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Do global string loops collapse to form black holes? 
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Hawking has shown that the emission of gravitational radiation cannot prevent circular loops of gauged cosmic strings from 
collapsing into black holes. Here we consider the corresponding question for global strings: can Goldstone boson emission prevent 
circular loops of global cosmic strings from forming black holes? Our results show that for every value of the string tension there 
is a certain critical size below which the circular loop does not collapse to form a black hole. For GUT scale strings, this critical 
size is much larger than the current horizon. 

Some years ago, Hawking [ 1 ] proved that  a circular  loop of  gauge cosmic string would eventually collapse to 
form a black hole. Fur thermore ,  he showed that  in the process of  collapse, the loop would radiate  at most  29% 
of  its total  energy in gravi ta t ional  radia t ion  before forming a black hole. The analysis Hawking gave used the 
singulari ty theorems of  gravity and d id  not  depend on the field theoretic details  of  the gauge string. 

In the present  paper  we will consider  a circular  loop of global string. Here the loop pr imar i ly  radiates Gold-  
stone bosons during its collapse and the quest ion arises i f a  black hole can eventually form. It is unfortunate  that 
there are no corresponding singulari ty theorems that  can give informat ion about non-gravi tat ional  radia t ion 
and so we have to use a method  which is much less elegant than that  used by Hawking: we explicit ly find the 
energy lost in Golds tone  bosons as a function of  t ime and check if  the loop ever collapses to within its own 
Schwarzschild radius. I f  it does, then a black hole will form while if  the loop never falls within its Schwarzschild 
radius then a black hole will not form. 

In o rder  to f ind the energy lost by the loop into Golds tone  boson emission,  we have had to make a number  of  
s impli fying assumptions .  For  example,  we have ignored the radia t ion  back-react ion [2,3 ], the self-gravity of  the 
loop and the energy lost to gravi ta t ional  radiat ion.  Because of  these assumptions,  our results cannot  be consid- 
ered rigorous. However ,  we feel that  a substant ial ly more  compl ica ted  calculation without  these s implif icat ions 
would yield qual i ta t ively  s imi lar  results. 

The simplest  field theoret ic  act ion that  gives global strings is 

s= .~ d4x[½10.~J2- l,~( [012-¢12], (11 

where ~b is a complex scalar field. The dynamics  of  global string loops also follows from ( 1 ) but it seems that 
this can only be done numerical ly  [4,3].  Instead a somewhat  different approach is usually taken and the K a l b -  
R a m o n d  act ion is considered [ 5,6 ] : 

l~FuvaF +2Z~rl~Au, daU"- I to~d2a ,  (2)  S= "~ uva 
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where Au. is an antisymmetric tensor field, 

F u . ~ =  O.A.o + O.A~u + O~Au. , (3) 

and the surface element of the string world sheet xU(~, r) is 

daU"=cU"(~, r) d~dr .  (4) 

Here, ~ and r parametrize the world-sheet and 

c U " = 2 1 ' x ' " - 2 " x  'u . (5) 

Overdots and primes denote differentiation with respect to the time coordinate and ~ respectively. In addition, 

d e = (  ' (6) _ ~dau" do.U.) 1/2 

The connection between ( 1 ) and (2) is established by the relation [ 6 ] 

I ~'o'x ~E..~F =~/~u 0, (7) 

where 0 is the phase of the complex scalar field 0. One can also attempt to derive [4] (2) from (1) under 
suitable assumptions. Our attitude in the present work will be to simply adopt (2) as our starting point. This 
point of view is fully justified in the context of cosmic superstrings [ 5 ] as they are based precisely on the action 
in (2). 

We now use the gauge choice 

~ .A""=0 ,  2 " x ' = 0  , ~ i ' 2 " t - X ' 2 = 0  , ~ ' ~ - [  . 

Then the equations of motion following from (2) are 

O~O°A U"= 4rrj "" , 

juo=~q ~ d~fi3(x-x(~,  t))cU"(~, t) , 

#o( 2 u - x ~  ) = 4~r lFu .o2"x  '~ . 

(8) 

(9) 

(lO) 

(11) 

The right-hand side of (11 ) gives the back reaction of the radiation on the dynamics of the string, It can be 
shown [ 7,2 ] that it also contains a term that renormalizes the bare string tension Po ~ r/2. lf  we ignore the radia- 
tion back reaction, the string dynamics is simply that of a Nambu-Goto string. For a circular loop of radius 
R (t), the solution is 

R ( t )  =Ro c o s ( t / R o )  , ( 1 2 )  

where Ro is the radius of the loop at time t = 0. 
We now turn to the radiation from the circular loop. For this we must find the solution to (9) as a function of 

time. This is easily done by standard methods [ 8 ] and after using (10) we find 

2 n  

AU~(x, t ) = r / ~  d~ ~ dr cU"(~, z ) O ( t - z ) f i (  [ x - x ( ( ,  r ) ] 2 ) .  (13) 
0 

For a given value of ¢, the integrand over r will be non-zero only when r equals the retarded time, tr, which is 
defined by 

t r = t - I x - x ( ( ,  tr)[ . (14) 

Differentiating eq. (13) and then using (3) gives a very lengthy expression for the field strength. However, 
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we are only interested in the radiation part of  the field strength. This means that we should let r =  ] x l ~  ~ and 
keep only the leading 1/r  terms of  the field strength. This procedure yields 

FrU~ ~= ~ ~ ~[('~n~+U~n~+~n o c~OnU+c~n~+c~n~ 

where 

n~= x~-x~(~' tr) 
Ix-x(~,tr)[ (16) 

is a null vector. 
We are interested in the flux of  energy radiated from the string. This can be found from the energy-momen-  

tum tensor [ 6 ] 

o, ~(~ad~pO~ ( i ~ 0 )  (17) rrad = --~ ic~p --(rad) 

The energy radiated from the string is given by an integral of  the energy flux over a sphere of  radius r (which is 
taken to ~ ): 

/~=r  2 dO d O s i n O e g T < ~ ) ,  (18) 
o o 

where ei is the unit radial three vector 

e i=  (sin Ocos O, sin Osin O, cos O) . (19) 

Putting together eqs. ( 15 ) - ( 19 ), we get 

/~= d 0 s i n 0 c o s 2 0  d~ d (20) 
o [ 1 - R  sin 0 c o s ( a - e ) ] 2  + [ 1 - R  sin 0 c o s ( a - 0 ) ] 3 . / ]  ' 

where R and its time derivatives are evaluated at the retarded time and a =  ~/Ro. Note that the retarded time in 
the radiation zone ( r ~  ~ ) is given by t~ = t -  r. Therefore, the effect of  having the retarded time in (20) is simply 
to shift t and this shift may be absorbed by redefining t. The overall effect is equivalent to evaluating the inte- 
grand in (20) at time t and not at the retarded time t~. 

The integrations over ~ and ~ can now be done to yield 

i ( 2/~2q - 2 R / ~ "  3Rk2Ksin20 .]2 
1~7~---~27/"3 d0sin 0COS20 (l_/~2sin20)3/2 + -~_R2sin20)5/2' I . (21) 

o 

The integration over 0 can be done by transforming the variable of  integration to u = c o s  0: 

E'(t) = q2zc3( 88>'+ 16x cos 4 x + 1 2  sin 4>. -19  sin 8x)  
512 sin3x cos3x ' (22) 

where x =  t/Ro. 
Next we need to find E(t). For this we need to integrate (22) over t~. We have done this integration numeri- 

cally and the result is shown in fig. 1. 
Our criterion for black hole formation is 

2GM(t) 
R(t) - >~ 1, (23) 
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Fig. 1. The energy (per unit length) radiated from the loop, E~ 
2nRo, in units ofrfl as a function of time, t /R o. 

f(x) 

Fig. 2. The function f ( l )  versus t /R o for various values of  the 
parameter A. 

for any time t. Here M ( t )  is the energy of the loop at time t, that is 

m (  t) = 2 g R o # - E (  t ) . (24) 

Note that the initial energy, 2gRo/t, is given in terms of the renormalized string tension 

/ ~  #oln (~/Ro) = q2A , (25) 

where A varies logarithmically with Ro. 
Let us define a funct ionf( t )  via 

2GM(t )  
4~G#f( t ) - (26) 

R ( t )  

Using (12), (24), (25) and (26) wefind 

l ( e(t) ] 
f ( t ) -  cos(t /Ro) 1 2~--o~o~2A ] .  (27) 

The criterion for black hole formation now is 4rcG/~ > 1/ f ( t )  for some t. 
In fig. 2 we plot f ( t )  versus x =  t/Ro for values of A between 1 and 100. The behaviour of the plots is easily 

understandable in terms of two effects present in eq. (27): (i) the factor of cos(T/Ro) in the denominator - 
that is, the collapse of the loop - which tends to increase f ( t ) ,  and, (ii) the term E(t)  - that is, the energy lost 
to radiation - which tends to decrease f ( t ) .  For small values of A, the effect of the radiation is very strong and 
the decrease i n f ( t )  due to the rapid increase in E( t )  cannot he overcome by the effects of loop collapse. As a 
result, f ( t )  continues to decrease from t= 0 until it vanishes. At this point, the loop has radiated away all its 
energy. (Realistically, our calculation breaks down for such small A since the radiation is very intense and back- 
reaction effects will be important. ) When A is large, the collapse of the loop is the dominant effect on the behav- 
iour o f f ( t )  and hence f ( t )  grows. This growth can only continue for a while, however, since E( t )  is a growing 
function that blows up at t = ½ Ro~. Therefore, f ( t )  grows for a while, then turns around and starts decreasing. 
This shows that f ( t )  always has a maximum value, fmax. 

The criterion for black hole formation can now be written as 

4~G~ > f  m~x, (28) 

for a given value of A. In fig. 3 we display the region of parameter space (4~G#, A) where black holes will not 
form. An important way in which our results differ from the results for gauge strings is that circular gauge string 
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Fig. 3. The region of parameter space (A, 4riG,u) where black holes cannot form is shown as the unhatched region. The hatched region is 
where it might be possible for black holes to form. 

loops of  any size and tension will collapse to form black holes whereas only large loops of  relatively massive 
global string can possibly form black holes. The dependence  on the size of  the loop is hidden inside the param-  
eter A. 

Note that, since we have ignored certain factors like the radia t ion back-reaction,  turbulence [ 3], the gravita- 
t ional  rad ia t ion  and the universal  expansion,  we can safely say when black holes will not form but  we cannot  be 
absolutely sure of  when black holes will form. Fur thermore ,  we have only t reated the case o f  a circular  loop 
which is most  favoured to collapse to a black hole. I f  the loop is not circular, black hole format ion is even less 
likely [ 9 ]. 

A specific value o f  the string tension is relevant if  we consider  global strings as possible seeds for galaxy 
formation.  Then, 4z~G~t ~ 10-  5 and for such strings to form black holes we certainly need A > 100. Circular  loops 
of  this size stretch far beyond the current  horizon and so we conclude that global strings relevant for galaxy 
format ion  will not  form black holes. 

We would like to thank Jaume Garr iga,  V.F. Mukhanov  and Alex Vilenkin for discussions. J.F. would also 
like to thank R. Calm for help with the computing.  J.F. was suppor ted  in part  by a Fulbright  Fel lowship from 
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