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Abstract

The dynamical evolution of a deterministic epidemic model is studied. We model the system
by taking into account an intermediate class of population, say infected, which after a latency
period enter into the infectious class. A mortality rate induced by the disease is also considered.
The system evolves towards a �nal state which may develop a catastrophic epidemic if small
outbreaks of the disease emerge. The �nal size, the threshold and the severity of the epidemic are
also analyzed and calculated for this model. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Mathematical epidemic models have been used to calculate and describe the dynam-
ical evolution of epidemics as well as their �nal sizes, threshold values and sever-
ity [1–3] the oldest model being due to Bernoulli [4]. A widely used model is the
Kermack–McKendrik model [5], which studies a system of three populations: suscep-
tible, infectious and removals. Our model is similar to this one, but we introduce
discrete equations, a well-known approach in population dynamics [6]. In addition, we
consider a fourth class, the infected population, characterized by a parameter  related
to the incubation period of the disease. Our model is not able to calculate the speed of
propagation of the epidemic, which has been analyzed elsewhere [7], because di�usion
e�ects are not considered. The e�ect of an incubation or latency period corresponds
to a delay time, and this has recently been shown to be important with regard to the
speed of propagation of epidemics [7], forest �res [8] and human migrations [9]. It is
therefore important to analyze the inuence of the incubation period of a disease on its
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threshold and �nal size, and this is the aim of the present paper. We also analyze the
stability conditions of the �rst evolution of the epidemic, that is, we study the behavior
of the epidemic around the �nal state when small outbreaks of the disease take place
and observe a catastrophic e�ect on the population.

2. The discrete model

We propose in this work a discrete-time deterministic model for the study of the
dynamical evolution of an epidemic taking into account a latency period, as well as a
mortality rate induced by the disease. This model involves four populations: susceptible
(xn), infected (yn), infectious (zn) and removals (rn). All of the susceptible individuals
are nonimmune to the disease. The infected individuals are those nonimmune suscepti-
bles who have caught the disease at some previous time, but they still cannot transmit
it. After a latency period, the infected individuals leave to be infected and become
infectious: they may thereafter transmit the disease. We also assume that the disease
propagates by direct contact between a susceptible and an infectious, as occurs with
viral diseases. We proceed now to develop the model. Let p denote the probability of
e�ective transmission of the disease between any susceptible and any infectious during
one sampling interval. So, 1−p is the probability to avoid the transmission and remain
susceptible. The probability that a susceptible avoids becoming infected by all of the
zn infectious individuals during the sampling interval n is

qn = (1− p) zn : (2.1)

Therefore, the number of susceptibles in the next sampling interval n + 1 will be the
number of susceptibles which remain susceptible, namely qn xn. In consequence, we
may write

xn+1 = (1− p)znxn : (2.2)

We suppose that those individuals leaving the susceptible class enter entirely into the
infected class. Furthermore, we assume that a proportion, say  (related to the latency
period �), of the infected individuals remain infected at the end of each sampling
interval. Then

yn+1 = [1− (1− p)zn ]xn + yn : (2.3)

The infectious individuals in the sampling interval n + 1 are bzn (b being the pro-
portion of infectious individuals which remain infectious at the end of each sampling
interval), plus the number of infected individuals which do not remain infected and in
consequence become infectious. Then,

zn+1 = (1− )yn + bzn (2.4)

and b may be viewed as the life expectancy. The parameter  is related to the latency
period: when the latency period is large the fraction of infected individuals which
become infectious, 1− , is small and vice versa, so 1−  ∼ �−1.
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Finally, the removals in the interval n + 1 are those of the period before plus the
fraction of infectious individuals which die, so

rn+1 = rn + (1− b)zn : (2.5)

The system under study is a set of nonlinear discrete equations given by

xn+1 = (1− p)znxn ;

yn+1 = [1− (1− p)zn ]xn + yn ;

zn+1 = (1− )yn + bzn ;

rn+1 = rn + (1− b)zn : (2.6)

One may observe that

xn+1 + yn+1 + zn+1 + rn+1 = xn + yn + zn + rn = 1 ; (2.7)

if we normalize the number of individuals.

2.1. The threshold of the epidemic

The epidemic propagates if the infected or infectious individuals gain new recruits.
If we consider the �rst step for the infectious individuals,

z1 = (1− )y0 + bz0 :
In order to have z1¿z0, the following condition must be ful�lled:

y0¿y∗0 ≡ (1− b)z0
1−  ; (2.8)

where y∗0 is the threshold value for the infected population. In the absence of any
infectious individual (z0 =0), there is no threshold and the disease spreads. For z0 6= 0,
the threshold decreases with increasing values of the parameter b, and vanishes for its
maximum possible value b=1, as it was to be expected intuitively, because the disease
will spread for sure in the absence of any removal from the infectious population. On
the other hand, a large value of  corresponds to a low latency period, which causes an
increase in the threshold y∗0 for the epidemic not to die out. Thus, in contrast with the
classical model [5], the one presented here predicts a dependence for the threshold on
the incubation or latency period. As an application we take x0 =0:8, y0 =0:1, z0 =0:1,
r0 =0, p=0:25, =0:2 and b= 1

3 obtaining y
∗
0 =0:083. The evolution of the epidemic

in this case is plotted in Fig. 1. In this case, the threshold condition (2.8) is satis�ed,
so that the infection does spread and it eventually removes about 30% of the initial
population. This result for the impact of the disease on the total population illustrates
our model for a speci�c case. However, it is certainly relevant to approach this point
in a more general way, and we tackle this point in the following section.
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Fig. 1. Dynamical evolution of system (2.6) for x0 = 0:8; y0 = z0 = 0:1; r0 = 0 and p = 0:25;  = 0:2; b = 1
3 .

These initial conditions ful�ll the threshold condition (2.8). One observes that the �nal size of the epidemic
is 0 for infected and infectious populations, and 0.7 and 0.3 for susceptibles and removals, respectively.

3. The �nal size of the epidemic

One of the most important characteristic parameters of an epidemic is the �nal
size of the population. Let (x∞; y∞; z∞; r∞) be the �nal state of the population. The
parameters with the subindex ∞ denote the �nal size of each population. The �nal
state is the critical or �xed point of system (2.6) and ful�lls the relation

x∞ + y∞ + z∞ + r∞ = 1 ; (3.1)

where the �nal size of the susceptible population is de�ned by

x∞ = lim
n→∞ xn ;

and equivalently for the other individuals. It is easy to prove that x∞ always exists:
from Eqs. (2.6) we observe that 0¡xn+1¡xn, so {xn} is a nonincreasing sequence
that is bounded from below. Therefore, the limit always exists.
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In the limit n → ∞, xn+1 → xn and, assuming that  6= 0 and b 6= 0, from
Eqs. (2.6) and (3.1) one may note that

y∞ = z∞ = 0 ;

r∞ = 1− x∞ ; (3.2)

where x∞ and r∞ must be determined. From system (2.6) one gets for the �rst two
steps

x1 = x0(1− p)z0 ;

x2 = x0(1− p)z0+z1 ;
then, by induction one �nds that

xn = x0(1− p)
∑n−1

i=0
zi : (3.3)

On the other hand, one also gets

r1 = r0 + (1− b)z0 ;

r2 = r0 + (1− b)(z0 + z1)
and

rn = r0 + (1− b)
n−1∑
i=0

zi : (3.4)

By combining (3.3) and (3.4) we have

xn = x0�rn−r0 ;

where we have de�ned the auxiliary parameter

� ≡ (1− p)1=(1−b) ;
and from r∞ = 1− x∞ we �nally get

�x∞ =
�
x∞

; (3.5)

where

� ≡ x0�1−r0 :
Eq. (3.5) is a transcendent equation which must be solved numerically to �nd the �nal
size x∞. Another characteristic parameter related to the epidemic is the severity of the
epidemic which may be de�ned as

S ≡ x0 − x∞
x0

:

So, Eq. (3.5) may be written as

1− S = (1− p)(1−x0(1−S)−r0)=1−b :
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Fig. 2. Dependence of the �nal size of the susceptible population, and of the severity of the epidemic, on
the probability of e�ective transmission. We have taken, also for this plot, x0 =0:8; r0 =0 and =0:2; b= 1

3 .

If we take the same values as in Fig. 1 we get for the �nal size x∞ ' 0:7; r∞ ' 0:3
and the severity is S = 0:125. We note that these results are in agreement with the
asymptotic behavior in Fig. 1. We can also plot the �nal size x∞ and the severity S in
terms of the probability of e�ective transmission p. This is shown in Fig. 2, where we
observe that the �nal size of susceptible individuals decreases with increasing p, which
means that the number of susceptibles at the end of the epidemic is lower the greater
the probability of e�ective transmission is. This is as it should be, and corresponds to
the fact that the severity increases with p. It is interesting to note that the parameter 
has no e�ect on the �nal size of the epidemic (see Eq. (3.5)). We therefore conclude
that although the inclusion of a latency period � in the model has a very important
e�ect on the threshold value y∗0 of the infected population for the epidemic to spread
(see Eq. (2.8)), the severity of the epidemic is not a�ected by the value of �.

4. Stability analysis of the �nal size

At the end of the epidemic one may countabilize its e�ects by means of the di�erence
between the initial size and the �nal size of the populations. It has been observed
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experimentally, however, that the �nal state may be sensible to small outbreaks of the
disease [10]. In this sense it is interesting to analyze the evolution of the �nal size
submitted to small deviations. This is the aim of this section. In order to analyze the
stability conditions of the �xed point (x∞; 0; 0; r∞), we must linearize system (2.6)
around it. If we de�ne the linearized matrix around the �xed points of system (2.6)
by L, and de�ne ‖L‖ = max{|�1|; |�2|; |�3|; |�4|} where �i, with i = 1; 2; 3; 4 are the
eigenvalues of L, the �xed point is stable if and only if ‖L‖¡ 1 and is unstable if
‖L‖¿ 1. After some algebra, one �nds the Jacobian matrix given by

L=




1 0 x∞ ln(1− p) 0

0  −x∞ ln(1− p) 0

0 1−  b 0

0 0 1− b 1



: (4.1)

Evaluating the eigenvalues of L we �nd that the �xed point is unstable and small
outbreaks of the disease generate a new epidemic if

x∞¿x∗∞ ≡ 1− b
ln(1=1− p) ;

otherwise we cannot predict the evolution of the epidemic. This condition together with
Eq. (3.5) becomes, after assuming that r0 = 0 and some algebra,

x∞e−1+(1=x∞)¡x0 ;

but this inequality cannot be ful�lled. Therefore, the linear analysis of stability does
not hold for this system and one must check the stability of the �xed point for the
system xn+2 = F(xn) or xn+3 = F(xn) and so on, but in these cases our system repeats
the same behavior and we cannot extract information about the stability. An alternative
way to this study is to conserve the nonlinear part of the equations of the system by
introducing a perturbation of the �xed point of the form

xn = x∞ + �n ;

yn = �n ;

zn = �n ;

rn = r∞ + �n ;

where �n; �n; �n, and �n symbolize the deviations from the �xed point (x∞; 0; 0; r∞).
Introducing this into (2.6) we get

�n+1 = (1− p)�n(x∞ + �n)− x∞ ;

�n+1 = [1− (1− p)�n ](x∞ + �n) + �n ;
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Fig. 3. This plot shows the dynamical evolution of the epidemic for an initial condition near the �nal state
(x∞; 0; 0; r∞). The larger window shows the behavior of susceptibles and removals, whereas the inset shows
the evolution of the infected and infectious individuals. The catastrophic behavior is clear from the fact that
x∞ decreases continuously with increasing values of n.

�n+1 = (1− )�n + b�n ;

�n+1 = �n + (1− b)�n ; (4.2)

where condition (2.7) may be rewritten as

�n + �n + �n + �n = 0 :

We choose as an application the same case as in the �rst section. The evolution starts
around the �xed point (0.7,0,0,0.3) and evolves according to system (4.2). We have
checked that for di�erent initial perturbations �0; �0; �0; �0 the system evolves in such
a way that the susceptible, infected and infectious populations tend to zero, but the
removals tend to a di�erent value for di�erent initial perturbations. This means that, in
some sense, susceptible individuals and removals are unstable under small outbreaks
of the disease but the infected and infectious populations are stable. From a practical
point of view, this case describes the evolution of an epidemic which reaches a �nal
state but a small outbreak of the disease develops a catastrophic behavior for the
population. This behavior may be viewed in Fig. 3, where we present the evolution of
the population near the �nal state from small initial perturbations.
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5. Conclusions

We have studied a discrete deterministic epidemic model which takes into account
an incubation period, introduced by an intermediate class (infected individuals), and a
mortality rate induced by the disease. We have analyzed the characteristic parameters
of an epidemic such as the threshold value, the �nal size and the severity of the disease
and we have noted that the incubation period does not a�ect the latter two parameters.
We have shown that the �nal size of the susceptible population is a nonincreasing
function of the probability of e�ective transmission p and the severity is an increasing
function of p. The stability analysis of the �nal state has been carried out and we have
shown how small outbreaks of the disease may be catastrophic to the population, after
the �rst evolution of the epidemic.
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