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Abstract. The assumptions of a simple thermodynamical theory of radiative transfer are modified,
and consistency with some recent statistical-mechanical results is achieved. The model presented
provides a thermodynamical framework for the description not only of radiative heat transport but
also of energy exchange between matter and radiation.

1. Introduction

Some time ago, we proposed a phenomenological approach to nonequilibrium thermodynamics
of radiative transfer [1]. By radiative transfer we mean situations such that heat is transported
by radiation (photons), whereas conduction and convection are negligible: the conductive heat
flux is assumed to be negligible, and the matter is assumed to be at rest in order to avoid
convective effects. That model was based on the simplest assumptions possible, which we
now summarize:

(i) In near-equilibrium states, the specific entropy depends only on the specific energy. By
analogy to local-equilibrium thermodynamics of purely matter systems [2], we denoted such
states as local-equilibrium states. In this case,sle = sle(u), wheresle is the local-equilibrium
entropy per unit mass andu is the energy per unit mass of the system composed by matter and
radiation, i.e.

u = um + ur (1)

whereum is the internal energy of matter per unit mass, andur the radiation energy, also
per unit mass of matter. In local equilibrium, the temperatureT of the system was defined
thermodynamically as (see equation (11) in [1])

1

T
≡ dsle(u)

du
. (2)

(ii) From the following evolution equation, which was derived on phenomenological
grounds [3, 1],

τr
d EF
dt

+ EF = −λr E∇T (3)

0305-4470/99/173095+10$19.50 © 1999 IOP Publishing Ltd 3095



3096 J Fort et al

whereτr is a relaxation time,EF is the radiative energy flux andλr may be called the radiative
conductivity, it was shown [1] that assumption (i) is not compatible with the second law of
thermodynamics. Thus we also assumed (in analogy to extended thermodynamics of purely
matter systems [4]) that, in general, the specific entropy may depend on the radiative fluxEF
in addition to the specific energy, i.e.s = s(u, EF). A generalized temperatureθ was defined
through

1

θ
≡ ∂s(u, EF)

∂u
(4)

whereu is given by equation (1). Under those assumptions, it was shown in [1] thatθ is related
to the local-equilibrium temperatureT of equation (2) as follows:

1

θ
= 1

T
−
EF · EF

2

∂

∂u

(
τr

ρλrT 2

)
(5)

whereρ is the matter density.
In section 2 we show that the model presented in [1], and summarized above, is not

sufficiently general and does not yield rigorous consistency with microscopic results. In
section 3, we develop the basis of a more general model by making use of an approach
inspired by the methods of classical irreversible thermodynamics [2]. In section 4, we extend
those results by means of an analysis along the lines of extended irreversible thermodynamics
[4]. The approach presented also takes proper account of the process of energy equilibration
between radiation and matter. Section 5 is devoted to the proof of consistency with the less
general, though more rigorous, microscopic results developed so far. Finally, in section 6 we
include some concluding remarks.

2. Critical remarks on previous work

The model based on assumptions (i) and (ii) recalled in the introduction provided a useful first
step and yielded reasonable results, but we think that it should now be reconsidered: here we
will argue that assumptions (i) and (ii) (which were the starting point in [1]) cannot yield a
reasonably general and fully consistent model, because of the following points.

(a) In general, there is no reason to assume that the system may be assigned a single
temperature field, as done in equations (2) and (4). For example, if the radiation incident on
the system is increased, the absorption of radiation by matter will also increase. This will
cause a higher matter temperature, which in turn enhances the emission of radiation by matter.
Both process (emission and absorption) will eventually balance if the radiative field incident
on the system is constant. Only in this case will matter and radiation become thermalized.
However, even in such a case, until the final steady state is attained there is no reason to
assign a single temperature to matter and radiation. It is also clear that if the timescale of
the variations of the incident radiation is faster than that of the thermalization process, then
a sensible thermodynamical description should not be based on the simple assumption of a
common temperature.

(b) Equation (5) was derived phenomenologically in [1]. Because the results described
above were based on phenomenological assumptions, we have recently presented a
microscopic, more rigorous analysis. In the original work†, this analysis was applied to

† In [5], the symbols was used to denote entropy densities. In contrast, in this paper we follow the standard
thermodynamical notation in whichs refers to specific entropies (i.e., entropies per unit mass).
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steady states. The application to non-steady states has been presented in [6]. The starting
point of the formalism is the microscopic expression for the entropy density, namely [7]

ρs = ρsm + ρsr = −k
∫

d3pm

h3
fm ln fm + 2k

∫
d3pr

h3
[(1 +fr) ln(1 +fr)− fr ln fr ] (6)

where the subscriptsm andr refer to matter and radiation;f and Ep are the corresponding
momentum distribution functions and momenta, respectively;k is the Boltzmann constant and
h is the Planck constant. The expression forρsm in equation (6) holds for a classical ideal gas,
though the results of the theory in [5, 6] have been recently shown to also hold for other kinds
of matter systems [8]. Here it is sufficient to say that, within this procedure, one makes use of
information statistical theory in order to determinefr andfm and, after insertion offr andfm
into equation (6), one derives expressions forsm andsr , which are of the form

s = sm(um) + sr (ur , EF) (7)

from which one may evaluate the entropy differential ds in terms of macroscopic variables;
use of the definition (4) then yields an expression forθ , namely†

1

θ
= 1

Tr
−
EF · EF

2

∂

∂ur

(
τr

ρλrT 2
r

)
(8)

whereTr can be written as [9]

1

Tr
≡ ∂sle(um, ur, EF)

∂ur
= ∂sler (ur ,

EF)
∂ur

(9)

and the subscript and superscriptle refer to states such thatsr does not depend onEF but only
onur [9] (see equation (7)). The last equality in equation (9) follows from equation (7).

A problem arises when one notes that the microscopically-derived equation (8) is different
from the phenomenological result (5). But equation (5) is based, as summarized above, on
the assumption that matter and radiation share a single temperature. This is precisely the
assumption we have criticized in point (a). Thus it seems sensible to try to solve both problems
(a) and (b) by considering that in general, matter and radiation do not share a simple temperature.
This is the approach followed in this paper.

3. Local equilibrium

From the considerations in the introduction it is clear that in general, the energy content of the
radiative part of a system is not determined by the energy content of its matter part. Thus both
energies should be taken into account as independent variables. In this section we consider
a simple case by assuming the existence of near-equilibrium states such that the entropy of
the matter (radiation) part depends only on the specific entropy of the matter (radiation) in the
system, i.e.

sle = slem(um) + sler (ur) (10)

(see also equation (6)). Here the sub- and superscriptsle distinguish this case from the more
general one in which the radiative energy fluxEF may have to be taken into account as an
additional variable (to be discussed in the next section). We define the matter and radiation
temperatures,Tm andTr, as

1

Tm(um)
≡ dslem(um)

dum
= ∂sle(um, ur)

∂um
(11)

† See [6], equations (22), (39) and (14).
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and
1

Tr(ur)
≡ dsler (ur)

dur
= ∂sle(um, ur)

∂ur
(12)

respectively. The last equalities in equations (11) and (12) follow directly from the assumption
(10). We obtain a Gibbs-type equation for the system,

dsle = 1

Tm
dum +

1

Tr
dur . (13)

The question arises as to whether this formalism yields reasonable evolution equations or not.
In order to derive them from equation (13), we need first to evaluate the rates of change of the
specific energies.

We assume that the matter is macroscopically at rest (i.e., it has vanishing barycentric
velocity). Then, the general form for the equation of balance of energy can be written as [2]

ρ
du

dt
= −E∇ · EJu (14)

wheret is the time andEJu is the total energy flux. In our case, we have a radiation–matter
system (so thatu is given by equation (1)) and energy is by assumption transported by radiation
(so that EJu = EF), i.e.

ρ
d

dt
(um + ur) = −E∇ · EF . (15)

Equation (15) is an equation for the rate of change of the total specific energy, but it is clear
from equation (13) that we need two such equations: one for the matter specific energyum
and another one forur (radiative energy per unit mass of matter). In other words, the energy
exchange between matter and radiation should be taken into account. The interaction between
matter and radiation is described by the radiative transfer equation [10],

1

c

∂Iν

∂t
+
Ec
c
· E∇Iν = −σIν + eν (16)

whereIν is the radiation intensity, withν the frequency,Ec is the photon velocity,c = |Ec|,
σ is the absorption coefficient (here assumed independent of frequency for simplicity: the
so-called grey approximation [10]) andeν is the emission coefficient. The radiative energy
density, namelyρur, and the energy flux are related to the intensity according to [10]

ρur = 1

c

∫ ∞
0

dν
∫

4π
d�Iν (17)

EF =
∫ ∞

0
dν
∫

4π
d�
Ec
c
Iν (18)

where d� is a differential of solid angle. Integration of equation (16) overν and� and use of
equations (17) and (18) yields the equation for the rate of change ofur ,

ρ
dur
dt
= −E∇ · EF − σcρur + 4πetot (19)

whereetot =
∫∞

0 dν eν is the total emissivity. The equation for the rate of change of the specific
matter energy can be obtained from equations (19) and (15),

ρ
dum
dt
= σcρur − 4πetot . (20)

Use of equations (19) and (20) into (13) and rearrangement yields

ρ
dsle
dt
= −
E∇ · EF
Tr

+ (4πetot − σcρur)
(

1

Tr
− 1

Tm

)
. (21)
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Comparison of this result with the law of balance of entropy, namely [2]

ρ
dsle
dt
= −E∇ · EJ sle + σ sle

leads us to identify the entropy fluxEJ sle and entropy production rateσ sle as

EJ sle =
EF
Tr

σ sle = −
EF · E∇Tr
T 2
r

+
(4πetot − σcρur)

TmTr
(Tm − Tr).

The second law requires thatσ sle > 0. The simplest way to ensure this is to consider the
following evolution equations:

EF = −λr E∇Tr (λ > 0) (22)

4πetot − σcρur = µ(Tm − Tr) (µ > 0). (23)

Equation (22) is nothing but the radiative analogue to the Fourier heat conduction equation. On
the other hand, equation (23) describes the energy equilibration between matter and radiation.
To the best of our knowledge, this equation had not been explicitly obtained before. Use
of equation (20) into the left-hand-side of (23) yields the usual equation for heat exchange
between components of a mixture, in agreement with [11]. The first term on the left-hand side
in equation (23) corresponds to the emission of radiation by matter, whereas the second one
corresponds to the absorption of radiation. IfTm > Tr, according to equation (23) emission
is more important than absorption, as was to be expected intuitively. Only ifTm = Tr is there
compensation of emission and absorption; a common temperature can then be adscribed to
matter and radiation.

4. Systems out of local equilibrium

As stressed in the introduction, it is the purpose of this paper is to determine if a
phenomenological model can be constructed such that it is consistent with the microscopic
result (8). In order to tackle this problem, let us consider states more general than those in the
previous section (see equation (10)), by now assuming that in general the radiative specific
entropysr may also depend on the radiative heat fluxEF :

s = sm(um) + sr (ur , EF) (24)

(we stress that such assumption has been confirmed from statistical mechanics, as explained
above in equation (7)). The entropy differential reads

ds = 1

θm
dum +

1

θr
dur − Eα

Trρ
· d EF (25)

where we have definedθm, θr andEα as

1

θm(um)
≡ dsm(um)

dum
= ∂s(um, ur, EF)

∂um
(26)

1

θr(ur , EF)
≡ ∂sr(ur , EF)

∂ur
= ∂s(um, ur, EF)

∂ur
(27)

Eα(ur, EF)
Trρ

≡ −∂sr(ur ,
EF)

∂ EF = −∂s(um, ur,
EF)

∂ EF (28)
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where the last equalities follow from equation (24). Comparison with equations (13), (11)
and (12) shows that in situations where the dependence ofs on EF is negligible, the last term
in equation (25) no longer appears and we haveθm = Tm andθr = Tr . Such cases have
already been described in section 3. In order to generalize them but obtain relatively simple
expressions, we consider states close enough to equilibrium so the last term in equation (25)
can be approximated by its first-order MacLaurin expansion inEF . Then equation (25) becomes

ds = 1

θm
dum +

1

θr
dur −

(
α(ur)

Trρ
EF + O(F 2)

)
· d EF (29)

where we have taken into account that forEF = 0, the generalized specific entropys must
reduce to the specific entropysle appearing in equation (13), so that the zeroth-order term
in the expansion forEα(ur, EF) vanishes, i.e. we can writeEα(ur, EF) = α(ur) EF + O(F 2),

where O(F 2) stands for second- and higher-order terms in the components ofEF . In order for
equation (29) to be an exact differential, the following conditions must be fulfilled:

∂2s(um, ur, EF)
∂ EF∂ur

= ∂2s(um, ur, EF)
∂ur∂ EF

∂2s(um, ur, EF)
∂ EF∂um

= ∂2s(um, ur, EF)
∂um∂ EF

∂2s(um, ur, EF)
∂um∂ur

= ∂2s(um, ur, EF)
∂ur∂um

.

We evaluate the first derivatives from equation (29), insert them into these three conditions and
obtain that

1

θr
= 1

Tr
−
EF · EF
2ρ

∂

∂ur

(
α(ur)

Tr

)
+ O(F 3) (30)

θm = Tm (31)
∂

∂um

(
1

θr

)
= ∂

∂ur

(
1

θm

)
. (32)

In equations (31) and (32), use has been made of equations (11) and (12). By again taking
them into account, it is easy to see that equations (30) and (31) imply that equation (32) is
fulfilled. Use of equations (30) and (31), as well as of the equations of balance of energy (19)
and (20), into equation (29) yields the following evolution equation for the entropy density:

ρ
ds

dt
= −
E∇ · EF
θr

+ (4πetot − σcρur)
(

1

θr
− 1

θm

)
−
(
α(ur)

Trρ
EF + O(F 2)

)
· d
EF

dt
(33)

which generalizes equation (21). We can now proceed in the usual way in extended irreversible
thermodynamics [4] and identify, from the law of balance of entropy [2, 4]

ρ
ds

dt
= −E∇ · EJ s + σ s

the entropy fluxEJ s and entropy production rateσ s as

EJ s =
EF
θr

σ s = −
EF
θ2
r

·
(
E∇θr + [α(ur)Tr + O(F )]

d EF
dt

)
+
(4πetot − σcρur)

θmθr
(θm − θr)
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where use has been made of equation (30). The simplest way to ensure the second law, namely
σ s > 0, is to consider the following evolution equations:

EF = −λ
(
E∇θr + [α(ur)Tr + O(F )]

d EF
dt

)
(λ > 0) (34)

4πetot − σcρur = µ(θm − θr) (µ > 0). (35)

These equations generalize equations (22) and (23) to states further-away from equilibrium,
implying that in such states the generalized temperaturesθr andθm drive the energy transfer
processes. Such a result is not surprising from the perspective that the definitions (26)
and (27) are rather natural nonequilibrium extensions of the (local-)equilibrium definition of
temperature (2), which was used by Boltzmann in order to derive the Stefan law, in complete
agreement to experiment [12]. In our case we haveθm = Tm (see equation (31)) because we
have assumed that heat is transported solely by radiation; it is not difficult to include, e.g., a
conductive heat flux and obtain thatθm 6= Tm; however, here we are interested in radiative
transfer. Equation (34) can be written in the form

[τr + O(F )]
d EF
dt

+ EF = −λr E∇θr (36)

with τr given by

α(ur) = τr

λrTr
.

Finally, we rewrite equations (30) and (29) in terms ofτr ,

1

θr
= 1

Tr
−
EF · EF
2ρ

∂

∂ur

(
τr

λrT 2
r

)
+ O(F 3)

ds = 1

θm
dum +

1

θr
dur − τr

λrT 2
r ρ
EF · d EF .

5. Single-temperature systems: comparison with statistical mechanics

We can now consider the special case in which energy equilibration has taken place. As
explained in the introduction, this corresponds to the steady state attained by the system after
a sufficiently long time and under a constant incident radiation field. In such an instance,
matter and radiation have equilibrated their temperatures (i.e.,θm = θr , see equation (35); note
that equation (19) yieldsE∇ · EF = 0) and only then we may introduce an overall temperature
θ for the system, i.e.

1

θ
≡ 1

θm
= 1

θr
= 1

Tr
−
EF · EF
2ρ

∂

∂ur

(
τr

λrT 2
r

)
+ O(F 3) (37)

ds = 1

θ
du− τr

λrT 2
r ρ
EF · d EF (38)

where we have applied equation (1). Finally, equation (36) becomes

τr
d EF
dt

+ EF = −λr E∇θ. (39)

Equation (37) (which has been derived here phenomenologically) is exactly the same as
equation (8) (which is the result obtained from nonequilibrium statistical mechanics, as already
stressed above). This result is also in agreement with earlier work based on fluctuation theory
[13]. Equation (37) may be used in order to estimateθ in radiative systems, e.g. stellar surfaces
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and interiors (although in this specific case, the values of the variablesEF , ρ andTr cannot be
directly measured, and the generalization of the existing stellar models within the framework
of extended thermodynamics has not yet been developed [1]).

There is also complete agreement between equation (38) and the corresponding statistical-
mechanical result†. For the sake of completeness, in the appendix we also check the consistency
of the radiative heat transport equation (39), which has been derived here from thermodynamics,
with the results from the microscopic theory.

6. Concluding remarks

By taking into account that the thermal state of matter in an arbitrary physical system may
be different from that of radiation in the same system, we have been able to present a
thermodynamical model that takes into account the energy equilibration between matter and
radiation. This is described by equation (23) in near-equilibrium systems, and its generalization
(35) in system further away from equilibrium.

Our model yields (as a special case) a phenomenological model that, in contrast to a less
elaborate one developed previously [1], is in perfect agreement with more recent results based
on statistical mechanics of radiation–matter systems in which energy exchange between matter
and radiation is negligible. The discrepancy is solved when one reaches the result, derived
here, that in general nonequilibrium states matter and radiation do not share their respective
local-equilibrium temperatures, i.e.,Tm 6= Tr even in the case thatθm = θr (see equations (31)
and (37)). We would like to stress that (i) matter–radiation energy equilibration is also included
in this paper; and (ii) the model presented here is of a purely thermodynamical nature and much
more general than the microscopic approaches in [5, 6, 8, 9], because those approaches did not
allow for matter–radiation equilibration processes and were restricted to certain assumptions
on the matter content of the system.

We now have a reasonable, fully consistent thermodynamical picture, which is in
agreement with all of the statistical-mechanical results so far published. In closing we mention
that the methods in this paper may also be of interest in topics other than nonequilibrium
radiation, particularly in the analysis of energy relaxation in matter systems composed of
several components with different temperatures, typical cases being found in plasma physics
[14], chemically-reacting systems [15] and short-pulse laser heating of metals [16].
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Appendix A. Microscopic derivation of the heat transport equation

In this appendix we derive the heat transport equation from previous information statistical
results and show that it is consistent with the corresponding equation derived here from
thermodynamics in the case that matter and radiation share a single temperature, namely
equation (39).

Within information-statistical theory, the near-equilibrium radiation momentum
distribution function is expanded about the equilibrium (or Planckian) distributionf (0)r ,

fr = f (0)r (1 +φ(1) + φ(2) + O(F 3))

† See [6], equations (23), (39) and (14).
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whereφ(i) may contain terms proportional to theith-power of the components ofEF . The terms
in this expansion can be written either in terms ofTr or in terms ofθ = Tm (see equations (31)
and (37)). The former approach was used in, e.g., [5], whereas the latter one was used in [6].
The results of both approaches are seen to be consistent, as they should, provided that one
keeps always in mind the order up to which the analysis is being performed.

We begin by noting that the phenomenological approach in this paper corresponds to taking
into account nonequilibrium corrections to the entropy up to second order (see equation (29)),
i.e. an specific entropy of the form

s = s(0) + s(1) + s(2) + O(F 3)

where s(i) may contain terms proportional to theith-power of the components ofEF . We
have shown previously, from the information-statistical expansion forfr, that s(1) vanishes
identically and thatφ(2) does not contribute tos(2)†. It means that the thermodynamical analysis
in this paper corresponds to the first-order approximation tofr, namely

fr = f (0)r (1 +φ(1) + O(F 2)) (A1)

where‡

f (0)r =
1

eprc/kθ − 1
(A2)

φ(1) = − 3pr
4akθ5

eprc/kθ

eprc/kθ − 1
EF · Ec
c

(A3)

with Ec the photon velocity anda = 8π5k4

15c3h3 the blackbody constant. On the other hand,
multiplication of equation (16) byEc

c
, integration and use of equation (18) yields

1

c

d EF
dt

+ σ EF = −2
3∑
k=1

∂

∂xk

∫
d3pr

h3
pr Ecckfr

where we have applied that d3pr = p2
r d� = h3ν2 dν d�/c3 and Iν = 2hν3fr/c

2 =
2p3

r cfr/h
2 [17]. It is simple to substitute equations (A1)–(A3) and integrate. In this way,

one finally finds that

1

c

d EF
dt

+ σ EF = −4caθ

3
E∇θ

and this is exactly equation (39). Whereas the microscopic approach allows us to identify
τr = 1/cσ andλr = 4caθ3/3σ , it should be kept in mind that such an approach was derived
under certain assumptions for the matter content of the system [5, 8]. In contrast, the theory
presented in this paper is general, mathematically simpler, and also provides an adequate
framework to take into account the matter–radiation equilibration of energy (see equation (35)).
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