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Abstract 

It is shown that the classical entropy does not increase monotoni~lly for an isolated fluid in which sound waves are 
attenuated according to a rel~ation~ evolution equation. In contrast, the generalized entropy of extended irreversible 
the~odyn~i~ does show a monotonic increase and is therefore more suitable for the description of relaxation-time 
phenomena in fluid systems. 

1. Introduction 

Classical transport equations such as the Fourier 
law for heat conduction and the Newton and Stokes 
laws for a viscous flow imply that the velocity of 
propagation of the perturbations diverges in the 
hip-sequent limit. This feature can be avoided by 
taking into account the relaxation times of the fluxes, 
such as the heat flux, the traceless deviator of the 
viscous pressure tensor and the bulk viscous pres- 
sure. However, the relaxational equations thus ob- 
tained, when combined with the local-equilibrium 
hypothesis no longer imply the validity of the second 
law of thermodynamics [1,2]. This has been shown 
in an explicit way by computing the evolution of the 
entropy of an isolated rigid system where hyperbolic 
heat conduction occurs [3]. We will try here to show 
an hydr~yn~i~ analogue of this behaviour, with 
the ~tention that the need for a more general ther- 
modynamic theory becomes made completely clear 
in a variety of si~atio~. 

Let Pi7 stand for the components of the viscous 
pressure tensor of the fluid. This tensor can be 
decomposed by defining a bulk viscous pressure pV 

and a traceless deviator Fir, 

p”=$?Jz+P,y,+P;), (1) 

Fir = pi; - P”Sij, (2) 

where~ij=lfor~=jand~ij=Ofori#j. 
As an example of relaxational equations, consider 

the simplest Maxwell-Cattaneo equations [4] for the 
traceless deviator and the bulk viscous pressure, 

(3) 

dp” 
rOdt fp”= -gv l V, (4) 

where q and 5 are the shear and bulk viscosities, 
respectively, Y is the local fluid velocity, T* and TV 
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are the relaxation times (their subindexes indicate the 
tensorial order of the corresponding equation) and 

1 au. aui 
tj = - 

i i 
- + z 

2 3-T , 
- &,v * v. (5) 

The first terms in Eqs. (3) and (4) give a correction 
to the Newton and Stokes laws for viscous flow, 
respectively. The full equations (3) and (4) are de- 
rived by the Grad thirteen-moment kinetic theory 
method [S]; in fact if more moments are taken into 
account, more complicated equations result. Equa- 
tions of this kind have been applied to many hydro- 
dynamical problems: ultrasound propagation [6], 
shear waves [7], shock waves [8], rheology [9], etc. 
(a panoramic view, including experimental results 
which show the limitations of the Newton-Stokes 
approach, can be found in Ref. [l]>. Here, we would 
like to address the conceptual implications of equa- 
tions of this kind from a thermodyn~~~l point of 
view. 

We will for simplicity deal with an ideal 
monatomic gas, so that in accordance with the ki- 
netic theory of gases El] we have p” = 0 but V * Y 
# 0 in general. We assume 77 and 5 to be indepen- 
dent of position and time so that (4) implies t = 0 
and Eq. (2) yields Pi7 = Fir (it is easy to extend the 
analysis which will be developed here to the case 
p” + 0, t$ # 0). 

2. Sound 

We wish to study the evolution of the entropy of 
an isolated fluid in which sound waves are attenu- 
ated due to the internal friction. Consider a fluid 
contained in a cylindrical vessel of section A. We 
take the x-axis normal to the section, and the two 
plane surfaces of the cylinder to be located at x = 0 
and x = L. All variables are assumed to depend on 
the x-coordinate and time only and the fluid is 
assumed to have velocity v = (u, 0, 0). Thus the 
non-slip bounda~ con~tion is for simplicity not 
required to hold. A si~ation in which this is experi- 
mentally observed is that of gases at sufficiently low 
densities so that the velocity varies appreciably over 
the scale of the mean free path [lo] (again, the 
analysis presented here can be generalized in order 

to take the non-slip boundary condition into account). 
Moreover, we assume the thermal conductivity of the 
fluid to be negligible so that heat conduction can be 
ignored (the non-adiabatic case can also be studied 
by means of an additional Maxwell-Cattaneo equa- 
tion for the heat flux. However, the behaviour of the 
entropy associated to such an equation has already 
been explicitly analyzed [3]). 

Consider a ~~urbat~on around a reference equi- 
librium rest state with density po, pressure po, tem- 
perature T,,, specific internal energy u0 and specific 
entropy sO, so that p = p0 + 6p, p =pO + 6p, v = 

(&I, 0, O), cir = Pi; = 8 Pi7 and s = s0 + 6s. 
The linearized balance equations of mass and 

x-momentum read 

(6) 

Ne~ecting heat conduction, the linearized balance 
equation of internal energy leads to El] 

with cP = 7(&r/U) the specific heat at constant 
pressure, Q! = -p -‘[+/aT>, the coefficient of ther- 
mal expansion and c = [($I/+)~]~‘* the Laplace 
sound velocity. This equation and (6) yield 

Note that this equation is valid only for adiabatic 
motion. Also, the fact that an additional term in the 
entropy perturbation 6s does not appear in (8) does 
not imply that Ss vanishes but that the correspond- 
ing term in this equation is negligible, as it will be 
explicitly checked out for the solutions we will deal 
with (in the text under Eq. (23)). 

From (3) and (5) we also have the linearized 
equations 

T~$SP,;+SP,;=D (i+j). 
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Here we will not deal with the general solutions of 
the system formed by Eqs. (6)-(11). Instead, we 
look for a special, the simplest possible case such 
that the study of the evolution of the fluid towards its 
final equilibrium rest state clarifies the limitations of 
local-equilibrium thermodynamics. Therefore, by 
analogy with the case of a rigid system [3], we look 
for damped oscillatory perturbations. We assume that 
the perturbations have the simple form 

Su = Su, sin( kx) cos( wt) e-f/27, (12) 

6p=cos(kx)[A, sin( wt) + B, cos( tit)] e-‘/*‘, 

(13) 

6p=cos(kx)[A, sin( ot) + B,, cos( opt)] e-‘/2’, 

(14) 

8Piy = cos( Ia) [A, sin( wt) + Bpij cos( a)] e-‘/” 

(i, j=x, y, z), (15) 

where k = 2rn/L, n being a natural number, and 
w > 0, 7 > 0. We substitute the ansatz (12)-(15) into 
(6)-(11) and after combining the resulting equations 
we find 

4kr*w 
A,= - 2 2@%, 1+470 BP= -&$,, (16) 

A, = c2A,, B, = c2Bp, (17) 

A 
72w 

pxx= --p&o, 

B 
1 - r2/2r 

pxx= - 
rk 

P&h 7 (18) 

Api,= -iApxx, BP_ = -$Bpxx (i=J’, Z), II 

(19) 

Apt,=& BP,,=0 (W), (20) 

1 
w2+-= 

c2k2 

4r2 1--7*/r’ 

r2(t.d2--$) 

Eqs. (21) give o and r implicitly in terms of k and 
the parameters of the fluid c, 7, po, r2. We note 
from the first equation in (21) that r > r2. In the 
limit 17 --+ 0 and r2 -+ 0 Eqs. (21) give r + CQ and 

w + ck, and Eqs. (18)-(20) give 6P” + 0 as they 
should (see Eq. (3)). Moreover, in the same limit 
Eqs. (12)-(17) become, as they should, the well- 
known undamped characteristic vibrations of a fluid 
in which not only heat conduction but also internal 
friction is absent [ll]. 

The total energy of the fluid is E = lvp(u + 

u*/2> dV, where u is the internal energy per unit 
mass and V is the total volume of the fluid. The 
linearized law of balance of total energy gives 

dE 
-=- 
dt / I( 

VW pouo +p,)&] dV= 0. (22) 
V 

The vanishing of (22) is obtained by writing it as a 
surface integral and applying the conditions that the 
velocity is zero at the plane surfaces of the cylinder 
and that at the curved surface the velocity compo- 
nent normal to this surface vanishes. Eq. (22) shows 
that our fluid is an isolated system. 

Under the local-equilibrium hypothesis one may 
use the local Gibbs equation which gives 

1 
S( x, t) - S( x, 0) = - - 

/ POT0 0 
’ dt BP;‘;b. 

(23) 
The left-hand side of (23) can also be written as 
6s(x, t) - 6s(x, 0). Therefore, from this equation, 
(121, (15) and (18) we see that 6s is of second order 
in tiuo, whereas according to (13), (141, (16) and 
(17) Sp and 6, are of first order in au,. This is in 
accordance with the fact that a term in 6s does not 
appear in Eq. (8). In the limit q--+ 0 and r2 -+ 0 we 
have 8P,“, + 0 and (23) gives ds(x, t)/dt = 0 as it 
should [ll]. 

Substitution of (12) and (15) into (23), integration 
in time and using (18) gives, after integration over 
the whole system, 

S(f) -3(O) 

1 - ;i, 
=1+- 

1 +402 

+ -1+$,+ 
i 

26(1- F2) 

1+4ij2 
sin(2ijQ 

+ 
-2+?,(1-4L2) 

2(1 + 462) (24) 
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where the tildes are used for the set of dimensionless 
variables 

s= 4T0 

P0(f%)2~ 
s, c-G=,,, 

72 t 

T,=--, t’= - 

7 7 

andwehave &>OandO<?,<l. 
Either from (24) or from (23) we can find the 

extremal values of $8: for t’ = (2n + 1)7r/2 6, with 
n=o, 1, 2 ,***, which corresponds to vanishing ve- 
locity, the entropy reaches a relative maximum; for 
the values of i such that tan(ijz) = (1 - 2/?,)/2&, 
which corresponds to vanishing viscous pressure ten- 
sor, the entropy reaches a relative minimum. 

In order to asses the influence of ij and ?, on the 
evolution of the reduced entropy 3, we plot in Fig. 1 
function (24) for a fixed value of f2 and several 
values of 6. Fig. 2 corresponds to a fixed value of &I 
and several values of i,. In all plots in both figures, 
the initial entropy is less than the final entropy, 
which is consistent with the second law of thermody- 
namics if applied between the initial and the final 
states. However, in the same figures we observe the 
non-monotonic evolution of the entropy (241, which 
has been obtained from the local-equilibrium hypoth- 
esis. This is due to the fact that this hypothesis 
breaks down in situations where linear constitutive 
laws (such as the Newton law of viscous flow) do 
not hold [12]. It raises an inconvenience since ac- 
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Fig. 1. Reduced entropy as a function of i calculated from 

local-equilibrium thermodynamics for different values of i, when 

i, = 0.9. The origin is fixed at $0). 
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T 

Fig. 2. Reduced entropy as a function of 7 calculated from 

local-equilibrium thermodynamics for different values of i, when 

6 = 3.5. The origin is fixed at $0). 

cording to the second law the entropy of an isolated 
system can never decrease. We have therefore ex- 
plicitly seen that for hydrodynamical problems de- 
scribed by equations of the Maxwell-Cattaneo type, 
which are well founded both theoretically and exper- 
imentally, the local-equilibrium formulation of the 
second law must be generalized. In view of this we 
will use extended irreversible thermodynamics (EIT), 
which gives such a generalization. 

3. Extended irreversible thermodynamics 

EIT does not rest on the local-equilibrium hypoth- 
esis. It postulates the specific entropy to depend on 
the fluxes as well as on the classical variables u and 
p and obtains a specific entropy which reads for a 
fluid with vanishing bulk viscous pressure in the 
absence of heat conduction and for small values of 
the viscous pressure tensor [ll 

s$(u, p, P”) =s(u, P) - - 72 PY:PY, 
~VTP 

(26) 

where S(U, p) stands for the local-equilibrium en- 
tropy and P” : P” = &jPiyPjy. In more general situa- 
tions (26) can be generalized into more complicated 
expressions, but this will not be necessary to stress 
the fundamental physical features. 

Expression (26) for the entropy may also be 
obtained from the kinetic theory [5] by using the 
Boltzmann definition S = -k/f In f dc, with f the 
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Fig. 3. Reduced entropies as a function of i calculated from 
ill-equ~ib~um the~~ynami~ (dashed curves) and from the 
EIT model (full curves) for different values of tj when ?r = 0.9. 
The origin is fixed at $0). 

non-equilibrium distribution function and c the 
molecular velocity. One more way to understand the 
non-classical term in (26) is by means of the follow- 
ing physical process: consider an elementary cell in a 
fluid out of equilibrium and take the cell to be 
sufficiently small so that the velocity gradients can 
be neglected. If the cell is isolated at some time 
(which we may take as t = 01, it will thereafter 
decay to equilibria. The final equilibrium and the 
initial non-equilibrium specific entropies, sf and s< , 
respectively, are related through st - ST = / dt a/p, 

I I 
I,0 

t 

Fig. 4. Reduced entropies as a function of i calculated from 
local-equilibrium thermodynamics (dashed curves) and from the 
EIT model (full curves) for different values of i, when 6 = 3.5. 
The origin is fixed at $0). 

where the integration is from r = 0 to r = a and cr 
is the rate of entropy production given by 

1 
r.r= -hP” : P”. 

27F 
(2-O 

Using the exponential decay for P” implied by (3) in 
this case one readily gets for si* Eq. (26). 

In our case (26) can be written, making use of 
(19) and (201, 

Let us define the difference between both entropies 
as s’ = s - s * . Substitution of (15) and (18) into (28) 
and integration over the whole system gives, making 
use of (21) and of (25), 

S(Z) = 
i*($+Bi;+l,i,-I 

X [?,D sin( 6;) + (1 - +?,) 

X cos( cj?)] * e-‘. (29) 

In Figs. 3 and 4 we plot the reduced entropies from 
EIT and from local-equilibrium the~~ynamics for 
the same values of & and ?2 as in Figs. 1 and 2, 
respectively. Figs. 3 and 4 show that the total EIT 
entropy of the isolated system is a monotonic in- 
creasing function of time, whereas local-equilibrium 
thermodynamics cannot be consistently used in situa- 
tions where the evolution of the fluid is described by 
relaxational-type equations. 
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