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Abstract. We introduce a set of sequential integro-difference equations to
analyze the dynamics of two interacting species. Firstly, we derive the speed
of the fronts when a species invades a space previously occupied by a second
species, and check its validity by means of numerical random-walk simulations.
As an example, we consider the Neolithic transition: the predictions of the model
are consistent with the archaeological data for the front speed, provided that the
interaction parameter is low enough. Secondly, an equation for the coexistence
time between the invasive and the invaded populations is obtained for the first
time. It agrees well with the simulations, is consistent with observations of the
Neolithic transition, and makes it possible to estimate the value of the interaction
parameter between the incoming and the indigenous populations.
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1. Introduction

Interaction effects between several species lead to important changes in the dynamics of
physical, chemical and biophysical systems [1, 2]. For example, the Neolithic transition
is an important historical process in which an incoming farming population (Neolithic
humans) invaded an area occupied by an indigenous population of hunter–gatherers (Paleolithic
humans) [2]–[4]. Besides the Neolithic transition in Europe, reaction–dispersion models have
been recently applied to other important processes in human history, such as the postglacial
recolonization of Europe [5], the initial colonization of America [6], and the colonization of
the US in the XIX century [7]. Such reaction–dispersal models are also important in many
other systems of biophysical interest, such as forest range expansions [8], the spread of virus
infections [9], tumor growth [10], etc.

In this paper, we consider some well-known reaction–dispersal models for interacting
species (section2.1) and modify them in order to take into account that in the case of human
populations, children need to spend some time with their parents until they can survive on
their own (section2.2). We derive the corresponding speed of the invasion front analytically
(section 3) and test the result using random-walk numerical simulations (section4). The
predicted front speed is consistent with that implied by archaeological observations of the
Neolithic transition in Europe. Finally, we derive what we believe is the first analytical
equation for the coexistence time between an invasive and an invaded population driven to
extinction (section5). It makes it possible to estimate the interaction parameter between the two
populations (this parameter, in turn, has an effect on the front speed). The invading Neolithic and
the indigenous Paleolithic peoples interact, and the latter become extinct. The coexistence time
between the two can be measured from archeological data [11], so this gives a way to estimate
the interaction parameter from observations (independent of the front speed). Moreover, the
interaction parameter is known to play an important role in the geographical distribution of
genes [11], so it is indeed important to estimate it from measurable data. This is now possible
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via the equation for the coexistence time, which is derived and tested via numerical simulations
in section5. As in previous work [4, 12, 13], we shall here consider a two-dimensional (2D)
space, so that we can apply our results to population range expansions on the Earth’s surface.

2. Evolution equations

The models in this section may be called continuous-space random walks (CSRW), because they
describe population density dynamics arising from random walks of individuals moving on a
continuous surface. In contrast, numerical simulations (section4) can only compute population
densities on a finite number of points, so they necessarily simulate population dynamics on
discrete surfaces (or spaces).

2.1. Non-sequential models

Let pN(Er , t) stand for the population number density of the Neolithic population, per unit area
centered at positionEr ≡ (x, y) and timet . The dispersal kernelφN( E1) is the probability per unit
area that an individual who was at(Er + E1, t) ≡ (x +1x, y +1y, t) jumps to(Er , t + T). Here,T
is the time interval between two subsequent jumps (according to anthropological data,T = 1
generation'32 years [13]1). Let RN[ pN(x, y, t)] stand for the new individuals born (due to
biological reproduction) during the time intervalT (per unit area centered atEr ). The evolution
equation is typically written down as follows [4]:

pN(Er , t + T) − pN(Er , t) = TN

[
pN

(
Er + E1, t

)
φN

(
E1
)]

− pN(Er , t) + RN

[
pN(Er , t)

]
, (1)

where the population transport (or dispersal) operator is defined as

TN

[
pN

(
Er + E1, t

)
φN( E1)

]
≡

∫ +∞

−∞

∫ +∞

−∞

pN(x +1x, y +1y, t)φN(1x, 1y) d1x d1y.

The first- and second-terms in the right-hand side (rhs) of equation (1) correspond the incoming
minus outgoing individuals, and the last termRN[ pN(Er , t)] to net reproduction (births minus
deaths per generation).

If there is a second species with number densitypP(Er , t) (e.g. Paleolithic humans), an
interaction term±I [ pN(Er , t), pP(Er , t)] is added to the previous equation,

pN(Er , t + T) − pN(Er , t) = TN

[
pN

(
Er + E1, t

)
φN

(
E1
)]

−pN(Er , t) + RN

[
pN(Er , t)

]
± I

[
pN(Er , t), pP(Er , t)

]
(2)

and an analogous equation is written for the second species,

pP(Er , t + T) − pP(Er , t) = TP

[
pP

(
Er + E1, t

)
φP

(
E1
)]

−pP(Er , t) + RP

[
pP(Er , t)

]
− I

[
pN(Er , t), pP(Er , t)

]
, (3)

1 For the estimationT = 32 yr of the generation time, see note 24 in [13].
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where

TP

[
pP

(
Er + E1, t

)
φP( E1)

]
≡

∫ +∞

−∞

∫ +∞

−∞

pP(x +1x, y +1y, t)φP(1x, 1y) d1x d1y.

Two situations can be considered: (i) the so-called competition case corresponds to the
negative sign in equation (2), so that the interaction leads to a decrease in the number densities
of both species. (ii) The so-called predator–prey case corresponds to the positive sign in
equation (2), so that the interaction leads to an increase in the number density of species N
and a decrease in the species P. We shall consider the latter case in the present paper, because in
the Neolithic transition the interaction between the two populations (invading Neolithic farmers
N and indigenous Paleolithic hunter–gatherers P) leads to an increase in the number density
of N and a decrease of P. This may be due to a variety of possible causes (e.g. acculturation,
interbreeding, etc [2]) but the important point is that observations of hunter–gatherers interacting
with farmers always show an increase of farmers (N) (together, of course, with the same
decrease of hunter–gatherers (P)) [2, 14]. Thus, the positive sign in equation (2) is appropriate
for our case.

As in [15], we shall assume reproduction proportional to the population density, but
bounded by a maximum valuepmaxi (due to the environmental limitations),

Ri

[
pi (Er , t)

]
=

{
(R0i − 1) pi (Er , t), if pi < pmaxi ,

0, if pi > pmaxi ,
(4)

where R0i is called the net reproductive rate (or fecundity) per generation of the population
i (i = N and P), andpmaxi is its saturation density [15]. As usual, we assumeR0i > 1 (otherwise
the speciesi would become extinct) [16]. Let us mention that a logistic form forRi [ pi (Er , t)]
is not appropriate for finite-difference models, because it yields negative population densities
(see [17] for non-spatial models, and [15] for spatial models and a comparison of possible forms
for Ri [ pi (Er , t)]).

We may note that, by Taylor expanding up to second order in space, assuming an isotropic

kernel (i.e. thatφ(Mx,My) depends only on1 =

√
12

x +12
y), the former two equations become

(for pi < pmaxi )

pN(Er , t + T) = DN

(
∂2 pN

∂x2
+

∂2 pN

∂y2

)
+ R0N pN(Er , t) + I

[
pN(Er , t), pP(Er , t)

]
, (5)

pP(Er , t + T) = DP

(
∂2 pP

∂x2
+

∂2 pP

∂y2

)
+ R0P pP(Er , t) − I

[
pN(Er , t), pP(Er , t)

]
, (6)

where we have introduced the diffusion coefficients of the two species

Di =
1

4T

∫ +∞

−∞

∫ +∞

−∞

φi (1) 12 d1x d1y ≡
〈12

〉i

4T
. (7)

Let us mention that one can also perform Taylor expansions in time and obtain space-
dependent Lotka–Volterra equations up to first order [17], hyperbolic equations up to second
order [18], etc.
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As usual [1, 17, 18], we assume that the interaction term is proportional to both population
number densities (so that the interaction vanishes if one population (or both) is absent), but
bounded so as to avoid negative values ofpP(Er , t + T) in equation (6),

I
[
pN(Er , t), pP(Er , t)

]
=


0pN(Er , t)pP(Er , t), if pN <

R0P

0
,

0, if pN >
R0P

0
.

(8)

The second line is included to avoid negative population densities, which have no physical
meaning (it is thus similar to the second line in equation (4), which is included to avoid
population densities above saturation, because they have no biological meaning). Nonlinear
terms could be added to the first line in equation (8), but the parameter values would be very
difficult (or even impossible) to estimate from the data available (and the speed of fronts would
be the same). Thus, we finally arrive at the evolution equations (forpi < pmaxi and pN < R0P

0
)

pN(Er , t + T) = TN

[
pN

(
Er + E1, t

)
φN

(
E1
)]

+ (R0N − 1) pN(Er , t) +0pN(Er , t)pP(Er , t), (9)

pP(Er , t + T) = TP

[
pP

(
Er + E1, t

)
φP

(
E1
)]

+ (R0P− 1) pP(Er , t) − 0pN(Er , t)pP(Er , t). (10)

According to anthropological data, the generation times of pre-industrial farmers and hunter–
gatherers are almost the same [5]. Therefore, we use a single parameterT for both populations
because we expect that substantially more complicated models and simulations would lead to
essentially the same results.

2.2. Sequential model

Models arising from equations, such as (9) and (10) have been widely considered in the
literature [17]. They are very useful for non-living systems, e.g. molecules of several chemical
species. They are also appropriate to some biological species. But, recently it has been noted
that equations of this form have an important limitation if applied to human populations [7, 15].
It is thus very important to explain clearly this crucial point here. For humans, it is more realistic
to replace the set of equations (9) and (10) by the following one:

pN(Er , t + T) = TN

[
pN

(
Er + E1, t

)
φN

(
E1
)]

+ (R0N − 1) TN

[
pN

(
Er + E1, t

)
φN

(
E1
)]

+0

∫ +∞

−∞

∫ +∞

−∞

pN(Er + E1, t)pP(Er + E1, t)φN( E1) d1x d1y, (11)

pP(Er , t + T) = TP

[
pP

(
Er + E1, t

)
φP

(
E1
)]

+ (R0P− 1) TP

[
pP

(
Er + E1, t

)
φP

(
E1
)]

− 0

∫ +∞

−∞

∫ +∞

−∞

pN(Er + E1, t)pP(Er + E1, t)φP( E1) d1x d1y. (12)

In order to see, why equations (11) and (12) are more appropriate for humans than
equations (9) and (10), we represent the model given by equations (9) and (10) in figure1(a) and
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(a)       (b) 

t 

t + T 

t 

t + T t + T 
),( yx

),( yx yx ∆+∆+

),( yx

),( yx

( , )x yx y− ∆ − ∆

Figure 1. A filled circle represents a couple of parents (a father and a mother)
and each empty circle stands for one of their sons or daughters. Reproduction
is represented by the dashed arrow, migration by the continuous arrow. (a) Non-
sequential model (section2.1) and (b) Sequential model (section2.2). This one
is more appropriate for humans than model (a), because in model (a) parents
migrate away from their children.

that given by equations (11) and (12) in figure1(b). The first term in the rhs of equations (9) and
(10) is the same as in equations (11) and (12). It corresponds to population dispersal or migration
(continuous arrows in figure1). However, the second term in the rhs (population reproduction)
is different. According to this term in equations (9) and (10), children are born atEr ≡ (x, y)

(dashed arrow in figure1(a)), so parents leave their newborn children alone (figure1(a)). This
may be realistic for some biological species (e.g. fish), but not for humans. In contrast, the
second term in the rhs of equations (11) and (12) is an integral term, so in this model migrating
parents live with their newborn children at their final location (figure1(b)). This is realistic for
humans2. Therefore, as in [7, 15], we shall consider the model given by equations (11) and (12)
(however, in [7, 15] a single population was considered, so equation (12) was not applied and
the last term in equation (11) was absent).

Concerning the last term in equations (11) and (12), it leads to an increase in the
population density of species N and a decrease in that of P due to their interaction (so we may
represent this process as N + P→ N). As mentioned in the previous subsection, this interaction
process N + P→ N may be due to a variety of causes, such as interbreeding(N + P→ N) or
acculturation(N + P→ N + N → N). But in both cases, we think it is again more appropriate to
use an integral over the dispersal kernel (just as in the second term in the rhs). The reason
is that if we used the last terms in equations (9) and (10), then the final result (newborn
N-individuals) would appear in the same location as that occupied a generation earlier by their
parents (dashed arrow in figure1(a)) and the latter would have migrated away from that location
(continuous arrow in figure1(a), i.e. first term in the rhs of equations (9) and (10)). In contrast,
for the last terms in equations (11) and (12) parents do not migrate away from their newborn
children (figure1(b)).

2 It may seem at first sight that the second term in the rhs of equations (11) and (12), namely(R0N − 1)(R0i − 1)∫ +∞

−∞

∫ +∞

−∞
pi (x+Mx, y+My, t)φi (Mx,My) dMx d1y, implies that children are born at the arrival location of their

parents’ migration. In fact, the same term holds if they are born at the initial location, namely
∫ +∞

−∞

∫ +∞

−∞
[(R0i − 1)

pi (x+Mx, y+My, t)]φi (Mx,My) dMx dMy. The important point is that for these equations, parents do not migrate
away from their children (see figure1).
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Theorems on the speed of front solutions for the first equation (11) without interaction
(pP(Er , t) = 0) have been derived previously [16], and the predicted speed has been compared
to random-walk simulations on lattices [15] but again, only for the single-species case. In the
next section, we tackle the general case of two species interacting with each other (i.e. we shall
consider both equations (11) and (12) with pP(Er , t) 6= 0).

3. Front speeds from CSRW

3.1. Integro-difference model

According to equations (11) and (12), our sequential model is finally given (forpi < pmaxi and
pN < R0P

0
) by

pN(Er , t + T) = R0N

∫ +∞

−∞

∫ +∞

−∞

[
1 +γ pP(Er + E1, t)

]
pN(Er + E1, t)φN( E1) d1x d1y, (13)

pP(Er , t + T) = R0P

∫ +∞

−∞

∫ +∞

−∞

[
1−

γ R0N

R0P
pN(Er + E1, t)

]
pP(Er + E1, t)φP( E1) d1x d1y, (14)

where

γ ≡
0

R0N
. (15)

As in [18], we assume that the invasion front of species N spreads in a region where the
density of the indigenous species P is initially equal to its maximum possible value,pmax P.
This is appropriate for the Neolithic transition (i.e. the invasion of Neolithic farmers N into a
space populated by indigenous Paleolithic hunter–gatherers P). Thus, in the leading edge of the
invasion front we may write

pN(Er , t) ' ε(Er , t) + O(2),
(16)

pP(Er , t) ' pmax P− δ(Er , t) + O(2),

whereO(2) stands for second- and higher-order terms,

ε(Er , t) � pmax N (17)

and

δ(Er , t) � pmax P. (18)

Therefore, up to first order we have for the interaction term

γ pN(Er , t)pP(Er , t) ' γ pN(Er , t)pmax P+ O(2). (19)

Such an approach was already applied in [18] to a different set of evolution equations. It is
useful here because it reduces equation (13) to an evolution equation in which only the variable
pN(Er , t) ≡ pN(x, y, t) appears,

pN(x, y, t + T) ' R0N(1 +γ pmax P)

∫ +∞

−∞

∫ +∞

−∞

pN(x +1x, y +1y, t)φN(1x, 1y) d1x d1y. (20)

In the next section, we will check the validity of this approximation by means of numerical
simulations of the two-species system (13) and (14).
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The front speed of the invading species (farmers in the case of the Neolithic transition)
can be found most easily by assuming that fort → ∞ the front curvature is negligible (at
scales much larger than that in which the front speed is measured), so that we can choose
the x-axis parallel to the local velocity of the front [1]. Let c ≡ |cx| stand for the front speed
(cy = 0 in the local frame just introduced). We look for constant-shape solutions with the form
pN = p0exp[−λ(x − ct)] as x − ct → ∞. Assuming an isotropic kernelφ(M), we obtain from
equation (20)

exp[cTλ] = R0N(1 +γ pmax P)

∫
∞

0
d1 1φN(1)

∫ 2π

0
dθ exp[−λ1 cosθ ] , (21)

whereθ ≡ tan−1 1y

1x
. In order to perform the integrals, we need an expression for the kernel

φ(M). There are many possible choices of the kernel. Here, we are interested in the simplest
possible kernel such that we can derive analytical formulae, so we simply assume that an
individual will either remain at rest (with probabilitype, which is called the persistence in
demography) or will move a distancer (with probability 1− pe),

φN(1) = φP(1) = peδ
(2)(1) + (1− pe)δ

(2)(1 − r ) = pe
δ(1)(1)

2π1
+ (1− pe)

δ(1)(1 − r )

2π1
, (22)

whereδ(2)(1 − r ) andδ(1)(1 − r ) are the 2D and 1D Dirac deltas centered at1 = r . In fact,
there are some differences between the observed dispersal kernels of pre-industrial farmers
(φN(M)) and hunter–gatherers (φP(M)), but these differences are small [5]. This may be
surprising at first sight, given the fact that hunter–gatherers typically change their location
many times during their lifetime [19, 20]. However, pre-industrial agriculturalists also have
a high mobility because they practice slash-and-burn agriculture, using the land in a cyclic way
and changing their location very often [21]. Indeed, typical dispersal distances observed for
hunter–gatherers [22] are similar to those observed for pre-industrial farmers [5]. Therefore, we
assume simplyφN(M) ' φP(M) in equation (22). This will avoid substantially more complicated
simulations and analysis (which we do not expect to change the results appreciably).

After integrating equation (21), we assume as usual that the minimum speed is the one
of the front [1] (in the next section, we will check this assumption by means of numerical
simulations of the two-species system (13) and (14)). In this way, we obtain the front speed

c = min
λ>0

ln
[
R0N (1 +γ pmax P)(pe + (1− pe)I0(λr ))

]
Tλ

, (23)

where

I0(λr ) ≡
1

2π

∫ 2π

0
dθ exp[λr cosθ ] (24)

is the modified Bessel function of the first kind and order zero. For the case in which a single
species invades the habitat without interaction (γ = 0, or pmax P= 0), we recover the single-
species result discussed in the previous work [15].

In figure 2, we show the speed predicted by the CSRW (full line), equation (23), for
parameter values appropriate for the Neolithic transition, as follows. The generation time is
T = 1 generation= 32 yr [13]. The population number datasets for pre-industrial farmers that
settled in previously unpopulated areas were collected by Birdsell [23], and the implied range
for R0N is 1.6–3.0 [15]. For the population persistencepe (fraction of the population that does
not move appreciably), we use the mean valuepe = 0.38 [15], which was estimated from the
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Figure 2. Predicted speeds as a function of the interaction parameterγ between
the invading species N (farmers) and the indigenous species P (hunter–gatherers).
They are seen to be consistent with the observed speed of the Neolithic transition
in Europe, namely 0.66 c6 1.3 km yr−1 [24]. We have usedT = 32 yr,
R0P = 1.8 gen−1, pe = 0.38, pmax P= 0.064 km−2 and pmax N = 1.28 km−2 (see
sections3.1and4.1).

mobility data in [21]. The value ofr is estimated directly from those of the persistence and the
mean-squared displacement3. For the maximum population density of hunter–gatherers, we use
the same value as that applied by Currat and Excofier [11] in their genetic simulations of the
Neolithic transition, namelypmax P= 0.064 hunter–gatherers km−2.

In figure 2, the front speed predicted by the CSRW (full line), equation (23), is seen to
increase with increasing values of the interaction parameterγ , as was expected intuitively
because the higher its value, the more hunter–gatherers become farmers per generation (see,
e.g. equation (20)).

3.2. Sequential reaction-diffusion (SRD) approximation

Equation (23) is not easy to apply in practice because it requires plotting a function and/or
finding its minimum numerically for each set of parameter values. Therefore, here we derive a
simpler approximation. The result will be also used to estimate the coexistence time (section5).
We approximate an equation (20) by using Taylor expansions in space and time up to second

3 We have computed the value ofr such that the mean-squared displacement yields the observed value (namely
1544 km2 [4]), i.e. (1− pe)r 2

= 〈12
〉 = 1544 km2. Using the mean valuepe = 0.38 (section3.1), this yields

r ' 50 km.
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order (assuming again an isotropic kernel),

pN + T
∂pN

∂t
+

T2

2

∂2 pN

∂t2
' R0N(1 +γ pmax P)pN + R0N(1 +γ pmax P)DT

(
∂2 pN

∂x2
+

∂2 pN

∂y2

)
, (25)

whereD is given by equation (7). The speed of this SRD equation may be derived, again, by
assuming solutions with the form

p ' p0 exp[−λ(x − ct)] (26)

with λ > 0. This yields

λ =

(
T c+

[
(T c)2

− 4(R0N(1 +γ pmax P) − 1)

(
R0N(1 +γ pmax P)DT −

T2c2

2

)]1/2
)

÷
(
2R0N(1 +γ pmax P)DT − T2c2

)
. (27)

Requiringλ to be real and assuming that the minimum speed is that of the front [1] we
obtain the speed

cSRD =

√√√√√ 2R0N(1 +γ pmax P)D

T

(
1 +

1

2(R0N(1 +γ pmax P) − 1)

) . (28)

In figure 2, we have also included this speed (dotted curves). It is seen to be a useful
approximation, and it is much simpler to use than the exact result (23). Let us stress that we
shall also use the approximate result (28) to estimate the coexistence time (section5).

4. Random walks on lattices

4.1. Numerical simulations

In order to check the results of the previous section using numerical simulations, we consider
a 2D lattice with 1000× 1000 nodes. Initially, the invading population (N) is restricted to the
central node of the grid (wherepN(x, y, 0) = pmax N) and pN(x, y, 0) = 0 elsewhere. For the
indigenous population (P), initiallypP(x, y, 0) = pmax P everywhere except at the central node
(which is occupied by the N-population, thuspP(x, y, 0) = 0 at the central node).

At each time step (corresponding toT = 1 generation), we compute the new population
number densitiespN(x, y, t + T) and pP(x, y, t + T) at all nodes of the 2D lattice as follows:

(i) Firstly, according to the factor [1 +γ pP(x+Mx, y+My, t)] in equation (13), at every node
(x, y) we add to the N-population density the termγ pN(x, y, t)pP(x, y, t). And according to
the factor [1− γ R0N

R0P
pN(x +1x, y +1y, t)] in equation (14), we subtract from the P-population

the termγ R0N

R0P
pN(x, y, t)pP(x, y, t), unless a negative value forpP is obtained. In the latter case,

we setpP = 0 (see the secondly line in equation (8); this corresponds to the local extinction of
the invaded population).

(ii) Secondly, the dispersion of the population densities obtained in step (i) are performed
using the kernel (22). Thus, a fractionpe of each population (N and P) stays at the original node,
and the remaining fraction is distributed equally among the nearest neighbors, i.e. a fraction
(1− pe)/4 jumps a distance±r along each horizontal or vertical direction. In the analytical
model, this corresponds to the integrations in equations (13) and (14).
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(iii) Finally, we compute the new N-population density due to reproduction at every node
by multiplying pN(x, y, t) (obtained from step (ii)) by the factorR0N (see, equation (13)),
unless a valuepN > pmax N is obtained; in such a case we setpN = pmax N (to avoid biologically
unrealistic population densities over the saturation value implied by the environment, see the
second line in equation (4)). Analogously, the new P-population density is computed asR0P

times the value ofpP(x, y, t) from step (ii) (unless a valuepP > pmax P is obtained; in such a
case we again setpP = pmax P).

For the net reproductive rate of hunter–gatherers, we use the characteristic valueR0P =

1.8.4 Saturation population densities for pre-industrial farmers and hunter–gatherers have been
measured for several populations. In figure2, we use the same values as those applied by
Currat and Excofier [11] in their genetic simulations of the Neolithic transition, namelypmax N =

1.28 farmers km−2 and pmax P= 0.064 hunter–gatherers km−2.

We repeat this 3-step cycle many times, until we observe that the front speed is constant
(this happens before 500 cycles or generations).

Along the horizontal/vertical directions of the lattice, the speed obtained from the
simulations (circles in figure2) is faster than that measured along the diagonal directions (±45◦

relative to the horizontal axis) (squares). This is simply due to the fact that in our simulations,
there are only jumps along the horizontal/vertical directions (otherwise the computer time
would be much longer), so after two jumps the maximum distance moved in the diagonal
direction (r

√
2) is lower than that in the horizontal/vertical direction (2r ). The average of

both speeds from the simulatons (triangles in figure2) agrees with the CSRW (full curves).
Of course, we could try to attain better agreement by computing the simulated speeds along
many other directions, but such additional tedious computations seem unnecessary because the
validity of the analytical result is clear from figure2 (full curves versus triangles). The small
differences are not unexpected after all, because on a continuous surface jumps take place into
all infinite points of a circle (CSRW model) but in simulations they necessarily take place into
the nodes of a square (i.e. on a discrete surface). This also explains the asymptotic behavior of
the diagonal simulations (squares) forR0N = 3.0 in figure2.5 We also check these simulation
results analytically in the next subsection.

4.2. Upper and lower bounds on the CSRW speed

4.2.1. Upper bounds (horizontal/vertical direction). For a lattice in 2D space and the kernel
(22), individuals can jump into point(x, y) from points(x ± r, y) and(x, y ± r ). Therefore, in
discrete space equation (20) is replaced by

pN(x, y, t + T) = R0N(1 +γ pmax P) {pepN(x, y, t) + (1− pe)

×
[

1
4 p(x − r, y, t) + 1

4 p(x + r, y, t) + 1
4 p(x, y − r, t) + 1

4 p(x, y + r, t)
]}

. (29)

4 R0P = exp[aPT ] (see note (26) in [15]) and we use the mean valueaP = 0.022 yr−1 from [5].
5 The fastest possible front speed along the horizontal or vertical directions of the square lattice will obviously
be r/T (recall thatr is the distance between the two nearest nodes, andT the time between the two successive
jumps). This limit should be obtained for sufficiently high values ofR0N, so that the front propagation becomes
diffusion-limited. Similarly, the fastest possible front speed along the diagonal directions of the square lattice will
obviously ber

√
2/(2T) ' 50 km/(

√
2 32 yr) = 1.1 km yr−1, which agrees with the assymptotic behavior of the

diagonal results (squares and + crosses) observed in figure2 for R0N = 3.0.
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As in section2, we look for solutions with the formp = p0exp[−λ(x − ct)] and assume that
the minimum speed is the one of the front [1]. In this way, we obtain the speed

c = min
λ>0

ln
[
R0N(1 +γ pmax P) (pe + (1− pe2)/ [cosh(λr ) + 1])

]
λT

. (30)

This equation has no analytical solution. However, for given values ofR0, pe, r, T andγ it
is easy to find its minimum numerically. In this way, we obtain the crosses (×) in figure2. They
agree perfectly with the horizontal/vertical-direction random-walk simulations, performed in
the previous section (circles in figure2).

4.2.2. Lower bounds (diagonal direction).Now, we chooseX′ andY′ forming 45◦ with the
X- and Y-axes. Then, individuals jump into point(x′, y′) from points(x′

±
r

√
2
, y′

±
r

√
2
) so,

instead of equation (29) we have

pN(x′, y′, t + T) = R0N(1 +γ pmax P)

{
pepN(x′, y′, t) + (1− pe)

×

[
1

4
pN

(
x′ +

r
√

2
, y′ +

r
√

2
, t

)
+

1

4
pN

(
x′ +

r
√

2
, y′

−
r

√
2
, t

)
+

1

4
pN

(
x′

−
r

√
2
, y′ +

r
√

2
, t

)
+

1

4
pN

(
x′

−
r

√
2
, y′

−
r

√
2
, t

)]}
, (31)

which leads us, in the same way, to the speed

c = min
λ>0

ln
[
R0N(1 +γ pmax P)

(
pe + (1− pe) cosh

(
λ r

√
2

))]
λT

, (32)

instead of (30). This speed is shown as crosses (+) in figure2. It agrees perfectly with the
diagonal-direction simulations (squares in figure2).

The agreement between the discrete-space analytical model (equations (30) and (32))
and the simulations (figure2) confirms the validity of the lattice simulations in the previous
subsection, and of equations (30) and (32) as upper and lower bounds on the exact (CSRW)
speed.

Both the analytical results and the simulations (figure2) are seen to be consistent with
the observed speed of the Neolithic transition in Europe, namely 0.66 c6 1.3 km yr−1 [24],
provided that the interaction parameterγ is low enough, e.g.γ < 5 km2 for R0N = 3.0. Such
a high value forR0N is usually regarded as the highest possible net reproduction rate for pre-
industrial agriculturalists, and it is considered reasonable for the Neolithic range expansions6.
In principle, however, lower values could apply to regions less favorable for agriculture (e.g.
R0N = 1.6, which is the lowest value consistent with the population number series in [23], so
we also include it in figure2).

Finally, we stress that we have considered the so-called predator–prey case (positive sign
in equation (2)) because we are here interested in the Neolithic transition, but the same methods
above could be applied to the so-called competition case (negative sign in equation (2)) to derive
the front speed. The competition case is relevant in many biological invasions, because in many

6 Using the relationshipaN = (ln R0N)/T (see note (26) in [15]) yields the estimationsaN = 0.034 yr−1 for
R0N = 3.0 andaN = 0.015 yr−1 for R0N = 1.6. This includes the range estimated from fits to differential-equation
models in [4, 24], namely 0.0296 aN 6 0.035 yr−1 or 2.536 R0N6 3.06.
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cases the invading population does not experience an increase in numbers due to its interaction
with the indigenous population (e.g. for the gray and red squirrels in Britain [25]–[27]).

5. The coexistence time

The value of the parameterγ determines the strength of the interaction between the two
species (or populations, in the case of the Neolithic transition). This parameter is important
to predict the range expansion speed (figure2). It is also of crucial importance in models
of the geographic distribution of genes after a range expansion [11]. This can be understood
intuitively as follows. For the limiting case of complete replacement without interaction (γ = 0)
the genetic composition of the final population will obviously be Neolithic, not a mixture of
both (Neolithic and Paleolithic) original gene pools. For higher interbreeding rates between
the incoming (N) and pre-existing (P) populations (higher the value ofγ ), the local genetic
composition of the population will vary more rapidly in space (near the origin of the population
range expansion). Therefore, the value ofγ affects the population genetics in addition to the
front speed (figure2). For both reasons, it is indeed interesting to find a way to estimate the
value ofγ from observations other than the front speed.

Intuitively, it is reasonable to expect that the coexistence time, i.e. that elapsed between the
arrival of the invading population (N) and the extinction of the indigenous one (P), should be
a way to determine the interaction parameterγ (and thus0) from observations. Indeed, for a
stronger interaction (higher value ofγ ) the invading population (N) should reach its saturation
value sooner, the indigenous one (P) should disappear more rapidly, and the coexistence time
should be lower. Therefore, we expect the coexistence time to decrease with increasing values
of the interaction parameterγ .

Although there are many papers on invasion front speeds, we are not aware of any equation
for the coexistence time in the literature. To derive such an equation, we begin noting that
the time rate of change of the invading population density at(x, y, t) can be estimated using
equation (29) as
pN(x, y, t + T) − pN(x, y, t)

T
=

R0N

T
(1 +γ pmax P)

{
pepN(x, y, t) +

1− pe

4
[ p(x − r, y, t)

+p(x + r, y, t) + p(x, y − r, t) + p(x, y + r, t)]
}

−
pN(x, y, t)

T
. (33)

For pN ' pmax N/2, we havepN(x − r, y, t) ' pmaxN (see figure3(a))7. On the other hand, as
in section3 we assume that fort → ∞ the front curvature is negligible so that we can choose
the x-axis parallel to the local front speed and, in this frame,pN depends only onx but not
on y [1]. Therefore,p(x, y − r, t) ' p(x, y + r, t) ' p(x, y, t) ' pmax N/2 and we obtain from
equation (33)

s ≡
pN(x, y, t + T) − pmax N/2

T
'

R0N

T
(1 +γ pmax P)pmax N

×

(
pe

2
+

1− pe

4

[
2 +

p(x + r, y, t)

pmax N

])
−

pmax N

2T
. (34)

7 Similarly, one could be tempted to approximatep(x + r, y, t) ' 0, but from figure3(a) we note that this would be
a rather strong approximation. In fact, instead of equation (41), it yields tc ' max{4T, 4T/(R0N(1 +γ pmax P) − 1)},
and this equation has a mean error of about 11% (relative to the simulations). So in the main text we derive a more
accurate equation, without making this approximation.
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Figure 3. (a) Front profiles fort = 499, 500, . . . , 507 generations (from left to
right). The full squares and line connecting them correspond to a front with a
node such thatpN(x, y, t) ' pmax N/2 (arrow), for which it is seen thatpN(x −

r, y, t) ' pmax N but pN(x + r, y, t) 6= 0. This is used to derive an equation (34).
(b) Plot of the invading population density as a function of time at a given space
point. The slope is estimated at the same space-time point as in (a) (arrow) and
its corresponding straight line (dotted) implies a characteristic time of about
507.5− 504.5 = 3 generations. On the other hand, a reasonable estimation of the
time needed by the population to saturate is about 508− 502= 6 generations, i.e.
about twice that implied by the slope. We have checked that the same happens
for other parameter values. This yields equation (36). In these figuresR0N = 1.6,
γ = 0.1 km2, and the rest of the parameter values are as in figure2.
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This gives the slope of the plot ofpN versus time at a given space point(x, y) for values of
t such thatpN ' pmax N/2 (see figure3(b)). However, equation (34) will break down if the
value of pN(x, y, t + T) implied by equation (33) is above saturation density, i.e.pN(x, y, t +
T) > pmax N, because this is biologically impossible. Indeed, as shown by the second line in
equation (4), reproduction stops atpmax N, so in such an instancepN(x, y, t + T) = pmax N and
the slope atpN = pmax N/2 obviously reaches its maximum possible value, namelys = (pmax N−

pmax N/2)/T = pmax N/(2T). Below we check this via numerical simulations. Therefore, in
general equation (34) should be replaced by

s = min

{
pmax N/2T,

R0N

T
(1 +γ pmax P) pmax N

(
pe

2
+

1− pe

4

[
2 +

p(x + r, y, t)

pmax N

])
−

pmax N

2T

}
.

(35)

In order to derive an analytical result for the coexistence time, we estimate it as the time
elapsed since the arrival of the invasive population (N) until it reaches its maximum value
(pmaxN). From figure3(b) and its caption, we see that a reasonable estimate of the coexistence
time is given by

tc ' 2tcslope= 2
pmax N

s
, (36)

where tc slope is the time estimated from the slope (see the dotted line in figure3(b) and its
caption; for that exampletc slope' 3 generations andtc ' 6 generations). Then, we may apply
equation (35) and obtain

tc ' max

{
4T, 2T

/[
R0N(1 +γ pmax P)

(
pe

2
+

1− pe

4

[
2 +

p(x + r, y, t)

pmax N

])
−

1

2

]}
, (37)

but in order to obtain an equation fortc in terms only of parameters appearing in the evolution
equations, we still need a value forpN(x + r, y, t). An explicit estimation can be obtained by
resorting to the SRD approximation, equations (26)–(28). Neglecting second-order terms for
simplicity, it yields

pmax N

2
= pN(x, y, t) ' p0 exp[−λ(x − ct)] (38)

and

pN(x + r, y, t) ' p0 exp[−λ(x + r − ct)] , (39)

with λ '

√
R0N−1
R0NDT . Therefore,

pN(x + r, y, t) '
pmax N

2
exp

[
−r

√
R0N − 1

R0NDT

]
. (40)

Inserting this in equation (37), we finally obtain an equation for the coexistence time in terms
only of the parameters appearing in the evolution equations, namely

tc ' max

{
4T, 4T

/[
R0N(1 +γ pmax P)

(
1 +

1− pe

4
exp

[
−r

√
R0N − 1

R0NDT

])
− 1

]}
. (41)

In figure 4, we compare this equation to the values for the coexistence time obtained from
the numerical simulations. The latter have been obtained by estimating the slope atpmax N/2
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Figure 4. Comparison between the coexistence time predicted by equation (41)
and observed in the simulations (circles). We have usedR0N = 1.6, and the
remaining parameter values are the same as in figure2.

from plots, such as figure3(b) and using equation (36). There is good agreement between the
analytical and the simulation results. This makes it possible to estimate the parameterγ if the
coexistence time is known. In the Neolithic transition in Europe, according to archaeological
observations, typical coexistence times are in the range 150–200 years [11], i.e. 4.7–6.3
generations, which is consistent with figure4. In this figure, we plot the coexistence time as
a function of the hunter–gatherer (i.e. Paleolithic) population densitypmax P, which is known
to vary geographically depending on the availability of nutritional resources [2]. For example,
for the valuepmax P= 0.3 km−2 figure4 implies that a coexistence time of about 6 generations
corresponds toγ = 0.1 km2 and a coexistence time of about 4 generations corresponds to
γ = 0.7 km2. Interestingly, archaeological data imply different typical coexistence times in
different regions [11], so our new analytical result (41) makes a non-uniform estimation of
the value ofγ possible from observations of the coexistence time. We would like to stress,
however, that the result (41) is not limited to the Neolithic transition. It can be applied to all
systems described by the predator–prey set of evolution equations (13) and (14).

6. Concluding remarks

Dispersal kernels have been applied to generalize reaction–diffusion equations in a variety of
interesting situations. Besides the seminal results due to Weinberger, which were motivated
by population genetics [16], dispersal kernels have been used in models of epidemic
spread [28]–[30], biological invasions [31, 32], periodic wave trains in predator–prey
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systems [33], accelerated invasions due to fat-tailed kernels [34], invasions constrained by
interspecific competition [35], rapid plant migration [8], stage-structured populations [36, 37],
invasions in 2D space [38, 39], etc. Here, we have presented an integro–difference model
for interacting human populations which is more realistic than models based on differential
equations [17, 18, 27], and used it: (i) to explain the speed of the Neolithic transition in Europe
(figure2); (ii) to derive an analytical equation for the coexistence time, equation (41), which is
the first one to the best of our knowledge.

For stronger interactions between invading and invaded populations (higher value of0 and
thusγ ), the invasion front spreads faster (equation (23) and figure2), the coexistence time is
shorter (equation (41) and figure4), and the genetic cline will be steeper (section5).

An interesting question that has not been analyzed previously in the literature is to what
extent the observations available make it possible to determine some plausible range for the
interaction parameterγ. This will in general depend on the geographical region. For example,
a region where agriculture is very productive will likely correspond to a high value for the net
reproductive rate of the farming (Neolithic) populations, e.g.R0N = 3.0. Then figure2 implies
that γ < 5 km2 for the speed to fall into the observed range, 0.66 c6 1.3 km yr−1 [24] (see
section4 for a detailed discussion). In regions less suitable for agriculture, the value ofR0N will
be lower. Then, the observed front speed (0.66 c6 1.3 km yr−1) allows for a wider-range ofγ
(see figure2 for R0N = 1.6) but observations of the coexistence timetc can be used to estimate
the value ofγ. For example, forpmax P= 0.3 km−2 figure 4 implies that a coexistence time of
about 6 generations corresponds toγ = 0.1 km2 and a coexistence time of about 4 generations
corresponds toγ = 0.7 km2. These results are interesting on their own, because now, we have a
clear set of equations and plausible parameter values for modeling the Neolithic transition. The
new equation (41) for the coexistence time is also of interest in biological invasions and other
systems described by the set (13) and (14). Additionally, our results are relevant also because
of the crucial importance of the parameterγ in the modeling of population genetics arising
from population range expansions [11]. Finally, this paper opens the way to regional analyses
in which: (i) observed geographic differences in the coexistence times [11] could be used to
estimate non-homogeneous values for the interaction parameterγ (figure4) and therefore for the
front speed (figure2); (ii) regions less suitable for agriculture may correspond to lower values
for R0N and thus have a slower front speed (figure2), which is consistent with the empirical
observation that the Neolithic front slowed down as it approached colder regions in Northern
Europe [40].

The results here reported could be extended to the case of anisotropic random walks, which
may be essential in capturing the inhomogeneities inherent to the Neolithic and other population
range expansions [3, 7].
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