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Abstract. We generalize a previous model of time-delayed reaction–diffusion
fronts (Fort and Méndez 1999Phys. Rev. Lett.82 867) to allow for a bias in the
microscopic random walk of particles or individuals. We also present a second
model which takes the time order of events (diffusion and reproduction) into
account. As an example, we apply them to the human invasion front across
the USA in the 19th century. The corrections relative to the previous model
are substantial. Our results are relevant to physical and biological systems with
anisotropic fronts, including particle diffusion in disordered lattices, population
invasions, the spread of epidemics, etc.
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1. Introduction

Fronts are solutions to reaction–diffusion equations [1, 2]. They describe propagating profiles
for the particle concentration, individual number density, temperature, etc. They are used to
describe combustion flames [3]–[6], population invasions [7]–[9], virus infections [10], and
many other interesting phenomena in physical and biophysical systems [1, 2].

Anisotropic reaction–diffusion fronts have been analysed by several authors. Previous
theoretical results include a Hamilton–Jacobi derivation of the front position [11], a propagation
failure condition for random walks biased in the opposite direction to that of the front
propagation [12], velocity-curvature relations [13], nucleation of spiral waves [14], etc.
An interesting application is the recent explanation (via computer simulations) of the
nonhomogeneous speed of Neolithic fronts, based on anisotropic diffusion due to enhanced
transport along major rivers [15].

In this paper, we will follow a microscopic approach to deal with systems in which
particles (or individuals) move with a direction-dependent probability, i.e. following a biased
(or anisotropic) random walk. Such a microscopic behaviour has been considered for many
systems, such as particle diffusion in disordered lattices (see section 10 in [16]) diffusion-
limited aggregation [17], experimental populations of micro-organisms [18], human populations
invading a geographical region [15], etc.

In this paper, we will first develop two models leading to anisotropic reaction–diffusion,
and derive their front speeds (sections2 and3). Then we shall present an application of these
results (section4), and finally include some concluding remarks (section5).

Correlation between the directions of successive jumps will not be included in our models.
The reason is that there is no reason to think that such a correlation is relevant in the application
we will tackle (section4) and many similar situations. Therefore, we will deal with biased,
uncorrelatedrandom walks. This is a fundamental difference between our models and those
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on correlated (or persistent) random walks. In our models, we will allow the probability of
jump to depend on the angle relative to a fixed direction. In contrast, in correlated models the
probability of jump depends on the angle relative to the direction of motion before performing
the jump [19]. Models incorporating both effects have also been proposed [20]. Our framework
is similar to other phenomena (not considered in the present paper) such as bacterial chemotaxis,
where the probability of jump also depends on the angle relative to an external direction (e.g.
that of the chemoattractant gradient). However, the way in which detection of an external
gradient or stimulus by a cell leads to directed movement requires modelling of intracellular
mechanisms [21] that are beyond population-dynamics models such as that in the present paper.
Another fundamental difference between the present paper and those references is that, we will
include population reproduction in addition to diffusion.

Again, in order for our models to be useful in the application we want to discuss, we will
deal with a two-dimensional (2D) space throughout this work.

2. First model: non-sequential fronts from biased random walks

2.1. Microscopic derivation

In this section, we generalize the framework in [9] to the case of biased random walks. Let
p(x, y, t) stand for the population (or particle) number per unit area at position(x, y) and
time t .

In the present paper, we define the dispersal kernelφ(Mx,My) as the probability per unit
area that an individual (or particle) who was at(x− Mx, y− My, t) jumps to(x, y, t + T).3

Let T stand for the mean time interval between two subsequent jumps (in biophysical
applications, usuallyT = 1 generation [9, 10]). Let R[ p(x, y, t)] stand for the number of new
individuals (or particles) due to the reproduction process (or chemical reactions), produced
during the time intervalT per unit area centred at(x, y). From these definitions, the evolution
equation is typically written down as follows [9]

p(x, y, t + T) − p(x, y, t) =

∫ +∞

−∞

∫ +∞

−∞

p(x − 4x, y − 4y, t) φ(4x, 4y) d4x d4y

−p(x, y, t) + R[ p(x, y, t)], (1)

where the first and second terms in the right-hand side correspond to population dispersal,
and the last oneR[ p(x, y, t)] is a source term due to net reproduction (or chemical reactions).
In general, a sink term can also be added to the former equation but here it is not included
explicitly because, in the next subsection, we shall consider biological populations and then,
R[ p(x, y, t)] will describe the net effect of both sources and sinks (i.e. of the reproduction and
death of individuals, respectively).

Usually second-order Taylor expansions in space (‘diffusion’) and time are performed.
Then equation (1) becomes

∂p

∂t
+

T

2

∂2 p

∂t2
= −Ux

∂p

∂x
−Uy

∂p

∂y
−Uxy

∂2 p

∂x∂y
+ Dx

∂2 p

∂x2
+ Dy

∂2 p

∂y2
+ F +

T

2

∂F

∂t
. (2)

3 Note that in [9], we definedφ(Mx,My) as the probability of a jump(x+Mx, y+My, t) → (x, y, t + T). Here we
use negative signs instead, because otherwise the kernel8(θ) in section4 would correspond to a jump with angle
−θ , which would be rather confusing.
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HereF is the time derivative ofp(x, y, t) due to reproduction, i.e. [9]

R[ p(x, y, t)] = T F +
T2

2!

∂F

∂t
+

T3

3!

∂2F

∂t2
+ · · · , (3)

Dx andDy are direction-dependent diffusion coefficients

Dx(x, y) =
〈4

2
x〉

2T
, (4)

Dy(x, y) =
〈4

2
y〉

2T
, (5)

and we have defined

Ux(x, y) =
〈4x〉

T
, (6)

Uy(x, y) =
〈4y〉

T
, (7)

Uxy(x, y) =
〈4x 4y〉

T
, (8)

where the mean value of an arbitrary functionζ(Mx,My) is defined as

〈ζ(4x, 4y)〉 ≡

∫ +∞

−∞

∫ +∞

−∞

ζ(4x, 4y) φ(4x, 4y, x, y) d4x d4y.

In general, the dispersion kernelφ(Mx,My, x, y) can depend on position(x, y) in addition
to the jump vector components(1x, 1y). Then, the macroscopic parameters above (Dx, Dy, etc)
also depend on position. However, for our purposes here it will be sufficient to consider mainly
the homogeneous case. Then, we can simply writeφ(Mx,My) instead ofφ(Mx,My, x, y).

The first three terms in the right-hand side of equation (2), which correspond to
equations (6)–(8), did not appear in [9] because there we assumed that the kernelφ(Mx,My)

was isotropic (thusDx = Dy ≡ D).
An interesting 1D anisotropic equation similar to (2) was considered by Fedotov [11], but

the diffusion terms had a different form. Also, in [12] a general continuous-time anisotropic
reaction–dispersion equation was analysed in 1D. Here, we consider the 2D reaction–diffusion
equation (2) because its microscopic derivation above will make it possible to tackle a specific
application in section4 by estimating the values of the parameters by means of the 2D
equations (4)–(8).

A macroscopic derivation of this model is included in the appendix. Such a macroscopic
derivation may be suitable for other applications, but not for the one we will discuss in the
present paper (section4) because there the macroscopic parameters (Dx, Ux, etc) cannot be
directly measured. The macroscopic derivation (appendix) does not relate them to the dispersion
kernelφ(Mx,My). The latter can be measured, so we will need the microscopic derivation above
in order to obtain numerical estimations of the macroscopic parameter values.
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2.2. The speed of front solutions

As in [9], let us consider a reproduction function that has been widely applied in biophysics
problems, namely the logistic function

F = ap(x, y, t)

(
1−

p(x, y, t)

pmax

)
, (9)

wherea is called the initial growth rate andpmax the saturation density. This function includes
the net effect of reproduction and death of individuals [22].

In contrast to some previous work on non-delayed non-isotropic fronts [13, 14, 23], we
will not tackle the problem of the dependence of front speed on the direction. Instead, in order
to derive results relevant to the application we are interested in (section4), we need to focus our
attention into the speed of time-delayed fronts along thex-direction.

We recall that the front speed can be found most easily by assuming that fort → ∞

the front curvature is negligible at scales much larger than that of individual dispersal events.
This approach that has been successful in previous work [1, 24]. In other words, we consider
a region centred about thex-axis which is sufficiently small so that they-dependence of
p(x, y, t) can be neglected. Letc stand for the front speed. We look for constant-shape solutions
with the form

p = p0 exp[−λ(x − ct)] (10)

asx − ct → ∞, with c > 0 andλ > 0. In this way, from equations (2) and (9) we obtain the
characteristic equation

λ2

(
Dx −

T c2

2

)
− λ

(
c−Ux −

aT c

2

)
+ a = 0. (11)

Solving this equation forλ and requiring for it to be real, we obtain the condition

f (c) ≡ c2

(
1 +

aT

2

)
− 2cUx

(
1−

aT

2

)
− 4aDx −U 2

x > 0. (12)

It is easily seen thatf (c) is convex from below, and that the equationf (c) = 0 has one negative
and one positive root forc, sayc− andc+. Therefore, the minimum possible value forc > 0
corresponds toc+. Let us now assume, as usual, that this minimum possible speedc+ is that
selected by the front (this is usually called linear or marginal stability analysis [1, 2]). In this
way, we finally obtain

c =
Ux(1− (aT/2)) + 2

√
aDx(1 +(aT/2))2 − (aT/2)U 2

x

(1 +(aT/2))2
. (13)

We note that

lim c
Ux→0

=
2
√

aD

1 +aT/2
, (14)

whereD ≡ Dx, so that we recover, as a special case, the result derived in [9] for non-biased
random walks.

For a biased random walk with negligible delay time (T �
1
a), equation (13) becomesc =

Ux + 2
√

aDx . If we consider the additional limit of a non-biased random walk (equation (14)),
we obtainc → 2

√
aD , which is Fisher’s well-known speed [25].

For a macroscopic derivation and a discussion about this model, see the appendix.
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3. Second model: sequential fronts from biased random walks

3.1. Derivation of the second model

Equation (1) has been widely applied [1, 9, 10, 24], and it is a reasonable starting point.
However, it assumes simultaneous dispersal (first and second terms in the right-hand side) and
reproduction (last term). But for application to biological populations (section4), a model with
non-simultaneous reproduction and dispersal seems more realistic. A simple way to see this is
that, according to the last term in equation (1), the population at(x, y, t) reproduces causing a
population number increase at the same space point(x, y) one generation later(t + T). But, in
fact, that parent population will no longer be at(x, y) at timet + T because of dispersal [first and
second terms in the rhs equation (1)]. So we can say that in the first model ‘parents leave their
children behind’. This is not realistic for most biological species, e.g. humans, because children
need to spend some time depending on their parents (until they become adults or independent).
Therefore, it is more realistic to replace equation (1) by

p(x, y, t + T) = R

[∫ +∞

−∞

∫ +∞

−∞

p(x − 4x, y − 4y, t)φ(4x, 4y) d4x d4y

]
, (15)

so that after the population moves (from(x+Mx, y+My) into (x, y)), it reproduces at the arrival
location(x, y) according to a reproduction functionR[ p(x, y, t)]. In this sense, equation (15)
is a sequential (or time-ordered) evolution equation, whereas equation (1) is not.

Concerning the reproduction functionR[ p(x, y, t)], we cannot use a logistic form for it
(i.e. we cannot setR[ p] = ap(1− p/pmax)). The reason is that it is known from non-spatial
models [25] that it yields negative values for the particle (or population) number density
p(x, y, t) for discrete-time equations such as (15), which makes no physical sense. Therefore,
we will simply assume net reproduction to be proportional to the population density but bounded
by a maximum value,pmax,

R[ p(x, y, t)] =

{
R0 p(x, y, t) if p < pmax,

pmax if p> pmax,
(16)

whereR0 is called the net reproductive rate (or fecundity) per generation.
In section3.3, we will show that equation (16) and the logistic equation (9) differ only at

high values ofp(x, y, t) (and thus, they would give the same front speed, if both were applied
to this second model).

Equations similar to (15) have been previously considered and applied to predict front
speeds, but mainly in 1D space and only for non-biased kernelsφ(Mx,My) [26, 27]. In contrast,
here we are dealing with the 2D case, and also consider biased kernels (both points are necessary
for the applications we shall present in section4).

In sequential (i.e. time-ordered) models, it is always assumed thatR0 > 1 [26]. Otherwise,
the number density of particles (or individuals)p(x, y, t) would decrease according to
equation (16), i.e. R0 < 1 would correspond to a negative net population reproduction, which
cannot lead to invasion fronts.

As for the first model, we shall apply the linearization method, i.e. consider the leading
edge of the invasion front

z ≡ x − ct → ∞.
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Therefore, we can assume low values for the population densityp(x, y, t) and, using
equation (16), we can write equation (15) as

p(x, y, t + T) = R0

∫ +∞

−∞

∫ +∞

−∞

p(x +4x, y +4y, t)φ(4x, 4y) d4x d4y. (17)

Performing Taylor expansions up to second order in space and time, this equation becomes

1−R0
T p + pt + T

2 pt t = R0

(
−Ux px −Uy py −UxyPxy + Dx pxx + Dy pyy

)
, (18)

whereUx, Uy, Dx, D andUxy are given by equations (4)–(8).
Equation (18) is the sequenced (or time-ordered) analogue to equation (2). As explained at

the beginning of this section, for biophysical applications the second model (equation (18)) is
more realistic than the first one (equation (2)).

Note that equation (17) is time-sequential in spite of the fact of having used the linear net
reproduction rate (16) (instead of the logistic (9), which is nonlinear). Indeed, mathematically
the non-sequential character of equation (1) does not correspond to a nonlinearity in the
reproduction rate. It corresponds to the sum of two terms in equation (1), corresponding to
independent processes (dispersion and reproduction). In equation (17), instead of such a sum
we have a composite function: reproduction is applied to the result of dispersion, so the model
is time-sequenced (albeit linear).

3.2. The speed of front solutions

As in section2.2, we look for solutions with the formp = p0 exp[−λ(x − ct)] asx − ct → ∞,
with c > 0 andλ > 0. Then equation (18) yields the characteristic equation

λ2

(
Dx R0 −

T c2

2

)
+λ (−c+Ux R0) +

R0 − 1

T
= 0. (19)

Solving this equation forλ and requiring for it to be real, we obtain the condition

g(c) ≡ c2 (1 + 2(R0 − 1)) − 2cUx R0 +U 2
x R2

0 − 4R0
R0 − 1

T
Dx > 0. (20)

Again, it is easily seen thatg(c) is convex from below, and that the equationg(c) = 0 has one
negative and one positive root forc, sayc− andc+. Therefore, the minimum possible value for
c > 0 corresponds toc+, and we finally obtain the speed

c =
R0Ux +

√
R0 (R0 − 1) [(4/T) (2R0 − 1) Dx − 2R0Ux]

(2R0 − 1)
. (21)

For the special case of a non-biased random walk, this becomes

lim c
Ux→0

=

√
4R0D

T

R0 − 1

2R0 − 1
, (22)

where we have introducedD ≡ Dx.
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3.3. Comparison to the first model

In order to compare the results of both models in section4, it will be necessary to establish
the connection between the low-density population growth parametersa (appearing in the first
model, e.g. equation (9)) and R0 (which appears in the second model, e.g. equation (16)).
This relationship can be obtained most easily as follows. In the absence of dispersal, both
equations (1) and (15) become

p(x, y, t + T) − p(x, y, t) = R[ p(x, y, t)] (23)

which, combined with equation (3), implies that

∂p

∂t
= F. (24)

Thus, for low values ofp(x, y, t), the logistic form (9) yields

p(x, y, t + T) = p(x, y, t) exp[aT], (25)

whereas equation (16) yields

p(x, y, t + T) = R0 p(x, y, t), (26)

so that the reproduction function (16) and the logistic(9) are consistent with each other at low
values of the population density, provided that

a =
1

T
ln R0. (27)

On the other hand, the reproduction function (16) and the logistic (9) will give different
results for high values of the population densityp(x, y, t). However, the high-density behaviour
is not accurately known for biological populations outside the laboratory, because there are no
experimentally well-established trends in the population numbers versus time (except at low
population densities) [28]. Moreover, it has been observed in non-biased models that the high-p
behaviour of reproduction does not affect the speed of fronts for the two cases considered the
present paper, i.e. for (i) the logistic growth function in non-sequential evolution equations (first
model) [9] and (ii) integro-difference equations with a linear source term (second model) [26].
However, the high-p behaviour may be important in other cases, which are out of the scope of
the present paper (e.g. the Arrhenius source function, widely used in combustion science [5]).

Although a comparison to the first model does not seem possible for an arbitrary biasUx,
it is possible in the non-biased limit (Ux = 0). For this purpose, using equation (27) into (22) it
is easily seen that the speed from the second model (22) will be higher than that from the first
model, equation (14), provided that

exp[T̃ ](exp[T̃ ] − 1)(1 + T̃/2)2
− T̃(2 exp[T̃ ] − 1) > 0,

whereT̃ = T a > 0 . Plotting the left-hand side for̃T > 0 , it is easily seen that this condition is
always fulfilled. The physical interpretation is that the first model corresponds to simultaneous
dispersal and reproduction, which means that ‘parents leave their children behind’ (see the
beginning of this section). Intuitively, this should lead to slower invasion fronts. This is the
physical interpretation of the fact that the second model leads to faster front speeds.

In the previous paragraph, we have considered arbitrary values ofT̃ = T a > 0 . But we
may note that, in fact, it is sufficient to consider low values ofT̃ . The reason is that the validity
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of the second-order Taylor expansion (2) implies thataT
2 < 1 , as it is clear from the fact that

equation (14) must then involve a small correction to Fisher’s speed, 2
√

aD . This condition
aT
2 < 1 implies that the characteristic dispersion timeT is sufficiently small (as compared to2a ,

which may be considered a characteristic reproduction time) and is satisfied for many biological
populations, e.g. humans [9].

4. Application

4.1. Connection between microscopic and macroscopic parameters

In order to apply our models, we need to assume some function for the kernelφ(Mx,My)

appearing in equations (4)–(8). Many forms for the kernel have been considered in the literature.
Unless there is some sort of evidence for a correlation between the lengths and the directions of
the jumps, it is assumed that they are independent from each other. For this reason, it is usual to
assume that

φ(4x, 4y) = 9(4)8(θ), (28)

where4 =

√
42

x +42
y andθ = tan−1 4y

4x
. Correspondingly, we write the normalization condition

of the kernel, namely∫ +∞

−∞

∫ +∞

−∞

φ(4x, 4y) d4x d4y = 1, (29)

as a normalization condition for the length jump probability distribution,∫
∞

0
9(4) 1 d4 = 1, (30)

and another one for the probability distribution of the jump direction,∫ 2π

0
8(θ) dθ = 1. (31)

Several functions8(θ) have been used in the literature on biased random walks [18, 29].
In order to illustrate the use of our models, it will be enough to consider the simple form

8(θ) = a ± bcosθ, (32)

whereb> 0 anda =
1

2π
from the normalization condition (31). Therefore

8(θ) =
1

2π
± bcosθ. (33)

The diffusion coefficientDx and the macroscopic bias parameterUx appearing in the front
speed (equation (13) in the first model; equation (21) in the second) can now be related to the
microscopic bias parameterb, by performing the integrations in equations (4) and (6). This
yields

Dx =
〈4

2
x〉

2T
=

〈12
〉

4T
=

1

4T

∫
∞

0
9(4) 13 d4, (34)

Ux =
〈4x〉

2T
= ±πb

〈1〉

T
= ±

πb

T

∫
∞

0
9(4) 12 d4. (35)
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The following two cases can be considered.

(i) The positive sign in equations (33) and (35) corresponds to the case in which the random
walk is biased towards the front propagation direction (recall that in sections2 and3, we
have computed macroscopic front speeds along thex-direction (θ = 0)). Then, the jump
probability along the front direction(θ = 0) is 8 = a + b. It decreases with increasing
values of|θ |, down to the minimum8 = a − b (which is attained forθ = π ).

(ii) The negative sign in equations (33) and (35) corresponds to the case in which the minimum
probability is attained along the front direction, namely8(θ = 0) = a − b. It increases for
increasing values of|θ |, up to the maximum possible value8(θ = π) = a + b. Note that
the kernel (33) is a probability distribution, so it must be positive for all the values ofθ .
Thus, in case (ii) we have the condition

06 b6
1

2π
. (36)

In both cases (i) and (ii), the dimensionless parameter

β ≡
b

a
= 2πb> 0, (37)

may be called the bias of the random walk. In case (ii), we see from equation (36) that

06 β 6 1. (38)

Note that we may have case (i) at one point of space and case (ii) in another point because
Ux, as defined by equation (6), is space-dependent. This may be interesting to describe systems
with nonhomogeneous rates of front spread. For example, in biological invasions individuals
may have a preference to jump in the front direction at some areas (case (i),Ux > 0), e.g. because
they are attracted by more favourable habitats. But if other regions are difficult to colonize,
the random walk of individuals may be strongly biased against the front invasion direction
(case (ii),Ux < 0) and the front speed will become slower. An application of case (ii) (Ux < 0)
is presented below.

4.2. Application: human invasion of America during the 19th century

The speed of the human population front colonizing North America in the period 1790–1910
can be easily determined, either from detailed population maps [30] or from the centre-of-mass
population trajectory [31]. Both approaches yield essentially the same range for the observed
speed, namely(13.5± 0.8) km yr−1 (95% confidence-level interval) [32]. On the other hand,
mean migration data of individuals are strongly biased in the direction opposite to that of the
front propagation [33]. Therefore, we are dealing with case (ii) in the former subsection.

The parameter values for this application can be estimated as follows. Lotka fitted a
logistic growth function (9) to the population of the USA and obtained for the initial growth
rate a = 0.031 yr−1 [22]. It is worth noting that this estimation agrees almost exactly with
independent estimations for human populations in other places and time intervals [9]. Diffusion
parameters are more difficult to estimate. Sometimes a relatively small sample of migration
distances from genealogies are combined with persistence data from other sources [32],
but demographers have pointed out that genealogy data are not representative of the whole
population [33]. Ferrie has analysed migration distances for the USA in the 19th century [33].
Using his data for regions with more than 500 observations (i.e. a total of 3804 individuals)
yields Dx = 6075 km2 yr−1 using equation (34). Finally, we can estimate the macroscopic bias
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parameterUx using equation (35) and values for〈1〉

T = 24.42 km yr−1 andb (or, equivalently,β),

Ux = −
β

2

〈1〉

T
. (39)

The values ofβ andb can also be estimated from Ferrie’s data cited above4. However, we prefer
to use the anisotropy parameterβ as a free parameter (horizontal axis in figure1) because
Ferrie’s data contain only a few directions, so it does not seem possible to obtain a precise value
for β.5

In figure1 we present the speeds predicted by the first model (equation (13), lower curve)
and the second model (equation (21), upper curve) as a function of the random walk biasβ, see
equation (38). The hyperbolic reaction–diffusion (HRD) speed (14), which was derived in [9]
and corresponds to the non-biased limit (β = 0) of first model, is also shown. It is seen that the
difference of the first model relative to the HRD speed can be substantial, as large as 30%. The
differences of the second model relative to the HRD speed are still more important (up to 55%).

In figure 1, the first model seems compatible with the observed speed for high enough
values ofβ, whereas the second model seems not. In principle, we expected the second model
to be superior to the first model for this application (because it involves a biological population).
But from figure1, it appears that it is not. However, this may be too strong a conclusion in
view of the uncertainty of the values of the parameters. We think that dispersion data in many
directions should be analysed in order to estimate the mobility (Dx) and bias (Ux) parameters
for this human population accurately, as well as their error ranges and their dependence on
position. This would yield a nonhomogeneous framework which, in contrast to that in [32],
would be free of some relatively strong assumptions (e.g. the fractal nature of pathways, the use
of adjustable parameters, etc). Assuming that sufficient data could be found for this purpose,
such a project would certainly require very tedious work and discussions, which we feel more
appropriate for a specialized demography publication. Here, our aim is not to present an in-
depth analysis of the demographic data. Rather, the main point in the present paper is to show
that physical models (arising from biased random walks) can be useful to describe such kind of
biophysical processes. Indeed, they yield quite different speeds than non-biased models (curves
versus horizontal lines in figure 1, respectively). So our new speed formulae can be useful
in several biophysical applications. An especially augurious field is that of microorganisms,
because there the experiments can be replicated and the parameter values are much more
certain [10]. Although we are not yet aware of experimental front speeds of microorganisms
arising from biased random walks, our work provides a theoretical basis that can be useful
when they become available.

4 For the migration data in [33] only the adult subpopulation is considered, well-known 2D diffusion theory can
be applied (without reproduction terms) and we can estimateDx andUx from 〈12

〉/(4T) = 〈r 2
〉/(4t) = Dx (see

equation (34)) and〈1〉/T = 〈r 〉/T =
√

π D/T (see also [25], equation (9.10)).
5 One can try to estimateb from equation (33) with the minus sign and the migration data in [33] into the ENC
region (which has more migration directions than the other regions). Those data are clearly biased, with more
migrations from the West than from the East. However, the results are quite different if we estimateb using the
horizontal directions, than if diagonal directions are used (e.g. the latter approach givesb = 0.113, thusβ = 0.7).
This shows the need for more detailed data, i.e. in many directions, so that a fit can be made to equation (33) in
order to try to estimateb accurately. We are not aware of such detailed data, so it is more reasonable to analyse the
front speed as a function ofβ (figure1) at this stage.
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Figure 1. Predicted speeds for the human invasion of the USA in the 19th
century, as a function of the random walk bias in the migration of individuals.
The speeds shown are that according to the first model, equation (13), and to the
second model, equation (21). The HRD speed (14), which was derived in [9],
and its limitT → 0 (Fisher) are also shown for comparison. The observed speed
range is shown as a hatched rectangle.

At this stage, we think that the most important point is to realize that a bias in the random
walk can have an important effect on the front speed. Note that both in the first model and in
the second one, there is an advection term and a diffusion term. Their relative importance as a
function of distance can be estimated by means of the Peclet number,

Pe=
Ux L

Dx
, (40)

which for the human invasion application in this section becomes of order 1 for distancesL
of the order of 500 km. This is a scale similar to that in which the front speed is measured
[30, 31], which supports our proposal that both advection and diffusion can be important in this
illustrative application.

5. Concluding remarks

We have presented microscopic derivations of reaction–diffusion equations arising from biased
random walks, and formulae for the speeds of their front solutions. Two models have been
presented. Firstly, we have generalized a widely-used approach [1, 9, 10, 24] (the first or non-
sequenced model, section2). Then, we have presented a more realistic model which includes
the effect of the time-order of events (the second or sequenced model, section3). As an
illustration, in section4 we have applied both models to the human population colonization
of North-America in the 19th century, and concluded that the effect of the bias in the random
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walk can substantially change the value of predicted front speed. Although more detailed data
are required for an in-depth analysis of this specific application, it shows that the biased
front models we have presented can be useful for a variety of physical and biophysical
applications dealing with biased fronts, such as particle diffusion in disordered lattices [16],
nucleation of spiral waves [14], human and nonhuman population invasions [7], the spread of
epidemics [34], cultural fronts, etc. For purely physical applications [14, 16] (not involving
biological reproduction), the first model introduced here (section2) is more appropriate. For
biophysical ones [7, 9, 10, 34], the second model (section3) seems more reasonable.
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Appendix. Macroscopic derivation of the first model

In section2.2, we have considered a region centred about thex-axis which is sufficiently small
so that they-dependence ofp(x, y, t) can be neglected. Then equation (2) becomes simply

∂p

∂t
+

T

2

∂2 p

∂t2
= −Ux

∂p

∂x
+ Dx

∂2 p

∂x2
+ F +

T

2

∂F

∂t
. (A.1)

It is easy to see that this equation can also be derived by combining the following set of
phenomenological equations

∂p

∂t
+

∂ J

∂x
= F,

J + τ
∂ J

∂t
= Ux p− Dx

∂2 p

∂x2
,

(A.2)

whereJ is the diffusion flux andτ ≡
T
2 is the relaxation time. The first equation of this set is just

a mass balance equation, whereas the latter one a first-order Taylor expansion for a time-delayed
flux,

J(x, t + τ) = Ux p− Dx
∂2 p

∂x2
. (A.3)

From this equation, we can say that the macroscopic effect arising from a direction-dependent
microscopic motion of the particles is to introduce an additional fluxUx p to the usual diffusion
flux −Dx

∂2 p
∂x2 . In contrast, the effect of a finite jump time (τ 6= 0) is to introduce a delay in the

whole flux J. Equation (A.3) for the non-delayed limitτ = 0 is well-known to arise from biased
random walks [35].

This simple macroscopic derivation of equation (A.1) from the set (A.2) is not enough to
apply the model to experimental data (section4). The reason is that the set (A.2) is written
in terms of the relaxation timeτ and the macroscopic ‘speed’Ux. But the identification of
the relaxation timeτ as half the time interval between successive jumps (i.e.τ = T/2) and
of the macroscopic ‘speed’ asUx = 〈Mx〉/(4T) are absolutely necessary to predict the front
speed (13) for each specific system (section4). These two key results can be derived only by
the microscopic derivation in section2.1—but not from the macroscopic set (A.2).
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A macroscopic derivation of the second model does not seem possible. The reason is that
such physical macroscopic equations do not take the time order of biological reproduction and
dispersal into account. Indeed, this is the main feature of the second model.
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