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Chapter 5

ON M OTT CONDUCTIVITY EXPONENTS
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Abstract

Mott first pointed out the importance of electron’s Variable Range Hopping (VRH)
between the localized states in discussing the conduction process of disordered insu-
lators at low temperature. In this article, we use VRH Model to compute the Mott
conductivity of an interacting amorphous system in an arbitrary dimension d. The
characteristic feature of this interacting system is the existence of a soft gap at the
Fermi energy. We found that both at low as well as at high electric field, the values
of the exponents characterizing the behavior of conductivity in this interacting sys-
tem are always higher than that of non-interacting ones in all spatial dimensions. We
also obtain the bound ( lower as well as upper) of the values of exponents in contrast
to non-interacting case. Finally, this approach allows us to construct a simple form
for A.C. conductivity as a function of frequency. We also indicate a general form of
the conductivity as a function of electric field and temperature for this system in any
arbitrary dimension d. The scaling approach adopted here to study the Mott conduc-
tivity gives one the generalized forms of the exponents from which all the previously
known results can be obtained. All these may shed light to interpret the experimental
conductivity results of amorphous systems at low temperature.
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1 Introduction

Regular crystalline solid is characterized by extended Bloch wave function. This descrip-
tion of a perfect crystalline solid is possible because of the presence of strongtranslational
symmetry in the system. In presence of a structural disorder, however, this symmetry is no
longer satisfied and the electronic wave functions are no longer of the Bloch type anymore.
The wave function in such a situation becomes spatially localized just like a wave packet
with a finite extent. This peculiar nature of the disordered system was independently shown
by P. W. Anderson[1] and N. F. Mott[2]. Moreover, in contrast to these crystalline materials,
amorphous materials have a continuous density of states in a range of energies where the
states are localized. The existence of these localized states or traps has been experimentally
verified by measuring the transit time of injected charge carriers[3].

By definition, the localized states do not carry any current in the thermodynamic limit.
In other words, the configurational (or ensemble) average of the conductivity for wave
functions having a fixed energy must vanish (〈σE〉 = 0) at absolute zero temperature as
the volume of the system is tending to infinity. The localization degree of such a state is
characterized by a length known as localization length which measures the spatial extension
of the wave function of electron. Thus, the conduction involving the localized states can
only take place through the transitions of electrons from full states to neighboring empty
states with the help of phonons. On the other hand, the extended states which can carry
current atT = 0 ( i. e. finite conductivity ) can be distinguished from the localized one by
a quantity known as Generalized Inverse Participation Ratio (GIPR). The GIPR is defined
as

P r(q, L) =

〈 ∑
i |ψr

i |2q

(
∑

i |ψi|2)q

〉
(1)

and can be regarded as the q th moment of i-th element of r-th eigenstate and q is real
positive number greater than 1. The angular bracket< .... > denotes the disorder averaging
of the relevant quantity and L is the typical system size. It was Thouless[4] who first
introduced a physical interpretation of IPR (q = 2), a subset of GIPR in disordered systems
through Green’s function technique. GIPR has been mostly used in numerical studies of
metal-insulator transition[5, 6] and continuous disordered model in a magnetic field[7, 8].
It is found from numerical calculations thatP r(q, L) ∼ 1

Lτ(q) . In the continuum version, a

straightforward calculation in case of pure delocalized states (exp(i~k · ~r)) in any arbitrary
d dimension reveals thatτ(q) = d(q − 1). Thus, in the thermodynamic limit, for extended
states GIPR vanishes to zero. While for the extremely localized state (exp(−αr)), in any
arbitrary dimension d GIPR is non-zero in the thermodynamic limit and is given by

GIPR ∼ (2α)d(q−1)

qd
(2)

For a given eigenstate with fixed system size, a higher value ofτ(q) for extended state
indicates that GIPR is smaller for a delocalized state than a localized state. In any interme-
diate system size,τ(q) is a linear function of q while it is a non-linear function of q for
localized one. This non-linear nature ofτ(q) indicates the typical multi-fractal character
of localized state. This GIPR has been recently used in two-dimensional ( tight-binding
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model) disordered ( on site disorder only) system in a magnetic field to explore the nature
of the energy eigen states within a band[9]. In this discrete model, the effect of the magnetic
field was introduced in the lowest order through the phase of the hopping integral between
two sites as suggested by Peierls[10]. This approach has been extended to include also the
random flux model with on site disorder in a two-dimensional system.

Recently, amorphous materials have attracted considerable attention with regard to
their optical as well as electrical properties[3, 11, 12, 13]. To understand the behavior
of their electrical conduction, Mott[14] proposed a new mechanism of transport of elec-
trons long back ago. This mechanism is effective only at sufficiently low temperature and
is known in literature as Variable Range Hopping (VRH). This VRH model has been ap-
plied in wide varieties of systems in condensed matter physics. In recent years, VRH model
has been extensively used in metal insulator transition[15, 16, 17], insulating amorphous
alloys[18], thin film transistors[19], n type CdSe semiconductor nanocrystal solids[20], in-
organic compounds[21] and in mesoscopic carbon networks[22]. A simple variant of this
VRH model known as quasi-1D VRH model[23] has been invoked to consider the charge
transport in the disordered regime of HCl doped PAN-ES samples. The crossover phe-
nomena in conjugated polymer[24] has also been studied recently via this model. VRH
has also been used in studying the conductivity of La-based CuO-chained high temperature
superconductors[25]. This immediately points out the importance of VRH model in con-
densed matter physics. Hence, a proper understanding of this simple model is necessary in
order to interpret the low temperature conductivity results. In this article, we would like to
discuss the basic aspects of this model and its natural extension to an interacting system.

This chapter is organized as follows. In the next section, we give a brief introduction to
the VRH model and then in section 3, we use this model to compute the d.c. conductivity of
pseudo-gap amorphous materials. Section 4 is devoted to discuss the bound on the values
of the exponents in this interacting case. Then, we move on to discuss the scaling behavior
of the the A.C. conductivity as a function of frequency. In section 6, we take up two experi-
mental systems discussed recently in the literature to show the applicability of VRH model.
Finally, we give our conclusion in section 7.

2 The Variable Range Hopping Model

The atoms in amorphous material are distributed at random and the electrons associated
with them have distribution of energies. An atom might have an empty state whose energy
is slightly higher than that of the occupied state of a chosen given atom. Typically, the
activation energy required for electrons to hop to an empty state is very small and hence
the hopping conduction[3] takes place. The hopping distance varies because of the random
arrangement of the atoms having suitable energy scales and hence the name is given as
Variable Range Hopping (VRH). This hopping process differs from the usual electrical
conduction in normal metal. Here, in the hopping process, phonons assist the transport
while in typical band theory, the transport is impeded by the destruction in periodicity
caused by the lattice vibration.

We consider two localized states - one filled and at or slightly below the Fermi en-
ergyEF and the other empty aboveEF ; their energy and spatial separations are W and R
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respectively. The hopping transition rate p is given by

p = νph exp (−2αR− βW (R)) (3)

The first factor is the quantum mechanical tunnelling probability and is just the overlap
of the two localized states ( one below the Fermi energyEF and the other aboveEF )
decaying with the same characteristic localization lengthα−1. R is the typical hopping
distance between the localized states,β = 1

kBT and W is the energy separation between
the final and initial state. The second factor arises because of the fact that the different
localized states must have different energy. This difference in energyW (R) is supported
by the phonon scattering and governed by the Boltzmann weight at temperature T. Note
thatW (R) essentially depends on separation between the localized states. At high enough
temperature or high electric field, the variable range hopping distance R becomes equal to
the nearest neighbor distance. The attempt frequencyνph depends on the strength of the
electron-phonon coupling and the phonon density of states but almost independent ofR

andW . This simple picture of hopping however can be rigorously justified by percolation
theory[27, 28] and random resistor network model[29, 30].

In presence of a uniform electric field, however, we note that the conductivity will be
modified[3] by the term due to electric field as

σ(F ) ∼ exp(±eRF/kBT ) (4)

Now, adding these two probabilities, we get the conductivity as

σ ∼ νph exp(−2αR− βW ) sinh
(
eFR

kBT

)
(5)

Under weak field limit (eFR � kBT ), the current density can be written as

j ∼ 2e2FR2N(EF )νph exp(−2αR− βW ) (6)

This immediately implies that the conductivity is given by

σ = 2e2R2N(EF )νph exp(−2αR− βW ) (7)

An electron will always try to have lowest W, the energy difference between the local-
ized states as well as the lowest hopping distance R. However, these two conditions cannot
be satisfied simultaneously. In fact, the electrons have a tendency to hop to more distant
neighbors where the energy difference W is smaller. This automatically gives rise to an
optimum value of the hopping distanceR obtained by maximizing the transition proba-
bility. This maximization is simply done by the optimization of the exponent given by
P = 2αR+ βW , where W depends on R[14].

For a constant density of states in 3 dimensions (subjected to the constraints that the
energy windowkBT is quite narrow and the localization lengthα−1 and the Fermi energy
EF remain constant within the narrow energy window) Mott[14] found that the conductivity
which is related to the transition probability varies with temperature as

σ(T ) = σ0 exp
(
− A

T 1/4

)
. (8)
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This non-exponential rather stretched exponential behavior of the conductivity is one
of the main features of the VRH model. We also note that with decrease (increase) of tem-
perature the conductivity decreases (increases). The exponent1/4 has been observed in
many experiments[3]. Even for multi particle hopping instead of the above single parti-
cle one, Knotek and Pollak[31] obtained the similar behavior with exponent greater than
1
4 in three dimensions. Even in dilute interacting model, the exponent1

2 was obtained
in 3 dimensions[32, 33]. This change of exponent from14 to 1

2 was regarded as tuning
the Coulomb interaction over the non-interaction. There is a simple physical way[12] to
understand this power14 . In real 3 dimensional world, an electron will hop to a particu-
lar site in four (x, y, z, E) dimensional phase space. Therefore, this factor1

4 can be re-
garded as the reciprocal of the effective dimensionality of 4 ( 3 spatial and one energy) of
the electron’s hopping phase space. In an arbitrary spatial dimension d, a straightforward
generalization[12] gives the value of the exponent as1

d+1 . Without doing much calculation,
we can immediately obtain the exponent1

3 for a typical two dimensional non-interacting
electron’s hopping. There are considerable amount of discussion in the literature regarding
the value of the exponent[34, 35]. We Would like to generalize the above formula for an
interacting system in which the density of states has a soft gap at the Fermi surface. This
soft gap is obtained when one considers the electron-electron Coulomb interaction. Un-
doubtedly, this is more realistic than a constant density of states[14, 36, 37]. This is why
it is interesting as well as relevant to analyze its effect on the conductivity exponent in the
light of varying density of states in an arbitrary spatial dimension d. In other words, we
want to look for how does the conductivity exponent vary with the strength of the den-
sity of states in such a typical interacting amorphous system. There are evidences that
the experimental data lead to different exponents for the conductivity within a temperature
window[38]. To explore the origin of these exponents, we would like to investigate this old
classic problem[39]. Recently, a unifying theory of dc transport[40] for two dimensional
interacting electronic crystals have been developed in the literature. In this paper[40], it has
been shown that a crossover from a usual quadratic Coulomb gap to another one having
density of states proportional toE2/3 leads to a change of conductivity exponent from35
to 5

11 . Within our simple scaling approach, it is however possible to obtain the values of
the exponents. Moreover, because of the bound of the pseudo gap exponents, we do have a
lower bound of the conductivity exponents in all spatial dimensions as presented below.

3 Computation of D.C. Conductivity

In this section, we would like to generalize the non-interacting result to interaction one
following the single-particle DOS as

N(E) ∼ |E −EF |ν . (9)

The non-negative parameterν actually determines the way the DOS vanishes at the
Fermi surface. This particular nature of the density of states arises while studying the
localized electrons interacting via Coulomb interaction[32] at low temperature. A bound
for the exponentν was also obtained as being[41]

ν ≥ d− 1 (10)
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for an arbitrary dimension d. With the above density of states, the unitarity condition within
the specified energy intervalsEF ±W (R) in an arbitrary dimension d reads as

2πd/2Rd

Γ(d/2 + 1)
W ν+1

(ν + 1)
= 1. (11)

It is clear from the above equation (11) thatW (R) is essentially the average energy
spacing among states spatially located within a hyper sphere of radius R, and thus we note
that

W (R) ∼ 1
Rd/(ν+1)

. (12)

For an alternative derivation using the average no. of states, the readers are referred
to the literature[39]. Incorporating the above density of states in Fermi-Dirac distribution
function, the equation (7) takes the form

σ ∼ 2e2R2T ννph exp(−2αR− βW ) (13)

It is also evident that forν = 0 (flat DOS)W (R) is proportional toR−d. Hence, the
exponentP in the hopping transition rate in equation (1),p = νph exp(−P) becomes

P = 2αR+
βb

Rd/(ν+1)
. (14)

Note thatb is a constant independent of R, W and T. Maximizing the hopping transition
rate with respect to R we obtain

σ(T ) = σ0 T
B(ν,d) exp

(
− A

Tφ

)
, (15)

where the exponentφ is given by

φint(d, ν) =
ν + 1

d+ ν + 1
, B(ν, d) =

ν2 + dν − ν − 2
d+ ν + 1

(16)

which matches with an earlier result[42]. Even for a power law type of density of states
(N(E) ∝ Eν), the same exponentφ(d, ν) was obtained recently[43]. This equation (16)
will be used later on to consider the conductivity of this interacting system in a high field.
Before we go on next section, we would like to comment on two important aspects of the
exponents. First of all, is there any simple physical way to understand these exponents ? A
brief look into equation (12) however answers this question. Interaction restricts the spatial
part of effective phase space dimension of electrons tod

ν+1 making the total dimensions

to
(

d
ν+1 + 1

)
. Then, its reciprocal readily gives the exponentφint(d, ν). Secondly, it is

noticed that the exponents in the interacting case inall dimensions d satisfy the following
inequality given by

φint > φnon (17)

whereφnon is the corresponding exponents for non-interacting case. In other words, the
magnitude of the conductivity is increased in compared to non-interacting case. In fig-
ure 1, the behavior of the conductivity of the interacting in 3d is contrasted with the non-
interacting along with DOS.
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Figure 1: Figure shows the schematic behavior of DOS and (d.c.) conductivity in the
interacting case in compared to non-interacting one in 3d. In both plots, the solid line is for
interacting system while dashed one for non-interacting system.

A simple physical argument can be given to support this behavior of the exponents. It is
evident that in the interacting case (ν 6= 0), the average no. of states increases. This results
a slower power fall of the separation of the energy between the localized states. This, in
turn, enhances the effective total hopping space dimensionality of the electrons, resulting
an increase in the conductivity.

3.1 Extension to High Electric Field

The result discussed above is strictly valid for low temperatures and weak electric fields
only. In extremely weak electric field (F), the electric field-dependent conductivity[3] is
given by

σ(F ) ∼ exp(eRF/kBT ) (18)

where R is the most probable hopping distance.
Experimentally, this low-field conductivitydependence on electric field and temperature

has been observed[44] in P doped Si samples. We have recently [39] found the conductivity
form of this system at high electric field as

σ(T ) = σHF exp
(
− B

Fφ

)
, φ2 =

ν + 1
d+ ν + 1

. (19)

Therefore, like non-interacting case, we note that at sufficiently high electric field in-
tensities, there is no temperature dependence of the conductivity. An intuitive argument in
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support of such a dependence on the field can be put forward as follows. We here generalize
the reasoning originally given for non-interacting system[3] in three spatial dimensions. At
strong electric field, the energy associated with the field F is much greater than the hopping
energy available. This immediately restricts the electron’s hopping over localized sites to
downwards only. Hence, for the occurrence of this process, we must have a critical fieldFc

defined by

F ≥ C1

R
d+ν+1

ν+1

(20)

Thus, forF > Fc, the hopping distanceR naturally should scale asF− ν+1
d+ν+1 . Finally,

one can easily obtain the equation (19) by simply consideringσ ∼ exp(−2αR) and sub-
stituting the scaling form of R. Previously-known results[45, 46, 47] can be obtained from
this generalized form of the conductivity in high electric fields. In the special case of three
dimensional systems and a quadratic DOS (ν = 2), the familiar results of refs. [42, 47] can
be recovered easily.

A combined formula for any electric field F and temperature T in an arbitrary di-
mension d can be proposed using the concept developed in case of coulomb gap in three
dimension[20]. Using this concept of partition function to normalize the distribution in sta-
tistical mechanics, we find that the conductivity apart from the pre-exponential term should
behave as

σ ∼ exp(−2αR− βW − βeFR

1 + exp(−βW − βeFR)
(21)

It is easy to verify that at low enough temperature and low electric field the above
equation (21) correctly reduces to (15). At high electric field, there is no temperature depen-
dence, it goes back simply to field dependence equation given by (19). Physically speaking,
at low electric field the electrons hop in such a way as to reduce the activation energy W
while at high electric field, they overcome this energy W with the help of energy from the
field. In fact, in these two regimes, the hopping distance should behave differently as a
function of field and temperature. To understand this more clearly, we look for the variation
of hopping distance to maximize the above conductivity expression (21). This enables us
to get an equation forR as

{
d

ν + 1
βSd

R
d+ν+1

ν+1

− (βeF + 2α)

}(
1 + exp

{
− βSd

R
d

ν+1

− βeFR

})

=

(
d

ν + 1
βSd

R
d+ν+1

ν+1

− βeF

)
exp

{
− βSd

R
d

ν+1

− βeFR

}
(22)

A simplified equation ofR in d = 3 andν = 2 ( Coulomb Gap) valid for any value of
F and temperature T can be written simply as

{
βS3

R2
− (βeF + 2α)

}(
1 + e−

βS3
R

−βeFR
)

=
(
βS3

R2
− βeF

)
e
−βS3

R2 −βeFR (23)

Here,Sd(S3) is a dimensionless constant independent ofR, W , F andT . From this
equation (23), we find for low electric fieldR ∼ β1/2 [32] while for high electric field
R ∼ F−1/2. This immediately points out that why in low electric field, the conductivity
depends on the temperature but at high field, the conductivity is independent of temperature.



On Mott Conductivity Exponents of Pseudo-gap Amorphous Systems 119

It is also noticed here that inall spatial dimensions d

φ2 > φ0 (24)

whereφ0 is the exponents for the non-interacting case (ν = 0). The physical arguments
leading to this behavior is the same outlined above for low electric field and temperature
i. e. the enhancement of the phase space dimensionality in the interacting case. Below we
discuss the lower as well as the upper bounds of the exponents.

4 Bounds on the Exponents

In this section we would like to discuss the limiting values of the exponents of the inter-
acting case. The exponentB(ν, d) in the pre-exponential factor of the Mott conductivity
formula deserves some discussion. In most of the experimental situation, however, the vari-
ation is insignificant. There could be some possible situations[48, 49] where the tempera-
ture factor in the pre-exponential term might play a crucial role to fit the experimental data.
Therefore, we suggest to take into account this temperature factor in the pre-exponential
term[50] appropriately for scaling fit of experimental conductivity data according to Vari-
able Range Hopping (VRH) model. It is interesting to note that the exponent satisfies the
following inequality[51] given by

(d− 2) ≤ B(ν, d) < ν (25)

For comparison, we note that in non-interacting case, the value ofB(ν = 0, d) =
− 2

d+1 ≤ −1. It is evident from the expressions (16) and (19) that the exponentsφint or
φ2 always have the upper limit as 1. Thus, we have

φint < 1 (26)

Now considering the bound on the values ofν given by equation (10), we find a new
lower limit of the exponents given by

φint ≥
1
2

(27)

Therefore, for this special type of interacting system we have the bounds on the expo-
nents as

1
2
≤ φint < 1,

1
2
≤ φ2 < 1 (28)

Notice that this lower bound is possible only because of the restriction of the exponent
ν. There is no such kind of lower bound for non-interacting system ( the values are less
than 1

2 in two and three dimensions) as the values are discrete, not functions ofν. In non-
interacting system in one dimension however the value of1/2 is possible; but there is no
such counterpart in higher dimensions. Except in one dimension, the exponents do strictly
obey the inequality given above. In non-interacting cases, except for one dimension, all the
exponents have values less than1

2 . Therefore, we can conclude that any value greater than1
2

is a characteristic feature of this interacting system having pseudo-gap at the Fermi surface.
In figure 2, we show the variation of the exponent of the interacting system in two as well as
three dimension as a function ofν. This result is also valid for the high field case because
of the same exponent dependence on the field as in the low temperature conductivity case.
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Figure 2: In this figure, the variation of the exponentφ for the interacting cases in three and
two dimensions as a function ofν is indicated.

5 Calculation of A.C. Conductivity

In this section we closely follow Austin-Mott[52] formulation to compute the scaling behav-
ior of the A.C. conductivity. The scaling behavior in the non-interacting limit[53] suggests
the form of this A.C. conductivity in three dimension as

σ(ω) ∼ Tω ln
(
νph

ω

)4

(29)

The significant role played byνph is discussed below. It is known[53] that for flat
density of states,

σac = σdc +A1ω
s, ω � νph (30)

Here,A1 is a function of temperature and s is a weak function of the frequencyω. In
three dimensions, the value of s under the above limiting conditions is 0.8. Based on the
above definition, one may define s in the following way

s =
d[ln{ω lnα (νph/ω)}]

d(lnω)
(31)

where it is assumed that the behavior of the A.C. conductivity is given by

σ(ω) ∼ ω{ln(νph/ω)}α (32)

The parameterνph strongly depends on the localization parameter in the process in-
volved and may even depend on temperature as well. Recently, this parameter has
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been cleverly used to get scaled conductivity plot of chalocogenide glasses under various
compositions[55]. More specifically, it is found that for(Li2O)0.30−(TeO2)0.70 that a plot
of σreal

σdc
as a function of ω

νph
falls into a single curve for all temperatures ranging between

383K and 483 K. Moreover, the plot of dc conductivity as a function ofω
νph

at fixed temper-
ature with varying compositions yields a single scaled curve. These two graphs essentially
have demonstrated the importance ofνph as a scaling frequency.

In this Austin-Mott picture, we can easily write down the average jump time between
the two localized states at R distance apart as

1
τ

= νph exp(−2α R) exp(−βW (R)) (33)

The most important contributionof hoping occurs atωτ ∼ 1 which implies an emerging
of a particular hopping length scale given by

Rω =
1
2α

ln(νph/ω) (34)

Within a given range of∆R, we also neglect the contribution of the hopping on the
scale2αdRω ∼ 1. A straightforward scaling analysis like non-interacting case[52] leads us
to obtain

σ(ω) ∼ ωT ν+1 R
− dν

ν+1
ω Rd+1

ω (35)

The physical origin of the above terms is given below. The factorω comes from the
disorder average of the Drude like termω2τ

1+ω2τ2 .TheT ν+1 is from the typical average DOS
calculation in a Fermi system at finite temperature. The first factor of the hopping term is
from the energy difference of the localized states while the second one from the combination
of phase space and the square of the dipole moment. The equation (35) can be further
simplified to get the conductivity ( apart from the temperature variation) as

σ(ω) ∼ ω ln
(
νph

ω

)α1

, α1(d, ν) =
d+ ν + 1
ν + 1

(36)

This immediately indicates that

s(d, ν, ω) = 1 − α1

ln
(νph

ω

) (37)

It is also evident from the expression ofσ(ω) that the equation (29) follows as a cross-
check for non-interacting case in three dimensions (ν = 0, d = 3). In figure 3, we depict
the double logarithmic plot of the A.C. conductivity as a function of frequency for both
interacting as well as non-interacting case.

A comparison to the non-interacting case (ν = 0) suggests that

sint > snon (38)

for all spatial dimensions d . The reason is the same as outlined in d.c. conductivity case or
high electric field. It is also noted thatα1 satisfies the following inequality

α1(d, ν) ≥ 2 (39)
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Figure 3: In this figure, the typical double logarithmic plot of 3d A.C. conductivity as a
function of frequency in the interacting as well as non-interacting case is depicted for two
νph frequencies.

It is interesting to note that this treatment does not giveσ(ω) = 0 atω = 0. The typical
variation of s as a function ofνph

ω in figure 4 shows that one can go below to the value of
νph

ω in compared to the non-interacting case. This is one of the interesting aspects of the a.c.
conductivity of this system. It is also evident from the figure that lower value ofνph ensures
the lower value for s parameter. Sinceνph � ω , we notice that for interacting as well as
for non-interacting systemss(ω) < 1 within the range of scaled frequencyνph

ω . As this
scaled frequency goes to infinity, the values(ω) slowly reaches the upper bound value of 1.
In this sense, this behavior ofs(ω) is universal independent of the nature of the system. For
a practical situation in amorphous systems, if one takesνph ∼ 1012 Hz andω ∼ 104 Hz, it
is found that for interacting (ν = 2) cases = 0.95 while for non-interacting cases = 0.89
in 3 dimension.

6 Experimental Verification of Interacting VRH Model

In this section, we take two examples from recent literatures to discuss the validity of inter-
acting VRH model. The first example is the application of VRH in the Quantum Hall Effect
(QHE) to explore the variation of the localization length with temperature. The Quantum
Hall phenomena[56, 57] arises in a two dimensional hetero-structure at high magnetic field
(B ∼ 1 − 30T ) and at low temperature (≤ 4K). It is basically a strongly interacting two
dimensional disordered system in a strong magnetic field. A cautionary remark with this
two dimensional electron gas ( 2DEG) system is that one has to be very careful to apply
perturbation theory [58, 59] to understand this phenomenon. The transverse conductivity is
quantized while there exists a dissipation-less conduction along the longitudinal direction.
Mathematically, it can be stated asσxx → 0, ρxx → 0 but σxy = ν̃ e2

h , whereν̃ = p
q is a
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Figure 4: The typical slow variation of s as a function of frequency in 3d interacting case
is shown in this figure. The typical variation of its counterpart is also indicated in the same
plot.

rational fraction. This̃ν, a dimensionless quantity is known as the filling factor and is given
by ν̃ = 2πl2n = nhc

eB , where n being the 2D density of electrons. With change of magnetic
field, various plateaus are observed in the phase diagram of QHE. The transition between
the adjacent plateaus forms an intriguing phenomenon [60, 61] due to the transport of the
delocalized state within the Landau level center amidst localized states.

Polyakov and Shklovskii[62] have shown that in QHE regime, the VRH conductivity is
given by

σxx(T ) = σ0 exp


−

√
T0

T


 , kBT0 = C

e2

4πεε0ξ
(40)

The pre-exponential factorσ0 depends inversely on temperature. The characteristic
temperatureT0, however, as evident from the expression is controlled by the Coulomb
energy at the localization lengthξ. T0 essentially depends onα (the inverse of localization
length) and the density of states at the Fermi surface. Sinceξ ∝ 1

T0
, it is possible to test

the various scaling behavior near the edges of the plateau region. In other words, a plot of
Tσxx vs 1√

T
will scale the data collapse in a straight line. This was exactly what was verified

recently[63] in doped GaAs/AlGaAAS hetero-structures with electron density∼ 105m−2

and mobility∼ 102/V s. The data were further tested for the typical Mott scaling in two
dimensional case

σxx ∝ T−m exp

(
−
(
T0

T

)1/3
)

(41)

with various values of m. But this Mott scaling (d = 2 andν = 0) did not show a good fit-
ting to the experimental data. In other words, this immediately implies that in this situation
Mott’s non-interacting scaling is not suitable enough to describe the system. Besides this,
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in the non-linear regime at high electric field, it was found through the measurements that
the longitudinal conductivity does obey the scaling relation

σxx = σF
0 (F ) exp


−

√
F0

F


 , F0 ∝ 1

ξ2
(42)

Note that in this regime, there is no explicit temperature dependence as per theoretical
prediction. Thus, a good fitting of the data by the appropriate scaling laws clearly estab-
lishes the explicitnon-interacting nature of the system under study.

As a second example, we consider the conduction measurement[20] of n-type CdSe
nano crystal film as a function of temperature T and applied field F. It is known[32] that
a crossover from Mott’s14 law to 1

2 occurs when Coulomb interaction is important at low
enough temperature. This means that there exists[32] a critical temperatureTC given by

TC =
e4ag0

kB(4πεε0)2
(43)

above which one expects14 law to obey. Here,a is taken as the typical localization length
andg0 is the density of states at the Fermi surface. An estimation[64] of thisTC on CdSe
QD thin films gives the value 400K which indicates1

2 law instead of14 . In fact, the low field
measurement of this CdSe film in the temperature region of10K < T < 120K shows that
the conductivity[20] satisfies the equation

G = A exp


−

√
T ∗

T


 (44)

The estimatedT ∗ from the experimental measurement agrees reasonably well with the
theoretical prediction[13]. Even the measurements carried out in high field ranging between
105 to 107 V/m at fixed temperature4.3K indicate a temperature independent but strongly
field dependent conductivity[20] given by

G = A exp


−

√
F ∗

F


 (45)

Thus, we notice that the experimental findings in the wide temperature region at low
field as well as at high field region are well described by the Variable Range Hopping (VRH)
model with a coulomb gap. Considering the Pseudo gap picture of interacting systems, it
is clear that these two different systems correspond tod = 2 andν = 1. In this way, it
is possible to combine the various systems into a single conductivity class for each value
of ν according to classical phase transition idea. For example, Mott’s well known1

4 law
falls into the category ofd = 3 andν = 0. Thus, with a given spatial dimension, one
may easily identify a system according to a particular unique value ofν. In this sense, this
approach makes an important connection to statistical mechanics. Till now we have noticed
that the system falls into either usual Mott category or Efros-Shklovskii one. It thus remains
challenging as well as interesting to explore other universality classes of this generalized
pseudo gap model in condensed matter physics.



On Mott Conductivity Exponents of Pseudo-gap Amorphous Systems 125

7 Conclusions and Perspectives

To summarize, we have derived through a simple scaling analysis, a generalized form for
the conductivity in an arbitrary dimension d with a density of states having a soft gap at
the Fermi energy in amorphous systems. The behavior of the conductivity at high electric
field has been obtained in this interacting system. A physical argument has been sought to
understand the scaling behavior of the conductivity at high electric field. It is noticed that
the exponents governing the behaviour of the conductivity in interacting cases are higher
than that for non-interacting case. We have also given two examples from recent literature
to show explicitly the validity of the interacting Variable Range Hopping (VRH). It will
be of interest to look for the effect of pseudo gap in systems with an externally applied
magnetic field (weak as well as strong). Work in this direction is in progress.
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