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Abstract

We generalize a previous proposal of an experiment (J. Fort, D. Jou, J.E. Llebot, Physica
A 248 (1998) 97) that, on the basis of predicted corrections to the Planck spectral law, may
allow to determine experimentally what quantity is measured by a thermometer in steady-state
nonequilibrium systems composed of matter and radiation. We include the photon number 
ux
as an additional constraint. According to the model presented, the di�erences between the spectra
predicted from two possible temperature de�nitions are higher than previously thought. In contrast
to some previous papers, our model does not consider a speci�c matter content for the system.
c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

What is the correct de�nition of temperature in nonequilibrium systems? This is one
of the most fundamental and controversial questions in nonequilibrium thermodynamics
at present. In the last few years, the conceptual debate [1–6] has lead to some spe-
ci�c approaches to the possibility of clarifying this question experimentally [7–10,35].
Such approaches rely on the fact that second-order nonequilibrium predictions depend
on how the temperature is de�ned. These di�erences are expected to be important or
not in practice depending on the phenomenon considered. For example, the di�erences
between the predictions following from di�erent temperature de�nitions in chemically
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reacting systems under heat conduction are expected to be negligible for readily at-
tainable temperature gradients [11,36,37]. In contrast, much more relevant di�erences
have been predicted in radiative transfer [10].
For classical monatomic gases in equilibrium, it is well-known that �um = 3

2nkT;
where � is the mass density, um the internal energy per unit mass, n the number
density of molecules, k the Boltzmann constant and T is the temperature. From this
equilibrium result, one might be tempted to expect that the quantity TK , de�ned through

�um ≡ 3
2
nkTK ; (1)

corresponds to the temperature in nonequilibrium systems as well. In fact, this posi-
tion is often adopted in the kinetic theory of gases [12], as well as in most computer
simulations. In order to generalize this hypothesis, one could then assume a simi-
lar nonequilibrium extension of the equilibrium results for other systems [12], i.e.
�um = l

2nkTK ; with l = 5 for diatomic gases, l = 6 for solids, etc. However, in quan-
tum systems equipartition no longer holds, thus this procedure cannot be applied to
an arbitrary physical system. For example, for equilibrium radiation one has ũr = aT 4,
with ũr the radiation energy density and a ≡ 8�5k4=15c3h3 (c is the speed of light in
vacuo and h is the Planck constant). Of course one might assume [13] that Tr; de�ned
through

ũr ≡ aT 4r ; (2)

were the temperature of nonequilibrium radiation, but this completely di�erent de�nition
would certainly complicate the framework. If a simple, unifying theory of nonequilib-
rium systems exists, it seems that one single equation de�ning the temperature should
hold for arbitrary physical systems. Moreover, the thermodynamical derivation [14] of
the equilibrium law ũr = aT 4 is based on a completely di�erent de�nition of temper-
ature, namely,

1
T

≡ @S
@U

; (3)

where S is the entropy and U is the energy of the system. It is this de�nition that
allowed Boltzmann to derive the Stefan law [14], in complete agreement with exper-
imental results. Again, it is this de�nition that uni�es the concept of temperature in
equilibrium classical and quantum systems. It is therefore appealing to approach to
the concept of temperature in nonequilibrium systems by introducing the temperature
as

1
T

≡ @s
@u
; (4)

where s is the entropy per unit mass and u is the energy per unit mass. It has not
yet been concluded from experiment whether the de�nition (4) [1,2,10] corresponds to
physical reality or not, i.e. whether a thermometer placed in a system out of equilibrium
measures the quantity T de�ned by Eq. (4) or not. This is why it is important to ana-
lyze under what experimental conditions it might be possible to test the proposal (4).
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It is worth to stress that s in Eq. (4) is not the local-equilibrium entropy per unit
mass, unless the system is in local thermodynamic equilibrium. Therefore, in general
T di�ers from the local-equilibrium temperature. Although many authors assume that
the local-equilibrium temperature is the quantity measured by a thermometer, Luzzi
and co-workers have presented indications [9] that the measured temperature is not
the local-equilibrium temperature, but rather that given by Eq. (4). The derivative in
Eq. (4) is carried out under some constant parameters (in equilibrium matter systems,
these parameters are � and the concentrations; outside equilibrium, it is not known for
sure what additional parameters should be selected).
Out of equilibrium, thermometers sensitive to di�erent degrees of freedom could

read di�erent values for the temperature. For instance, some authors have proposed
a temperature T (�) dependent on the wavelength of radiation [15,16]. On the other
hand, a thermometer with perfectly black walls would in general read a temperature
di�erent to that read by a thermometer with perfectly re
ecting walls. Both temper-
atures will, still, be di�erent to that read by a thermometer with a vacuum chamber
between its external walls and the mercury. The �rst thermometer would be sensi-
ble to the thermal state of both matter and radiation, the second one only to that of
matter, and the third one only to radiation. Our approach is based on the analysis
of the intensity of radiation, which can be measured by means of a spectrophotome-
ter. In contrast to, e.g., a black thermometer, a spectrophotometer is not sensible to
the collisions of matter molecules but only to the photons, so that spectrophotometric
measurements are related to the thermal properties of radiation and not to those of
matter. Thus, since the radiation intensity is di�erent if written in terms of T than
in terms of Tr [10], it could in principle become possible to determine which of
these quantities, if any, is the correct temperature by comparing experimental spec-
tra to theoretical ones (the theoretical ones should be computed by making use of
the value for the temperature read independently by means of a thermometer sensi-
ble to the radiation part only, i.e. a thermometer of the third kind of those described
above).
The problem we have summarized has been recently analyzed [10] by means of an

information-statistical approach to radiative transfer, the starting point of which is the
maximization of the entropy density of a system composed by matter and radiation and
subject to a photon energy 
ux [17]. For the special case in which the matter part of
the system is a classical ideal gas, the entropy density can be written as [16]

�s= �sm + �sr =−k
∫
R3

d3pm
h3

fm lnfm

+2k
∫
R3

d3pr
h3

[(1 + fr) ln (1 + fr)− fr lnfr] ; (5)

where the subindexes m and r stand for matter and radiation; s, p and f are the
corresponding speci�c entropies, momenta and momentum distribution functions, re-
spectively, and � is the matter density. The results in Refs. [17,10] rely on the max-
imization of the entropy density (5) under the constraints of �xed energy density,
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molecular number density n and radiative heat 
ux F , namely

�u= �um + �ur = k
∫
R3

d3pm
h3

p2m
2m
fm + 2

∫
R3

d3pr
h3
prcfr ; (6)

n=
∫
R3

d3pm
h3

fm ; (7)

F = 2
∫
R3

d3pr
h3
prccfr ; (8)

where um is the speci�c internal energy of the matter part, ur is the radiation energy
(also per unit mass of matter), m is the molecular mass and c is the photon velocity.
As it was stressed in Refs. [10,17], the former equations hold only for the special case
in which the molecules are nonrelativistic and monatomic, and heat conduction and
convection are negligible. One of the purposes of the present paper is to generalize
this too restrictive assumption.
The radiation distribution derived in the way we have summarized had been obtained

previously [18,19,38] and has been related to thermodynamical quantities in Ref. [17].
It has also been analyzed in Ref. [20], where it has been shown that such a distribution
can be transformed into an equilibrium (i.e., Planckian) distribution by performing a
Lorentz boost. The authors of Ref. [20] thus argued that such an approach does not
describe a nonequilibrium system but an equilibrium one as seen by an observer moving
relative to it. They proposed to maximize the entropy density under an additional
constraint of vanishing photon number 
ux JN = 0, where

JN = 2
∫
R3

d3pr
h3
cfr : (9)

The possibility of requiring that JN = 0, proposed in Ref. [20], has been analyzed
recently, and it has been pointed out [21] that it does not seem clear that one can
conclude that a system is in equilibrium just because its intensity becomes Planckian
in a speci�c frame. It can also be shown that the requirement JN=0 yields an expression
for the entropy production that is not semi-positive de�nite, which is at odds with the
second law of thermodynamics [21]. In view of such considerations, it seems sensible
to analyze the consequences of taking into account the constraint (9) on the number

ux, but without imposing that JN = 0. This approach will be followed in the present
paper. Moreover, in view of the problems we have recalled in the �rst paragraph,
it is necessary to determine whether the constraint (9) is consistent or not with the
claim [10] that it is possible in principle to determine experimentally what the correct
de�nition of nonequilibrium temperature in radiative systems is. If the derivative in
Eq. (4) is taken under a constant energy 
ux F , we have one possible de�nition
of temperature. If it is taken under constant F and JN , we have another possible
de�nition. We are interested in analyzing the consequences of the di�erence between
those two temperatures, as well as of the fact that both of them are di�erent from the
local-equilibrium temperature. This is the central problem that we will tackle here, and
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it exempli�es very clearly the well-known fact [22,23,39] that in information theory
there is not a well-established, general criterium to select the constrains under which
the entropy density should be maximized.
The plan of the paper is as follows. In Section 2 we consider the nonequilibrium

radiation intensity by taking into account the additional constraint (9), and compare
it to previous work in which this constraint was not included. Section 3 is devoted
to an analysis of the consequences of di�erent temperature de�nitions in the system
considered. Section 4 includes some concluding remarks.

2. The radiation distribution

The information-theoretical analysis of a matter–radiation system under the con-
straints (6)–(9) is included in Appendix A, where it is shown that, for the simple case
in which the radiative heat 
ux F is parallel to the x-axis,

fr =
1

exp[�]− 1
(
1 +

exp[�]
exp[�]− 1

{(
prc2 − 18�(3)kTc

�2

)

+

9c2h3

8�3k3T 3
JN

}
cos �

+
exp[�] (exp[�] + 1)

2 (exp[�]− 1)2
{(
prc2 − 18�(3)kTc

�2

)

+

9c2h3

8�3k3T 3
JN

}2
cos2 �

)

+O(3) ; (10)

where O(3) stands for third- and higher-order terms, �(z) is the Riemann Zeta function,

 = (
; 0; 0) is the Lagrange multiplier concomitant to the radiative heat 
ux, � is the
angle between the x-axis and the photon velocity c; and

� ≡ prc
kT

≡ prc
k
@s
@u
;

so that the de�nition (4) of temperature has been applied. As it is shown in detail
in Appendix A, the result (10) is valid provided that the microscopic formula for the
entropy density of the matter content of the system can be written in a rather general
form. In contrast, the distribution in Ref. [17] (which was applied in Ref. [10]) was
derived for the special case of a nonrelativistic classical monatomic ideal gas. Moreover,
the constraint (9) (which was not included in Refs. [10,17] has been here taken into
account.
In order to explore any experimentally testable consequence of the distribution (10),

it is necessary to write down 
 and JN in terms of directly measurable quantities,
such as the temperature and its gradient. In order to do so, we will �rst calculate the
necessary components of the pressure tensor of radiation, which are given by [24,25]

Pjx = 2
∫
R3

d3pr
h3

pr
c
cjcxfr ; (11)

where j = x; y; z: Insertion of Eq. (10) and integration yields

Pjx =
aT 4

3
[1 + O(2)] ; (12)
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where use has been made of formula (3:411:1) in Ref. [26], and O(2) stands for
second- and higher-order terms (i.e., terms in 
2; J 2N ; 
JN ; 


3, etc.). It is not di�cult to
compute such terms explicitly after relatively tedious calculations but, as we shall see,
in fact it is not necessary to do so for the purposes of the present paper. We have for
the radiative energy 
ux (see Eq. (A.11) in Appendix A)

F = 4
(
1
3
− 135
�6
[�(3)]2

)
ac2kT 5
+

18�(3)
�2

kTJN + O(3) : (13)

The steady-state grey radiative transfer equation (RTE) reads [24,25]

c
c
·3I� =−�I� + j� ;

where � is the absorption coe�cient and j� is the spectral emissivity.
Multiplication of the RTE by c=c and integration yields, after use of I� = 2h�3fr=c2

[29] and of the de�nitions (8) and (11), the well-known result [27,28]

c
(
@Pxx
@x

+
@Pyx
@y

+
@Pzx
@z

)
=−�F : (14)

Insertion of Eqs. (12) and (13) will yield an equation with two unknowns, namely 

and JN : In order to derive another equation with the same unknowns, we multiply the
RTE by c=prc2, integrate and use the de�nitions (9) and Qjx = 2

∫
R3

d3pr
h3

cjcx
c2 fr . This

yields

c
(
@Qxx
@x

+
@Qyx
@y

+
@Qzx
@z

)
=−�JN : (15)

We insert Eqs. (12) and (13) in Eq. (14). Similarly, we use Eq. (10) and integrate
to �nd

Qjx =
16��(3)k3T 3

h3c3
+ O(2) ;

which we insert in Eq. (15). This yields a system of two equations with two un-
knowns. We assume for simplicity that the temperature gradient is uniform and �nd,
after neglecting third- and higher-order terms in the usual way [17],


=− 1

1− 405
�6 [�(3)]

2

1
�ckT 2

(
dT
dx
+
27�(3)�k
2�2acT 2

JN

)
; (16)

JN =−48��(3)k
3T 2

h3c2�
dT
dx

; (17)

which relate 
 and JN to measurable quantities and are valid up to second order. Notice
that second-order terms in, e.g., Eq. (12), give rise to third-order terms in Eq. (14),
and are therefore negligible in the order of approximation considered. The energy 
ux
can be related to the temperature gradient by means of Eqs. (13) and (16),

F =−4
3
acT 3

�
dT
dx
+ O(3) :
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It is worth to mention that this relationship is the same as that obtained in the model
in which the additional constraint of �xed JN was not included in the entropy max-
imization [17]. On the other hand, it is simple to estimate of the importance of the

uxes by comparing them to their maximum possible values,

|JN |
nrc

=
3
�T

∣∣∣∣dTdx
∣∣∣∣+ O(2); |F |

ũrc
=

4
3�T

∣∣∣∣dTdx
∣∣∣∣+ O(2) ;

where nr=2
∫
R3

d3pr
h3 fr is the photon number density. The denominators in the left-hand

side of these two equations correspond to the extreme anisotropic limit in which all
photons would move in the same direction. For the values �=0:1 m−1 [17], T=2000 K
and a temperature gradient of dT=dx=15 K=m, we �nd that JN and F have about 23%
and 10% of their maximum possible values, respectively. This estimation, in itself,
provides an indication that it is relevant to incorporate the 
ux JN to the description
of the system, as done in the present paper: As explained below, this conclusion can
also be reached from the analysis of the predicted spectra.
The intensity of radiation is related to the photon distribution function through I� =

2hc2

�5 fr [17,29], where � is the wavelength. Thus, making use of Eq. (10) and of the
fact that the energy of a photon is prc = hc=�;

I� = I� Planck(1 + �(1)cos �+ �(2)cos2 �) ; (18)

where I� Planck is the Planck function, i.e.

I� Planck =
2hc2

�5
1

e� − 1 ; (19)

�(1) =−
{(
� − 18�(3)

�2

)

+

9c2h3

8�3k3T 3
JN

}
e�

e� − 1 ; (20)

�(2) =
{(
� − 18�(3)

�2

)

+

9c2h3

8�3k3T 3
JN

}2
e�(e� + 1)
2(e� − 1)2 ; (21)

with

� =
hc
kT�

: (22)

It is worth to mention that if we set JN = 0 we would recover the results [21]
corresponding to the proposal in Ref. [20], but numerical estimations show that the
di�erences between such results and those above are not negligible, i.e. that the terms
in JN ; obtained above, should be included in general.
We consider a matter system under a temperature gradient (see Fig. 1), and study

the radiation it emits. A spectrophotometer measures the intensity due to all photons
that cross a unit area coming from all possible directions of a hemisphere. For example,
the intensity due to the photons that leave the system through a unit area, orthogonal
to the x-axis and centered at point B in Fig. 1 is

i�B =
∫ 2�

0
d’

∫ �=2

0
d� sin � cos � I�B ; (23)
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Fig. 1. A matter system with a nonuniform temperature distribution. This system generalizes a
previously-proposed experiment (see Fig. 1 in Ref. [10]): the matter part of the system no longer needs
to be assumed a classical non-relativistic monatomic ideal gas. In Figs. 2 and 3 we illustrate the predictions
for the radiation emitted by the system depicted here, making use of two possible temperature de�nitions.

where I�B is given by Eqs. (18)–(21) evaluated at point B, i.e. T = TB and dT
dx =

dT
dx |B:

Similarly,

i�A =−
∫ 2�

0
d’

∫ �

�=2
d� sin � cos � I�A : (24)

Use of Eq. (18) into Eqs. (23) and (24) and integration yields

i�A = i� Planck A

(
1− 2

3
�(1)A +

1
2
�(2)A

)
; (25)

i�B = i� Planck B

(
1 +

2
3
�(1)B +

1
2
�(2)B

)
; (26)

where the subindexes A and B refer to these points in Fig. 1, and

i� Planck = � I� Planck : (27)

Let us assume, in order to illustrate the predictions of the model, that � = 0:1 m−1

[17], TA = 2000 K, TB = 2001 K, and dT=dx = 15 K=m. In Fig. 2 we plot the spec-
tra for point A in Fig. 1, according to the Planckian or equilibrium result (27), and
to the model considered in the present paper (both in the �rst-order approximation,
i.e., i(1)�A = i� Planck(1 +

2
3�

(1)
A ), and in the second-order approximation, Eq. (25)). For

comparison purposes, Fig. 2 also includes the spectra predicted for the same values of
the parameters but making use of the model obtained in Ref. [10]. That model makes
use of the energy density and energy 
ux as constraints, but not of the additional
constraint on the photon number 
ux. We see that the predictions are rather di�erent
depending on the model considered: for example, the model in Ref. [10] predicts (for
wavelengths close to the intensity maxima) a correction of about 26% with respect to
the Planckian intensity in the �rst approximation. By contrast, the model analyzed in
the present paper predicts (in the same range) a correction of about 10% in the �rst
approximation. Such di�erences between both models indicate that the question of the
measurable temperature should be analyzed in detail for the model considered here,
and this problem is tackled in the next section. Let us mention that it might at �rst
sight seem that the areas under all of the curves in Fig. 2 should be the same, because
we have calculated the intensities for a �xed energy density, energy 
ux, etc. However,
the areas under these curves do not correspond to the energy density, neither to the
energy 
ux. These areas correspond to part of the energy 
ux, speci�cally to the part
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Fig. 2. Spectra for the radiation leaving the system in Fig. 1 through point A, according to the model in the
present paper (constraints on F and JN ) and to that in Ref. [10] (constraint on F). The symbol (1) identi�es
�rst-order spectra. The symbol T identi�es second-order spectra assuming T is the measurable temperature.
TA = 2000K; dT=dx = 15K=m; � = 0:1m−1.

due to photons leaving the system in Fig. 1 across a unit area centered at point A, i.e.
to photons moving to the left (photons with cx ¡ 0). This corresponds, in practice, to
the fact that a spectrophotometer detects photons coming only from one side, whereas
the energy 
ux is a net 
ux (photons with any possible value of cx).

3. The role of temperature de�nitions in measurements of nonequilibrium radiation

In order to compare the implications of the temperature de�nitions (4) and (2) for
the model considered in the former section, we must �rst relate the quantity T , de�ned
by Eq. (4), to Tr , de�ned by Eq. (2). In order to do so, we substitute the distribution
function (10) into ũr=�ur; as given by Eq. (6) or (A.2). This yields, after performing
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the integrals,

ũr = aT 4(1 + AT
2 + BTJ 2N + CT
JN ) ;

where use has been made of formula (3:411:1) in Ref. [26],

AT ≡ 10
3

(
1− 405

�6
[�(3)]2

)
k2T 2c2 ;

BT ≡ 9�2k2

10a2c2T 6
; CT ≡ 18�(3)k2

�2aT 2
;

and we have introduced the blackbody constant a ≡ 8�5k4=15h3c3. Comparing this
result for ũr to Eq. (2) and neglecting higher-order terms, we can relate T to Tr;

T = Tr

(
1− ATr

4

2 − BTr

4
J 2N − CTr

4

 JN

)
+ O(3) ; (28)

where

ATr ≡ 10
3

(
1− 405

�6
[�(3)]2

)
k2T 2r c

2 ;

BTr ≡ 9�2k2

10a2c2T 6r
; CTr ≡ 18�(3)k2

�2aT 2r
:

For �=0:1 m−1; T =2000 K and dT=dx=15 K=m, we obtain Tr =2033 K, i.e. the
di�erence between Tr and T is of 1:6%. By contrast, for the model in which the role
of JN was not taken into account, this di�erence was less than 0:5% [10]. This makes
us expect that the di�erences in measurable properties of the system (and speci�cally
in the spectra) related to the quantity that one identi�es with the temperature will be
more important. In order to see this explicitly, let us note that we have found out the
spectra, but so far only in terms of T and its gradient (see, e.g., Fig. 2). In order to
write them in terms of Tr and its gradient; we make use of Eq. (28) into Eqs. (12)
and (13). This yields, in the second-order approximation,

Pjx =
aT 4r
3
[1 + O(2)] ; (29)

F = 4
(
1
3
− 135
�6
[�(3)]2

)
ac2kT 5r 
+

18�(3)
�2

kTr JN + O(3) : (30)

We insert these results in Eq. (14), calculate Qjx =
16��(3)k3T 3r

h3c3 +O(2) and insert this in
Eq. (15). We follow exactly the same method as in the previous section and �nd that


=− 1

1− 405
�6 [�(3)]

2

1
�ckT 2r

(
dTr
dx

+
27�(3)�k
2�2acT 2r

JN

)
; (31)

JN =−48��(3)k
3T 2r

h3c2�
dTr
dx

; (32)
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which relate 
 and JN to Tr and dTr
dx (instead of T and

dT
dx (see Eqs. (16) and (17)).

The energy 
ux is, from Eqs. (30) and (31),

F =−4
3
acT 3r
�

dTr
dx

+ O(3) :

Use of Eq. (28) into Eqs. (18)–(21) yields

I� = I�r Planck(1 + �(1)r cos �+ �
(2)
r cos2 �+ �∗(2)

r ) ; (33)

where

I�r Planck =
2hc2

�5
1

e�r − 1 ; (34)

�(1) =−
{(
�r − 18�(3)

�2

)

+

9c2h3

8�3k3T 3r
JN

}
e�r

e�r − 1 ; (35)

�(2) =
{(
�r − 18�(3)

�2

)

+

9c2h3

8�3k3T 3
JN

}2
e�r (e�r + 1)
2(e�r − 1)2 ; (36)

�∗(2)
r =−

(
ATr
4

2 +

BTr
4
J 2N +

CTr
4

JN

)
�r

e�r

(e�r − 1)2 ; (37)

�r =
hc
kTr�

: (38)

Finally, insertion of Eq. (33) into Eqs. (23) and (24) and integration yields

i�rA = i�r Planck A

(
1− 2

3
�(1)rA +

1
2
�(2)rA + �

∗(2)
rA

)
; (39)

i�rB = i�r Planck B

(
1 +

2
3
�(1)rB +

1
2
�(2)rB + �

∗(2)
rB

)
; (40)

where

i�r Planck = � I�r Planck : (41)

We can now address the question of whether the model presented predicts measur-
able di�erences between the cases in which T or Tr is assumed to correspond to
the quantity measured by a thermometer. In order to do so, we plot in Fig. 3 the
same spectra as those in Fig. 2 (i.e., � = 0:1 m−1; TA = 2000 K; TB = 2001 K and
dT=dx = 15 K=m) but include also the spectrum under the assumption that Tr is the
measurable temperature (i.e., �=0:1 m−1 as before, but now TrA=2000 K, TrB=2001
K, and dTr=dx = 15 K=m).

4. Conclusions

The model analyzed hee makes use of both 
uxes F and JN as constraints, in addi-
tion to the constraints (A.2) and (A.3). From Fig. 3 we �nd that this model predicts
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Fig. 3. The same as in Fig. 2, but here we plot second-order spectra. T and Tr identify the spectra obtained
assuming T and Tr are the measurable temperature, respectively.

spectra that di�er up to 8:5% depending on whether T (de�ned by Eq. (4)) or Tr
(de�ned by Eq. (2)) is assumed to be measured by a thermometer. In contrast, and
for exactly the same set of parameter values, the model which did not include the
constraint on JN predicted a di�erence of only 2% [10]. Thus the di�erences are rather
higher than previously expected. We conclude that the inclusion of a constraint on
the photon number 
ux con�rms that it may be possible in principle to determine
experimentally what quantity is measured by a thermometer. Moreover, since the mea-
surable di�erences are higher in the present framework, the new model predicts that
such an experimental approach should be, at least in principle, even simpler to carry
out than previously thought. Although we have here dealt with the spectral di�erences,
it is worth to mention that an additional way to tackle the problem may be based on
the predictions for the wavelength of maximum intensity (i.e., the generalized Wien
displacement) [30,21].
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We have performed the same analysis for point B in Fig. 1 (instead of point A) and
found similar results: this is why in Figs. 2 and 3 we have not included the spectra for
point B but, instead, have preferred to present the spectra stemming from the previous
model [10]. We stress that the di�erences between both models follow form the fact
that we have here taken into account the requirement of the additional constraint on
the photon number 
ux (Eq. (9)) in the entropy maximization.
It is worth to stress that, in contrast to previous derivations and proposals [10,17],

which were restricted to a classical nonrelativistic monatomic ideal gas for the matter
part of the system, the experiment proposed in the present paper, and all of the deriva-
tions presented, are not restricted to this condition. This is not only very appealing
conceptually, but it might also make it simpler to perform the relevant experimental
measurements in the future.
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Appendix A. Derivation of Eq. (10)

The entropy density (5) has been used in Refs. [10,17]. However, �sm in Eq. (5)
is given by the classical ideal gas entropy density. Since this corresponds to a very
special case, we here generalize Eq. (5) by

�s= �sm + �sr =−k
∫
R3

d3pm
h3

F(fm)

+2k
∫
R3

d3pr
h3
[(1 + fr) ln (1 + fr)− fr lnfr]; (A.1)

where F(fm)=fm lnfm for a classical ideal gas, F(fm)=−(1+fm) ln (1+fm)+fm lnfm
for a phonon gas, etc. The case of a phonon gas may be important in practice because
it might be simpler to carry out the experiment depicted in Fig. 1 by using a crystal
instead of a gas: we think that in the latter case heat convection could complicate
measurements. On the other hand, for nonideal systems the function F(fm) in Eq.
(A.1) would also depend on the two-particle distribution function; for denser gases,
the three-particle distribution function should also be taken into account, etc. [32]. For
the sake of simplicity, such cases will not be considered here.
Similarly, we generalize Eqs. (6) and (7) by

�u= �um + �ur =
∫
R3

d3pm
h3

H (pm)fm + 2
∫
R3

d3pr
h3
prcfr ; (A.2)

〈Al〉=
∫
R3

d3pm
h3

Al(pm)fm ; (A.3)
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with u the energy per unit mass and F the radiative heat (or energy) 
ux. The mi-
croscopic operator H (pm) corresponds to the energy of the matter part (in the special

case of nonrelativistic monatomic molecules we would have H (pm)=
p2m
2m , see Eq. (6);

for a phonon gas H (pm) = ˜!, with ! the frequency of vibration and ˜= h=2�; etc.).
On the other hand, Al are any additional operators (e.g., n= 〈A1〉=

∫
R3

d3pm
h3 fm, see Eq.

(7)).
We make use of information statistical theory [31,33] by maximizing the entropy

density (A.1) under the constraints (A.2), (A.3), (8) and (9), and �nally obtain

d
dfm

F(fm) =−�H (pm)−
N∑
l=1

�lAl(pm) ; (A.4)

fr =
1

exp[�prc − 
 · prcc + � · c]− 1 ; (A.5)

where �, �l, 
 and � are Lagrange multipliers (we have chosen the negative sign in
front of 
 in order to make the notation here similar to that in Ref. [17]). Eq. (A.5)
is in agreement with that previously derived for a purely radiation system [34]. Here,
we are considering a system composed of matter in addition to radiation, and this will
allow us to relate all of the Lagrange multipliers to thermodynamical quantities.
The di�erential of the matter entropy density can be obtained from Eqs. (A.1), (A.4),

(A.2) and (A.3). That of the radiation entropy density, from Eqs. (A.1), (A.5), (A.2),
(8) and (9). The procedure is the usual one (see Appendix A in Ref. [17]), so we
reproduce the �nal result for the case considered here,

ds=
d(�sm + �sr)

�
= k�du+

k
�

N∑
l=1

�ld〈Al〉 − k
�

 · dF :+ k

�
� · dJN : (A.6)

where it has been assumed for simplicity that the matter is macroscopically at rest, so
that the equation of continuity implies that the matter density does not change in time,
i.e. the density di�erential vanishes, d�=0. From Eq. (A.6) and the thermodynamical
de�nition of the temperature T , namely 1

T ≡ @s
@u , we �nd

� =
1
kT
: (A.7)

By assuming that near-equilibrium states correspond to small values of the radiation
multipliers 
 and �; a second-order Taylor expansion of the RHS of (A.5) and use of
Eq. (A.7) yields

fr =
1

exp [�]− 1
(
1 +

exp[�]
exp[�]− 1c · (prc
− �)

+
exp[�](exp[�] + 1)
2(exp[�]− 1)2 [c · (prc
− �)]2

)
+ O(3) ; (A.8)
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where O(3) stands for third- and higher-order terms, and � = prc=kT . We insert
Eq. (A.8) into the constraints (9) and (8) and integrate. This yields

�=
18�(3)
�2

kT
− 9ch3

8�3k3T 3
JN ; (A.9)

F = 4
(
1
3
− 135
�6

[�(3)]2
)
ac2kT 5
 +

18�(3)
�2

kTJN ; (A.10)

where �(z) is the Riemann Zeta function, and the integrals have been performed by
making use of the formulae (3:423; 2) and (9:542; 1) in Ref. [26].
We assume for simplicity a situation in which the photon energy and number 
uxes

are parallel to x-axis, i.e.

F = (F; 0; 0) =
(
4ac2kT 5


[
1
3
− 135
�6
[�(3)]2

]
+
18�(3)
�2

kTJN ; 0; 0
)
; (A.11)

where 
 = (
; 0; 0) and JN = (JN ; 0; 0): Making use of Eqs. (A.8) and (A.9) we have

fr =
1

exp[�]− 1
(
1 +

exp[�]
exp[�]− 1

{(
prc2 − 18�(3)kTc

�2

)

+

9c2h3

8�3k3T 3
JN

}
cos �

+
exp[�](exp[�] + 1)
2(exp[�]− 1)2

{(
prc2 − 18�(3)kTc

�2

)

+

9c2h3

8�3k3T 3
JN

}2
cos2 �

)

+O(3); (A.12)

where � is the angle between the x-axis and the photon velocity c. This completes the
derivation of Eq. (10).
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