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S1. The effect of landscape and vegetation 

 In the main paper we have estimated distances using great circles. In other words, we have 

considered the minimum possible distance between any two points on the Earth surface. Certainly, this 

will not be an exact estimation in general, because the routes followed by migrating farmers may have 

been affected by factors such as landscape, vegetation, etc. We cannot assume an arbitrary cost function 

for such effects (e.g., we cannot simply duplicate the distance if the altitude or the vegetation 

duplicates), because this would use totally unjustified assumptions and/or parameter values. Moreover, 

without a careful justification, it would not be reasonable to assume that such cost-distances are 

measured in km. But we need distances measured in km for our purposes, namely to estimate the spread 

rate in km/yr. Thus we use an approach that we previously introduced and called 'shortest paths' in the 

study of the Neolithic spread in continental Europe [1]. Here we improve it by using the free internet 

application google maps (https://www.google.com/maps). Using this application, we can find the 

shortest-path route by foot between two geographical points (see Fig. S1 for an example). Obviously we 

cannot proof that Neolithic farmers followed similar paths to those used at present, but human 

communication routes by foot are very stable over time, and they have two additional advantages: (i) 

they certainly take into account landmass features (mountains, seas, etc.), as well as any other feature 

that might influence human travel (e.g., vegetation, soil type, roughness, etc.); and (ii) they yield 

distances measured in km. 
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Fig. S1. Example of distance computation using google maps. The origin (lower circle) is the site of Oxie and 

the end (upper circle) is the site of Skee. For some other final locations (instead of Skee), google maps 

includes sea travel for part of the route, but the distances from the coast are small (<100 km) and therefore 

reasonable if we take into account the navigation capabilities of early farmers (as implied, e.g., by the fact 

that the Neolithic arrived to the island of Cyprus, which is about 100 km from the mainland). Although the 

mathematical model in the main paper does not strictly include sea travel (so that an equation for the spread 

rate can be found), it is reasonable to assume that it will be approximately valid for so small distances over 

sea. Another option would be to avoid sea travel in the computation of all distances, but this would contradict 

the fact that the Neolithic arrived to Sweden across the Baltic sea. 

 

 In Fig. S2 we show the regression using these shortest-path distances. Thus Fig. S2 is the same 

as Fig. 2 in the main paper, but using shortest paths instead of great circles. Obviously, the spread rate 

implied by the regression fit in Fig. S2 should be faster than that by Fig. 2 in the main paper, because 

there we have used the shortest possible distance between two points on the Earth surface (great circle). 

The spread rate implied by the regression fit in Fig. S2 is 0.56-0.84 km/yr, which is similar to that in the 

main paper (0.44-0.66 km/yr). Indeed, replacing the horizontal rectangle in Figs. 3-7 (main paper) by the 

spread range from Fig. S2 (0.56-0.84 km/yr), it is very easy to see that the implied percentage for the 

cultural effect is below 50% in all cases except Fig. 7. As explained in the main paper (Sec. 5), the same 

happens for the range found in the main paper (0.44-0.66 km/yr). Therefore, we conclude that using our 

procedure to take into account the effects of landscape, vegetation, etc., does not change the conclusions 

in the main paper.  

 Finally we would like to stress that clearly cost distances (here defined as road distances by foot 

obtained using google maps) are more realistic estimations of length than great circles for individual 

travels, but we should keep in mind the spread rate of a wave of advance is a macroscopic quantity (i.e., 

it is valid at scales sufficiently large compared to that of the individual displacements, i.e. to the 

distances in the dispersal kernel). In other words, we should distinguish between the effects of large and 

small obstacles. On one hand, large obstacles (compared to the distances in the dispersal kernel) can 

deflect the wave of advance and thus lead to higher distances (and a faster observed spread rate) than 

great circles. On the other hand, small obstacles (leading, e.g., to a few curves in a road) will affect the 

length of an individual travel, but we think that it is not realistic to expect that they will have any 

noticeable effect on the spread rate of the wave of advance or its direction (note that the vector �∆�, ∆�� 

appearing in Eq. (3.1) or (S5) depends on the initial and final locations of each displacement, but not on 
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the detailed path). Therefore, in our opinion the validity of cost distances should not be overstated, and it 

is reasonable to consider that both great circles (main paper) and cost distances (this section) give 

reasonable bounds on the observed spread rate. 
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Fig. S2. Linear regression taking into account that distances are affected by landscape, vegetation, etc. 

According to this linear fit (full line), the spread rate of the Neolithic in Scandinavia was 0.56-0.84 km/yr 

(� = 0.78), which is quite similar to the results in the main paper (Fig. 2) using great-circle distances 

(namely, 0.44-0.66 km/yr and � = 0.77). In both cases � = 63 sites and the origin of distances is Oxie, the 

oldest site in the database. 

 

S2. Non-linear models  

 In the main paper (Fig. 2), we have fitted a linear dependency (� = � + ��) to the oldest dates of 

Neolithic sites (variable �) versus their distances from a putative origin of spread (variable �). In this 

section, we consider more complicated (i.e., non-linear) dependencies, and justify that they are not 

necessary for our purposes.  

 The Pearson correlation coefficient, �, is defined so that it square is given by [2] 

�� = 1 −
∑ (����		�	�	��)

��
���

∑ (�����)��
���

,       (S1) 

where the index � = 1,2,3, … ,� identifies the site, ��  is its observed date (defined as the oldest of all 

dates obtained by radiocarbon dating), �� is the average date over all sites (�� = ∑ ��/�
�
��� ), and ����		� is 
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the date estimated (by the model considered) for site �. If the model produced for all sites exactly their 

observed dates (����		� = ��   for all �), the numerator in Eq. (S1) would vanish and � = 1. Otherwise, the 

better the agreement between the model and the data, the lower the value of the numerator in Eq. (S1) 

and the higher the value of �. According to linear regression theory [2], 0 ≤ � ≤ 1. 

 Let us first consider, instead of a linear model (���� = � + ��), a second-order polynomial 

(���� = � + �� + ���). This implies to include an additional parameter (�) that will be fitted to obtain 

the best possible agreement between the model and the data. Thus the values ����		� obtained from the 

second-order model will tend to be closer to the data �� than for the linear model, i.e., the values of 

����		� − ��  will tend to be smaller in magnitude, and Eq. (S1) implies that the value of � will be higher 

than for the linear model (except if � = 0, but in this case the value of � will remain the same because 

the polynomial becomes of first order, i.e. we would be dealing again with the linear model). Thus, 

considering a model with more parameters will never decrease the value of �. Therefore, we cannot use 

the Pearson correlation coefficient � to determine which model is better. Instead, according to statistical 

theory, the so-called adjusted correlation coefficient should be used. Its square is given by [2] 

����
� = 1 −

(����)(���)

(���)
,       (S2) 

where � is the number of parameters in the model considered. Note that ����  is the same as the Pearson 

correlation coefficient � if � = 1, i.e. if the model has only one parameter (this happens, e.g., for the 

model ���� = ��). According to Eq. (S2), increasing the value of � tends to decrease the value of ����, 

but obviously this also leads to a new fitted function ����, so according to Eq. (S1) the value of �� will 

also change. In general, it is justified to increase the value of � (number of parameters in the model) if 

�� diminishes sufficiently to cause an increase in the value of ���� , given by Eq. (S2) [2]. 

 The results for the data considered in the main paper are as follows. For the linear model 

(���� = � + ��, Fig. 2 in the main paper), ���� = 0.7705. For the second-order model (���� = � + �� +

���), ���� = 0.7739. The increase in ���� is very small (below 1%). This suggests that there is no point 

in complicating the model by including the second-order term (���). This can be confirmed by visual 

inspection of the two models or, more rigorously, by computation of the spread rates implied by them, as 

we explain in the next paragraph. 

 In Fig. S3 we show the regression fits according to the linear and second-order models. It is seen 

that both models yield essentially the same dependency. The deviation at distances above 1,200 km is 

likely due to the fact that there are only 5 dated sites in this range. Indeed, in the range 0-1,200 km the 

spread rate (inverse of the slope) implied by the second-order model (blue line in Fig. S3) is 0.41-0.70 

km/yr. This is very similar to the range estimated from the linear model in the main paper, namely 0.44-

0.66 km/yr with 95% confidence level (CL) or 0.40-0.70 km/yr with 99% CL (black line in Fig. S3 or 

Fig. 2 in the main paper). Therefore, we can be sure that all of the conclusions of the main paper would 

be the same if we used the second-order model instead of the linear one.  
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 Because there is no substantial increase in ����, and also because the results would not change, 

there is no point in complicating the model by including a second-order term. This is why we have used 

the linear model in the main paper. Below we discuss two other non-linear models and arrive at the same 

conclusion. 

0 200 400 600 800 1000 1200 1400 1600 1800

7000

6000

5000

4000

3000

2000

1000

 data
 linear model
 second-order model

d
a
te

 (
c
a
l y

r 
B

P
)

distance (km to Oxie)

 

Fig. S3. Linear (i.e. first-order) and second-order fits to the data. The linear fit is the same as in Fig. 2 in the main paper. 

 

 We have also considered a third-order polynomial model (���� = � + �� + ��� + ���). Again, 

the value of ���� is almost the same as for the first and second-order models above. In fact ���� =

0.7702, which implies that ����  does not increase but decreases, so there is surely no improvement in 

this case (not even a negligible one).  

 Finally we consider an exponential model (���� = ����). We see in Fig. S4 that the behavior is 

again almost linear. In this case, ���� = 0.7778, so the increase relative to the linear model (���� =

0.7705) is again below 1%. Moreover, we can estimate the spread rate by computing the inverse of the 

slope of the exponential model (red line) in Fig. S4 in the distance range 0-1200 km/yr (as done above 

for the second-order model). The result is 0.41-0.68 km/yr, once more very similar to the range 

estimated from the linear model in the main paper (0.44-0.66 km/yr with 95% CL, or 0.40-0.70 km/yr 

with 99% CL). Therefore, we can be confident that all of the conclusions of the main paper would not 

change if we considered an exponential model rather than a linear one. 

 For all three non-linear models tested, complicating the linear model leads to negligible changes 

in the value of ����. Clearly, this indicates that there is no point in considering non-linear models. As 
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explained above, this is also confirmed by the corresponding ranges of the spread rate, which are almost 

the same as for the linear model and would, therefore, lead to the same conclusions as those reported in 

the main paper. 
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Fig. S4. Linear and exponential fits to the data. The linear fit is the same as in Fig. 2 in the main paper. 

 

 

S3. Justification of the origin of distances 

 In the main paper, we have used the site of Oxie (4,200 cal yr BC) as the origin of distances, 

because it is the oldest site in the database. Here we check statistically that Oxie is a reasonable origin, 

by comparing the corresponding value of the Pearson correlation coefficient � to those using other 

origins. Alternatively, instead of the Pearson correlation coefficient �, other measures could be used 

(e.g., Akaike's Information Criterion, AIC). However, simulated dispersals have shown than those 

indices are maximized for the same origin as � provided that � > 0.3. This is indeed our case, because in 

the main paper we have found � > 0.7 assuming Oxie as origin. Therefore, for our purposes it is 

justified to use the Pearson correlation coefficient �.  

 We defined a square grid with nodes separated 1º latitude and 1º longitude, covering the whole 

area in Fig. 1 in the main paper. We considered all nodes not located on the sea as possible origins of the 

Neolithic spread. For each origin, we computed the distance from it to all 70 sites in our database, and 

used these distances to find the linear regression of the dates of all sites versus these distances. In this 
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way, we obtained the Pearson correlation coefficient � for each origin or node. Figure S5 shows an 

interpolation of these values of �. Similarly to previous work [3, 4], we identify the most likely area for 

the location of the origin of the dispersal. This is the red area in Fig. S5, which has the highest values of 

� for our database. As mentioned in the main paper, the site of Oxie is located near the coast of the 

southern tip of Sweden, so it falls within the red area in Fig. S5. Therefore, it is clearly reasonable to use 

Oxie as origin of distances. Alternatively, we could use as origin the only node within the red area in 

Fig. S5 that has a value of � higher than Oxie, namely the point with coordinates (56N, 14E). Using all 

70 sites, this would yield � = 0.799. The difference in the value of � relative to Oxie (� = 0.792) is 

very small (below 1%). Moreover, the spread range using the point (56N, 14E) as origin is 0.39-0.57 

km/yr. This is very similar to that estimated using Oxie as origin in the main paper (0.42-0.62 km/yr, 

also with 70 sites), so we can be sure that the conclusions of our paper would not change (in fact they 

would be strengthened, because a slower observed speed corresponds to a lower cultural effect). 

 For completeness we mention that, if we preferred to use only 63 sites (instead of all 70 sites in 

the database), i.e., if we excluded the 7 sites in Denmark and Finland (as explained in the main paper), 

the results would be 0.40-0.60 km/yr (� = 0.786) for the origin at (56N, 14E), versus 0.44-0.66 km/yr 

for the origin at Oxie (� = 0.775) Again both ranges are so similar that the conclusions of our paper 

would be the same (in fact they would be strengthened if using the origin at (56N, 14E), for the reason 

given in the last sentence of the previous paragraph). 

 

 

Fig. S5. Interpolation of the values of the correlation coefficient using 70 sites and the nodes of a grid as possible origins. 
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S4. Details on the estimation of the spread rate 

The great-circle distance between two locations i and j as a function of their geographical 
coordinates (latitude φ and longitude λ) is given by the Haversine equation [5], 
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where � is the mean Earth radius (� =6371 km). 
As in previous work [6], we consider time as the dependent variable because it has presumably 

more error than distance (see main paper, Sec. 2). Therefore, the spread rate (in km/yr) is obtained as the 
inverse of the slope of the time-space regression, i.e.  

slope
speed

1
 ,      (S2) 

and the standard error of this spread rate is, applying error propagation theory [7], 

 2slope

slope
speed


  ,      (S3) 

where slope  is standard error of the slope. We  have used Eqs. (S2) and (S3) to compute the 95% 

confidence-level (CL) interval for the spread rate, i.e., the range [8, 9] 

 speedspeed tspeedtspeed   , ,      (S4) 

where t is Student’s t-distribution for a 95% CL and � − 2 degrees of freedom, and � is the number of 
sites. In the present work � ≥ 63 and therefore � ≈ 2 [8, 9]. 

 

 

S5. Details on the wave-of-advance model 

 The evolution of the population densities of farmers � and hunter-gatherers � is driven by Eqs. 
(3.1)-(3.5) in the main paper. Here we explain these equations in more detail and derive the speed of the 
wave of advance. Eqs. (3.1) in the main paper are 

�
�(�, �, � + �) = ∫ ∫ ��(� + ∆�, � + ∆�, �

�

��
)	��

�

��
�∆�, ∆��	�∆�	�∆�

�(�, �, � + �) = ∫ ∫ ��(� + ∆�, � + ∆�, �
�

��
)	��

�

��
�∆�, ∆��	�∆�	�∆�,

	            (S5) 

 

where ���∆�, ∆�� is the dispersal kernel of population � =N, P. The integrals in Eqs. (S5) cover the 
whole space because, in general, humans can move arbitrary distances and directions. However, below 
Eq. (S14) and in the main paper we consider specific dispersal kernels, so that in practice the distances 
and probabilities of motion are not arbitrary. 
 

 In Eqs. (S5) we have introduced 
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�
	��(�, �, �) ≡ ��[�(�, �, �)] + ��[�(�, �, �), �(�, �, �)] + ��[�(�, �, �), �(�, �, �)]

��(�, �, �) ≡ ��[�(�, �, �)] − ��[�(�, �, �), �(�, �, �)] − ��[�(�, �, �), �(�, �, �)],
        (S6) 

 
which account for the effects of reproduction (first term) and cultural transmission (last two terms).  
 The reproductive terms in Eqs. (S6) are given by logistic functions with initial growth rates �� 
and carrying capacities ��, namely 

�
��[�(�, �, �)] =

����	��	�(�,�,�)	

�����������	�(�,�,�)
	

��[�(�, �, �)] =
����	��	�(�,�,�)	

�����������	�(�,�,�)
.
	              (S7) 

For low population densities, Eqs. (S7) reduce to exponential growth (e.g., without dispersal �(�, �, � +
�) = ��[�(�, �, �)] ≈ ����	�(�, �, �)). As the population grows, net reproduction slows down until the 
carrying capacity is reached (e.g., �(�, �, �) = ��). We use the logistic Eqs. (S7) because they agree with 
many observed data [10].  
 Horizontal transmission (acculturation) is given by 

��[�(�, �, �), �(�, �, �)] = �
��[�(�,�,�)]	��[�(�,�,�)]

��[�(�,�,�)]�	�	��[�(�,�,�)]
,                     (S8) 

where the product ��[�(�, �, �)]	��[�(�, �, �)] follows from the following reasoning [11, 12]. After 
reproduction, there are ��[�(�, �, �)] farmers and ��[�(�, �, �)] hunter-gatherers. If a hunter-gatherer 
(HG) contacts � teachers during his lifetime, then the number of his/her teachers who are farmers is	��, 

with � =
��[�(�,�,�)]

��[�(�,�,�)]+	��[�(�,�,�)]
 . If � is the probability that the HG becomes a farmer due to contact with a 

single farmer-teacher, the probability that the HG will become a farmer after � contacts is 1 −
(1 − �)��. If � is small, this simplifies to ��, with � = ��. Thus, the total number of HGs becoming 

farmers per generation is ��	��[�(�, �, �)] = �
��[�(�,�,�)]	��[�(�,�,�)]

��[�(�,�,�)]+	��[�(�,�,�)]
. The additional parameter � in Eq. 

(S8) takes into account that a HG can have different probabilities to learn from other HGs than from 
farmers [12].  
 Finally, the term accounting for vertical transmission (interbreeding) in Eq. (S6) is given by 
 

��[�(�, �, �), �(�, �, �)] = �
��[�(�,�,�)]��[�(�,�,�)]

��[�(�,�,�)]�		��[�(�,�,�)]
.                (S9) 

This equation follows from the fact that cultural transmission theory [11, 13] has shown by that the 
probability that a farmer mates a HG is proportional to the frequency of HGs, i.e. 

�
��[�(�,�,�)]

��[�(�,�,�)]�		��[�(�,�,�)]
. Under random mating � = 1, but members of two populations with 

substantially different cultures (farmers and HGs in our case) obviously do not mate at random. 
Multiplying this probability by the number of farmers, i.e., ��[�(�, �, �)], yields the number of HGs that 
become farmers due to interbreeding, i.e., Eq. (S9) [13].  
 
 We apply the usual mathematical approach (linearization method) [14] to derive the front speed 
by considering a region where the pioneering populations of farmers arrive but hunter-gatherers are still 
close to their carrying capacity, i.e. 
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�
�(�, �, �) = �(�, �, �) + �(2)

�(�, �, �) = �� − �(�, �, �) + �(2)
     (S10) 

where �(�, �, �) ≪ ��, �(�, �, �) ≪ ��, and �(2) are second-order terms. Then Eqs. (S7) simplify to  

�
��[�(�, �, �)] = �����(�, �, �) + �(2)	

��[�(�, �, �)] = �� −
�(�,�,�)

���� + �(2),
	              (S11) 

the first of Eqs. (S6) becomes  

��(�, �, �) = ���� �1 +
�

�
+ �� 	�(�, �, �) + �(2)    (S12) 

and the first of Eqs. (S5) simplifies to  

�(�, �, � + �) ≈ ���� �1 +
�

�
+ ��∫ ∫ �(� + ∆�, � + ∆�, �

�

��
)	��

�

��
�∆�, ∆��	�∆�	�∆�.   (S13) 

 From Fig. 1 in the main paper, it is obvious that data are not detailed enough to measure different 
rates in different regions or directions. Therefore, there is no need to complicate the model with such 
features, and we can simply assume that all parameter values (and thus the speed) are uniform and 
isotropic. Then the easiest way to compute the speed is to do so along the �-axis (� = 0), by  
considering a coordinate frame � = � − �� moving with the wave of advance (we have introduced the 
symbol s for the spread rate or front speed). In order to find the speed we have to assume, as usual [14], 
that the population density decreases exponentially at large distances, �(�, �, �) ∝ exp	[−��] → 0 for 
� → ∞ (with � > 0). In this way, Eq. (S13) yields  

���� = ���� �1 +
�

�
+ �� ∫ ��

��

�
∫ ��������	��(Δ)	Δ
�

�
	�Δ,    (S14) 

where we have applied polar coordinates (∆= �∆�
� + ∆�

� , � = ����� ∆�

∆�
, and �∆�	�∆�= Δ	�Δ	��), so 

that the angle � is defined so that ∆�= Δ	cos�. 

 When dispersal data are measured, they are grouped in histograms or kernels per unit length, 
��(∆), defined as the probability to disperse into a ring of radius Δ and width �Δ, divided by �Δ. 
Therefore, if the data indicate that N-individuals (i.e., farmers) have probabilities ��  to disperse at 

distances ��  (j=1,2,...,M), we can write that 

��(∆) = ∑ ��	�
(�)(��)

�
��� ,       

where �(�)(��) is the 1D Dirac delta centered at ��  (i.e., a function that vanishes everywhere except at 

∆= ��). Obviously the total probability must be one, 

1 = � ��

�

�

(Δ)	�Δ, 
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and ��(∆) is clearly a probability per unit length. In contrast, the kernel ���∆�, ∆�� used up to now is a 

probability per unit area (because in Eq. (S5) it is multiplied by �∆�	�∆�, which has units of area). 

Therefore, 

1 = ∫ ∫ ��
�

��
�∆�, ∆��	

�

��
	�∆�	�∆�= 2� ∫ ��(Δ)	Δ

�

�
	�Δ,      

where we have assumed the kernel is isotropic, ���∆�, ∆�� = ��(Δ) (because there are no ethnographic 

data detailed enough to detect anisotropies). Comparing the former two equations, we see that the 
dispersal probability per unit length ��(Δ) is related to that per unit area ��(Δ) as [14] 

��(Δ) = 2�Δ	��(Δ)                

and thus 

��(∆) = ∑ ��
�(�)(��)

��∆

�
���  .       

Finally, according to linear stability analysis, the minimum speed is that of the front [15]. Therefore, we 
obtain from Eq. (S14) that the spread rate of the farming waves of advance driven by Eqs. (S5)-(S9) is  
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where  

� =
�

�
+ �       (S16) 

can be considered as a measure of the joint intensity of horizontal and vertical cultural transmission 
because, without net reproduction (�� = 0) neither dispersal (i.e., replacing the integrals by �(�)), Eq. 
(S13) becomes simply  

�(� + �) ≈ (1 + �)�(�),     (S17) 
so � is equal to the mean number of hunter-gatherers converted into farming (by horizontal and/or 
vertical transmission) per pioneering farmer and generation.  

    








2

0

0 cosexp
2

1
jj rdrI  in Eq. (S15) is the modified Bessel function of the first kind and order zero.  

As mentioned above, dispersal data are usually reported using histograms, in which the quantity ��  

(which appears in Eq. (S15)) is the probability for farmers to disperse a distance ��, which is the mean 

distance of the corresponding histogram bin, and each bin is identified by the index � = 1,2, … ,�.  
 This completes the derivation of Eqs. (3.6) and (3.7) in the main paper (i.e., Eqs. (S15) and 
(S16)). 
 
 Without vertical transmission (� = 0), Eqs. (S15)-(S16) reduce to the result previously derived 
for horizontal transmission (Eq. [5] in Ref. [12]), as it should. Similarly, without horizontal transmission 
(� = 0), Eqs. (S15)-(S16) reduce to the result previously derived for vertical transmission and a special 
dispersal kernel (Eq. (54) in Ref. [13]), as it should. 
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 Without dispersal (i.e., replacing the integrals by �(�)), Eq. (S13) becomes simply  

�(� + �) ≈ ����(1 + �)�(�),     (S18) 
which has been applied in the main paper, Sec. 4. 
  
 Finally we  note that the assumption that space is homogeneous, in the sense that humans can 
live everywhere on the landscape, is necessary to obtain Eq. (S15), because otherwise it would not be 
possible to perform the integrals in Eqs. (S14) analytically. 
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