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1. Biological experiments.— Glioblastoma (GLB) US87 cells were cultured by Stein
and co-workers [1-3]. In Ref. [3], they tracked the paths of individual cells during 2 days. To
the best of our knowledge, these are the only data available making it possible to estimate
the values of the dispersal parameters used in our model (namely D, = %7’2? —=09-1074
cm?/day and U, = $T”> = 0.012 cm/day, as explained in our paper). In those experiments
[3] mutant cells (USTAEGFR) were used, but Stein et al. believe that the results are also
valid for wild-type cells (USTWT). Indeed, Stein et al. applied the same experimental data
from Ref. [3] to wild-type cells (USTWT) in Ref. [2], p. 360. For this reason, we have taken
into account the observed invasion speeds in vitro from both cell lines (Ref. [2], Fig. 2A)
to determine the experimental speed range (shaded regions in Figs. 2-3 in our paper). The
range thus obtained (0.0067 < ¢ < 0.0133 cm/day) is also consistent with an independent
experimental value (0.008 cm/day) obtained by other authors [4]. In this way, we have
followed a conservative approach by including all of the experimental data available.

2. Numerical methods.— For the Dirac delta model we have derived the following

implicit equation for the GLB invasion speed (see Eq. (14) in the main paper)
eAcT o egT =p eAd T+ (1 _p) e—Ad o 17 (1)

where ¢ > 0 and A > 0. We use the same experimental values already applied in Sec. II of
the main paper for the reproductive and dispersal parameters (namely g = 0.1 day *, 7' = 1
day and D, = 0.9 -10~* ecm?/day, i.e. d = v/2D,T = 0.0134 cm, see Eq. (6) in the main
paper).

For each value of p, the GLB invasion speed ¢ has to be found numerically from Eq.
(1). One way to do this is to plot the left- and right-hand sides of Eq. (1) (LHS and RHS,
respectively) as a function of A. Since the LHS of Eq. (1) is < 0 for ¢ = 0, whereas the RHS
is always > 0, it is clear that for low enough values of ¢ Eq. (1) is not satisfied for any value
of A. Thus, we can begin by plotting the LHS and RHS of Eq. (1) as a function of A, for a
value of ¢ low enough so that both curves do not cross. By gradually increasing the value
of ¢, at some point both curves will eventually cross (this will happen for sure, because the

LHS grows with increasing ¢ without bound, whereas the RHS is independent of ¢). Clearly,



this procedure yields the minimum value of ¢ for which Eq. (1) has a solution such that
¢ > 0 and A > 0. Note that this corresponds to the marginal stability criterion, already
applied to the second-order or reaction-diffusion-advection (RDA) model in our main paper
(Sec. II).

We have followed a procedure that is equivalent to that explained above, but leads to
somewhat clearer figures. For example, consider the case p = 0.5. We have defined f()\) as
the RHS minus the LHS of Eq. (1). We have plotted f()\) for a value of ¢ low enough so
that this difference is positive for all values of A\. We have then increased the value of ¢ until
the curve almost crosses the horizontal axis (Fig. S1, obtained for ¢ = 0.00561 cm/day). A
slight further increase in the value of ¢ makes the curve cross the horizontal axis (Fig. S2,
¢ = 0.00562 cm/day), i.e. front solutions to Eq. (1) now exist. Thus, for p = 0.5 (Figs. S1
and S2) the GLB invasion speed is ¢ = 0.0056 cm/day. This is the leftmost value of the
curve ¢; in Fig. 3 in the main paper. The rest of the values for the Dirac delta model (curve
c1 in Fig. 3 in the main paper) have been obtained in the same way, by considering other
values of p.

Also for the Dirac delta model, we can check the validity of our approach by considering
the special case p = 1. This corresponds to all cells moving radially outwards the same
distance d. Then the front speed predicted by Eq. (1) should be simply d/T = 0.0134
cm/day. This is indeed the result found by the procedure above (see Fig. 3 in the main
paper, rightmost value of the curve ¢q).

For the Gaussian and Laplacian models, we have applied exactly the same numerical
procedure, by simply replacing Eq. (1) above (i.e., Eq. (14) in the main paper) by the
corresponding equations for the Gaussian and Laplacian models (Egs. (17) and (20) in the

main paper, respectively).
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Fig. S1. The dimensionless function f(\) for p = 0.5 and a value of ¢ low enough so
that there is no real solution to the equation f(A) =0, i.e. to Eq. (1). Compare to Fig. S2.

Fig. S2. The dimensionless function f(\) for p = 0.5 and a value of ¢ high enough so
that there are real solutions to the equation f(A) =0, i.e. to Eq. (1). Compare to Fig. S1.
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