇ · Jq . (4)
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To solve a particular transport problem, equations are needed for the internal energy density
and the heat flux. The variation of the internal energy is related to that of the temperature
through

du = ρce dT (5)

whereρ is the mass density andce the specific heat. On the other hand, if heat transport is due
to conduction, Fourier’s law holds (see equation (1)). In vector notation

Jq = −κ∇T . (6)

Now, substitution of equations (5) and (6) in equation (4) yields the evolution equation forT :
∂T

∂t
= α∇2T . (7)

This equation relates the rate of change of temperature with respect to time at any space point
to the temperature distribution and the thermal diffusivity, namely

α ≡ κ

ceρ
(8)

which collects the parameters necessary for understanding the thermal behaviour of the
material. Once the initial temperature distribution and the boundary conditions are known,
equation (7) can be solved.

This rigorous approach can be found in specialist texts on heat transport [4]. For example,
in the heating of a homogeneous infinite plate of half-thicknessx, the temperature at its centreTd
evolves [4] according to

Ts− Td

Ts− T0
= 4

π

∞∑
n=1

1

n
sin

(
nπ

2

)
exp

[−(nπ/2)2F0
]

n = 1, 3, 5, . . . (9)

whereT0 = Td(t = 0) is the initial temperature andTs is the temperature of the thermal bath.
The solution (9) depends on an important dimensionless parameter

F0 ≡ αt

x2
(10)

known as the ‘Fourier modulus’. In the case of a cylinder [5] and a sphere [6] instead of a plate,
the exact analytical solutions are also given by infinite series (involving Bessel functions for a
cylinder [5]). Because of this complexity, they are usually plotted or tabulated. In figure 2 we
have plotted the exact temperature evolution at the centre of these objects (for example, the
full line labelled ‘infinite plate’ in figure 2 is a plot of equation (9)). An important conclusion
can be drawn from figure 2, namely that the objects are almost in thermal equilibrium with
the surrounding bath whenF0 ≈ 1. This fact and the functional dependence on the Fourier
modulus, although straightforward in view of the exact solution, are not easy to understand by
looking at the transport equation (7). So, we propose to solve the problem with a simplified
method that, besides giving a reasonable quantitative solution, helps one to understand the
main points of the problem. In contrast to the conventional method, we do not solve any
differential equation. This makes our approach tractable in an introductory course in physics.

2.2. Approximate solution

The thermal evolution of an infinite flat plate will be similar to that shown in figure 3. We want
to estimate the timetd needed to reach a temperatureTd at the centre of the plate. Since we
are not interested in the exact spatial distribution of temperature, the problem will be analysed
from an integral point of view, rather than the differential one presented in section 2.1. The
law of conservation of internal energy (4) between the initial (t = 0) and final (t = td) states
can be written as

1U

td
= 2AJq (plate surface). (11)
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Figure 2. Exact (solid lines) and approximate (dashed lines) thermal evolution at the centre of
several objects when immersed in an isothermal bath at temperatureTs. The quantityx is the
distance from the centre to the surface (i.e. the half-thickness for a plate, but the radius for a
cylinder or a sphere),T0 is the initial temperature of the object, andα ≡ κ/ceρ, whereκ is the heat
conductivity,ce is the specific heat andρ the density of the material.

Here1U is the change of internal energy (U = uV , whereV is the volume) needed to reach
the temperatureTd at the centre of the plate, andJ q is the mean heat flux that enters through
both plate boundaries, of surface areaA. We note from figure 3 that whenTd is reached at the
centre of the plate, the temperature is higher elsewhere. Thus we can replace equation (5) by
the approximate expression

1U ≈ Vρce(Td − T0). (12)

Note that this equation is an approximation, because only the centre of the plate has
temperatureTd at time td (see figure 3). Concerning the value ofJq at the plate surface,
this comes from Fourier’s law (6):

Jq = κ
∣∣∣∣∂T∂x

∣∣∣∣
plate surface

. (13)

T

T 0

T d

 T s

T 0

T d

 T s

T 0

T d

 T s

 2 x

  t = 0 0 < t < t d  t = t d

J q J q

Figure 3. Schematic evolution of the temperature profile in a plate.
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So, it seems reasonable to considerJ q as being proportional to the initial temperature step
Ts− T0 and inversely proportional to the half-width of the plate,x (see figure 3). So, we can
write

J̄q ≈ κ Ts− T0

x
. (14)

Of course, a proportionality constant different from unity could be included in the approximate
equations (12) and (14). However, its convenience as well as the correctness of the hypothesis
applied in these equations will ultimately be tested by the solution to which they lead.
Substitution of equations (14) and (12) in equation (11) yields an approximate value fortd:

td ≈ V

2A

ρce

κ
x
Td − T0

Ts− T0
= 1

α
x2Td − T0

Ts− T0
(15)

where we have made use of the definition of the thermal diffusivity (equation (8)) and the fact
thatV/A = 2x for a plate (figure 3). Finally, by rearranging equation (15) we obtain

Ts− Td

Ts− T0
≈ 1− αtd

x2
≡ 1− F0. (16)

In spite of the simplicity of this derivation, the result fortd deviates by less than 20% from
the exact solution, except for the asymptotic behaviour at long times and the initial transient
(see figure 2). These greater discrepancies can be understood as follows. Our approximate
solution considers that the heat flux is constant (equation (14)), which results in a constant rate
of temperature diminution (equation (16)). However, since the temperature is uniform inside
the plate att = 0 andt = ∞, no heat arrives at the centre and the rate of temperature change is,
consequently, zero at these times. Now, one may generalize equation (16) to other geometries:

Ts− Td

Ts− T0
≈ 1− fAF0 (17)

wherefA is a geometrical factor accounting mainly for changes in the ratioA/V when passing
from an infinite plate to an infinite cylinder or to a sphere. We obtainfA = 1, 2 and 3 for an
infinite plate, an infinite cylinder and a sphere, respectively. This factor has been calculated
from the area per unit volume in every case (for a cylinder and a sphere, the quantityx appearing
in F0 ≡ αtd/x2 is the radius).

3. Boiling an egg

We will now apply equation (17) to our problem by considering the egg as spherical (mean
radius x = 2.3 cm). The main difficulty is discovering the thermal parameters of the
egg, namely: (a) at what temperature the white and the yolk cook and (b) what their
thermal conductivities (κ) and specific heats (ce) are. The first question can be easily solved
experimentally by cooking a small amount of egg (e.g., at the bottom of a test tube) in a
water bath whose temperature is raised steadily. By doing so one discovers that it cooks
at 70 ◦C (Td). As regardsκ and ce, these parameters are not currently available unless
from specialized sources. Their measurement is also complicated. Thus, we propose the
following simplification: since the water content in the egg is very high (this holds for most
living matter)†, we will take the thermal parameters of water (κ = 0.64 J s−1 m−1 K−1,
ce = 4.18× 103 J kg−1 K−1, ρ = 1000 kg m−3)‡. Of course, if there were purely water,

† The water content is about 90% in the white and about 50% in the yolk.
‡ The real values for the egg are very similar. We performed a simple experiment in order to measure them. The
results wereαwhite = 1.5αwater andαyolk = 1.1αwater, with minor variations once cooked. One effect that is not
accounted for is the heat absorbed during the process of cooking that corresponds to the irreversible endothermic
transformation which changes the structure and appearance of the white and yolk. The heat absorbed per gramme of
protein is very small (about 1.7 J) and does not influence the temperature evolution significantly.
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equation (14) would not apply because of the convective currents that would develop inside
the egg. However, proteins almost immobilize the water, making convection impossible.

Finally we take our egg out of the refrigerator (T0 = 4 ◦C) and immerse it in boiling
water (Ts = 100 ◦C). According to equation (17) the time needed to cook it completely (i.e.
hard-boiled) will be 13 min. At this point we think that if you were asked the question in the
title, your answer would have not been very far from our solution.

4. Summary and perspectives

The heating of simple geometric objects dipped into an isothermal bath has been analysed
under simple approximations in order to estimate the time evolution of the temperature. Our
method succeeds in identifying an important dimensionless parameter, the Fourier modulus
(equation (10)), which summarizes the effect of both the geometry and the thermal parameters
on the heating time. Namely, the time needed to reach a given temperature is proportional to
square of the linear dimension of the object and inversely proportional to the heat diffusivity
of the material. From the quantitative point of view, our approximate solution approaches
the exact thermal evolution with reasonable accuracy. In any case, we think that the most
relevant contribution of this paper is to provide a simple derivation of the general relationship
(equation (2)) based on a qualitative analysis of Fourier’s and Fick’s laws (equation (1)).
We have shown (equation (17)) that thermalization is achieved when the Fourier modulus
approaches unity. This condition leads to

td ≈ x2

α
. (18)

Our simple method makes it possible to analyse non-steady problems that would otherwise
be intractable in introductory courses in physics. For instance, the heating or cooling of
homogeneous objects can be measured and the results compared to our approximate solution
(equation (17)) (such an experiment is described in [6]). Also, the scale rules contained in
the Fourier modulus can be easily assessed without the need to know the material parameters.
The thermal diffusivity can be obtained, etc. These experiments would extend the teaching
possibilities for diffusion and heat conduction, which are usually restricted to time-independent
problems.

Of course, the reader is also invited to pay greater attention to the time usually needed to
boil an egg.
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