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There is a long-standing controversy between two models of the
Neolithic transition. The demic model assumes that the Neolithic
range expansion was mainly due to the spread of populations, and
the cultural model considers that it was essentially due to the spread
of ideas. Herewe integrate thedemic and culturalmodels in a unified
framework. We show that cultural diffusion explains ∼40% of the
spread rate of the Neolithic transition in Europe, as implied by ar-
chaeological data. Thus, cultural diffusion cannot be neglected, but
demic diffusion was the most important mechanism in this major
historical process at the continental scale. This quantitative approach
can be useful also in regional analysis, the description of Neolithic
transitions in other continents, and models of many human spread
phenomena.
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The Neolithic transition, a major episode in human history, is
defined as the shift from a hunter-gatherer economy (Paleo-

lithic) into another one based on agricultural activities (Neolithic)
(1). In the Near East, this transition took place ∼12,000 y ago, and
from there it spread across Europe until ∼5,000 y ago (2–4).
Archaeologists have provided many data that make it possible to
measure the speed of the spread of the Neolithic transition, but
they disagree on which of the following possibilities is correct: (i) it
was mainly a demic process (range spread of farmers) (5); (ii) it
was mainly a cultural one (transmission of the plants, animals and
knowledge of farmers to hunter-gatherers (6)); or (iii) it was
mainly demic in some regions and mainly cultural in others (7). It
is important to note that many authors have clearly argued for the
importance of both demic and cultural diffusion. For example,
Ammerman and Cavalli-Sforza (8), when introducing their demic
diffusion model in 1973, wrote that demic and cultural diffusion
are not mutually exclusive, and discussed the interactions between
the Neolithic and Paleolithic populations that would have led to
cultural diffusion and genetic clines. These authors also made
some crucial statements: “The real question may well be to eval-
uate the relative importance of demic and cultural diffusion in
different regions of Europe” because “in some areas both are
likely to have contributed to the spread of farming,” but “what is
necessary before such an attempt can be made is the introduction
of much more specific models” (ref. 4, pp. 6, 135, and 62, re-
spectively). This is precisely the problem to which the present
paper aims to contribute: we will here present a model, and apply
it to determine the importance of demic and cultural diffusion on
the spread rate at the continental scale. We will also outline how
our model could be applied to solve the same problem at regional
scales in future work.
Several aspects of transitions in human prehistory have been

analyzed during the past decade using increasingly refined math-
ematical models (9–16). On the other hand, genetic studies have
led to an increasing consensus that demic dispersal was important
in the Neolithic transition in Europe (17, 18). However, our pur-
pose in this paper is not to analyze the origin and spread of genes.
Instead, we ask a different question: What do the archaeological
data tell us on the relative importance of demic and cultural dif-
fusion on the spread rate of the Neolithic front? An advantage of
focusing our attention on the spread rate (not on the genes) is that

it makes direct quantitative comparisons to archaeological data
possible. However, up to now, mathematical models of population
spread (9–16) have not been applied to the controversy between
the demic and cultural models of the Neolithic transition. Can
a mathematical model, based on anthropologically realistic prin-
ciples, shed some light on the relative importance of the demic and
cultural contributions to the spread rate of the Neolithic transi-
tion? Here we will show that the answer to this question is affir-
mative, by integrating demic models with cultural transmission
theory in a unified framework.

Results
To focus on the effects of cultural transmission, consider first
homogeneous systems (i.e., such that the population densities do
not depend on position). Let PN stand for the total number of
Neolithic farmers and PP for the total number of Paleolithic
hunter-gatherers. The evolution equations are (Methods)

8>>><
>>>:
P′N = PN + f

PNPP

PN + γPP

P′P = PP − f
PNPP

PN + γPP

; [1]

where the primes denote after the effect of cultural transmission.
The positive and negative signs correspond to the fact that the
transmission of the cultural trait (agriculture) increases the num-
ber of farmers and decreases that of hunter-gatherers. The pa-
rameter f in Eq. 1 is the intensity of cultural transmission, and the
interpretation of γ is as follows. If γ < 1, then γ is a measure of the
preference by hunter-gatherers to copy the behavior of farmers
rather than that of other hunter-gatherers (conversely, if γ > 1
hunter-gatherers prefer to copy other hunter-gatherers rather than
farmers; Methods). In contrast to Lotka-Volterra (4, 12, 19) or
other (16) equations for interacting populations, the evolution
Eq. 1 has been derived from cultural transmission theory (20)
(Methods). In Frequency-Dependent Cultural Transmission, we
include an explanation on why more complicated, frequency-
dependent models are not necessary for our purposes.
To analyze the spatial dynamics of the Neolithic spread, we

need to extend this framework to nonhomogeneous systems. We
will not take into account geographical factors (mountains, sea
travel, etc.), because they have been recently shown to have a small
effect at the continental scale in purely demic models (3). Let
Nðx; y; tÞ and Pðx; y; tÞ stand for the local population densities (per
unit area) of Neolithic farmers and Paleolithic hunter-gatherers,
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respectively, at position ðx; yÞ and time t. As is shown in Methods,
the simplest nonhomogenous generalization of Eq. 1 is the fol-
lowing set of coupled reaction-diffusion equations:

8>>><
>>>:

∂N
∂t

= DN∇2N + FðNÞ +
f
T

NP
N + γP

∂P
∂t

= DP∇2P + FðPÞ − f
T

NP
N + γP

; [2]

whereDN andDP are the diffusion coefficients of the N and P popu-

lations, respectively, FðNÞ= aNN
�
1− N

KN

�
and FðPÞ= aPP

�
1− P

KP

�
are logistic functions describing net reproduction (with ai the initial
growth rate and Ki the carrying capacity of population i= N, P),
and T is the generation time (defined as the mean time interval
between the migration of an individual and one of her/his children
(21) and roughly the same for both populations (22)]. Logistic
growth functions are well-known to agree with many population
data for humans (ref. 9 and references therein). Fisher’s equation
is obtained from Eq. 2 if f = 0: Fisher’s equation was used by
Ammerman and Cavalli-Sforza in their demic diffusion model (4,
8). However, in recent years it has been shown that reaction-dif-
fusion equations can lead to substantial errors for human pop-
ulations due to two special features of human mobility: (i) the
effect of realistic human dispersal kernels is important and leads
to the breakdown of the diffusion approximation (11), and (ii)
humans need to spend some time with their parents before being
able to disperse and survive on their own (cohabitation effect) (23).
Taking both effects properly into account, Eq. 2 is replaced by the
more realistic set of integrodifference, discrete-time equations
(Methods)8<
:
Nðx; y; t+TÞ =

Z∞

−∞

Z∞

−∞

N
~ �

x+Δx; y+Δy; t
�
ϕN

�
Δx;Δy

�
dΔx dΔy

;

Pðx; y; t+TÞ =
Z∞

−∞

Z∞

−∞

P
~�
x+Δx; y+Δy; t

�
ϕP

�
Δx;Δy

�
dΔx dΔy [3]

where

N
~ ðx; y; tÞ ≡ RT ½Nðx; y; tÞ�+ f

RT ½Nðx; y; tÞ�RT ½Pðx; y; tÞ�
RT ½Nðx; y; tÞ�+ γRT ½Pðx; y; tÞ�

P
~ ðx; y; tÞ ≡ RT ½Pðx; y; tÞ�− f

RT ½Nðx; y; tÞ�RT ½Pðx; y; tÞ�
RT ½Nðx; y; tÞ�+ γRT ½Pðx; y; tÞ�; [4]

RT ½Nðx; y; tÞ� = eaNTKN Nðx;y;tÞ
KN + ðeaNT − 1ÞNðx;y;tÞ, and RT ½Pðx; y; tÞ� =

eaPTKP Pðx;y;tÞ
KP + ðeaPT − 1ÞPðx;y;tÞ are the new population densities due to logistic
net reproduction during the time interval T, and ϕiðΔx;ΔyÞ is the
dispersal kernel of population i= N, P.
As shown in Methods, when population N expands its range

into a space occupied by population P, and their population
densities evolve according to Eqs. 3 and 4, the front speed is

s=min
λ> 0

aNT + ln
h�
1+C

��PM
j=1pjI0

�
λrj

��i
Tλ

; [5]

where, interestingly, the cultural transmission parameters f and γ

do not appear separately but combined in their ratio, C= f
γ. In our

opinion, this combination is a nice result because of its simplicity
and because it has a clear interpretation: C is the average number
of hunter-gatherers converted by each farmer per generation at the

leading edge of the wave of advance, i.e., for N << P (Methods).
Finally, pj is the probability of the N individuals to disperse at
distance rj (j= 1, 2, . . . ,M), and I0ðλrjÞ= 1

2π

R 2π
0 dθ exp½− λrj cosθ� is

the modified Bessel function of the first kind and order zero.
According to ethnographic reports, farming is rarely copied at

large distances by hunter-gatherers (24, 25). Accordingly, we do
not include nonlocal cultural transmission here; however, taking
it into account would not change our conclusions as long as we
use parameter values estimated from empirical data (Nonlocal
Cultural Transmission).
To apply Eq. 5 we use the following parameter ranges, as

obtained from ethnographic and archaeological observations
(Parameter Values and Observed Neolithic Front Speed Range),
0:023 y−1 ≤ aN ≤ 0:033 y−1, 29≤T ≤ 35 y, 1:0≤C≤ 10:9, and the
following probabilities and distances for the dispersal kernel:
fpjg= {0.42; 0.23; 0.16; 0.08; 0.07; 0.02; 0.01; 0.01}, frjg= {2.3;
7.3; 15; 25; 35; 45; 55; 100} km. Other realistic kernels for pre-
industrial farmers yield similar results (Parameter Values and
Observed Neolithic Front Speed Range). Using these ranges into
Eq. 5 we obtain Fig. 1, which plots the maximum and minimum
Neolithic front speeds (full and dashed curves, respectively).
Also in Fig. 1, the observed speed range of the Neolithic tran-
sition in Europe is shown by the hatched horizontal rectangle
and has been obtained from archaeological data (Parameter
Values and Observed Neolithic Front Speed Range). The observed
range of the conversion intensity C of agriculture from farmers
to hunter-gatherers corresponds to the hatched vertical rectangle
and has been obtained from anthropological data (Parameter
Values and Observed Neolithic Front Speed Range). For 1≤
C≤ 2:5 (black area in Fig. 1), the predicted speed range (i.e., that
between the dashed and full curves) is seen to be consistent with
the observed speed range (hatched horizontal rectangle). Finally,
in Fig. 1, we observe that the speed has a finite limit sp as C→∞,
which is simply the maximum possible speed for individuals

0.01 0.1 1 10 100 1000 10000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

simulations

consistency between 
predicted and 
observed speeds

observed C  range

minimum
predicted
speed

sp
ee

d 
(k

m
/y

r)

C

maximum
predicted
speed

observed speed range

s *

Fig. 1. Predicted Neolithic front speeds. The maximum speed (full curve)
has been computed using Eq. 5, the maximum observed value for the
growth rate of preindustrial farmers (aN = 0.033 y−1) and their minimum
generation time (T = 29 y). The minimum speed (dashed curve) has been
computed using Eq. 5, the minimum observed value for the growth rate of
preindustrial farmers (aN= 0:023 y−1) and their maximum generation time
(T = 35 y). The hatched horizontal rectangle corresponds to the observed
speed of the Neolithic front in Europe (0.9<s<1.3 km/y). The hatched vertical
rectangle corresponds to the observed range of the conversion intensity
(1.0<C<10.9). Details on the observations leading to these observed ranges
of aN, T, s, and C, as well as to the dispersal kernels of preindustrial farmers,
are given in Parameter Values and Observed Neolithic Front Speed Range.
The symbols are the speeds obtained from numerical simulations of Eqs. 3
and 4 (Numerical Simulations).
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moving up to a maximum distance Δmax per generation, namely
sp = Δmax

T . For the kernel introduced above, Δmax = 100 km, and
we obtain sp = 2:857 km/y for T = 35 y and sp = 3:448 km/y for
T = 29 y, which agree up to the third decimal digit with the values
of sp obtained from Eq. 5 in Fig. 1. This is a useful check of Eq. 5,
and also shows that our Eqs. 3 and 4 are physically more rea-
sonable than the reaction-diffusion model 2, which predicts an
unbounded speed as C→∞ [for completeness, in Reaction-Dif-
fusion Model, we show that the reaction-diffusion model 2 leads
to similar results than Eqs. 3 and 4, so our conclusions do not
depend on the use of a dispersal kernel (11), instead of con-
ventional diffusion, or on the cohabitation effect (23)].
Fig. 2 shows the effect of cultural transmission (i.e., the per-

cent difference between the speed in Fig. 1 for the value of C
considered and the speed of the purely demic model, C= 0,
relative to the former). Fig. 2 shows that, for the range implied
by the observations in Fig. 1 (1≤C≤ 2:5 ), the cultural effect is
40 ± 8%. Conversely, the demic effect is ∼60%, which implies
that, at the continental European scale, the contribution of
demic dispersal (spread of populations) was substantially larger
(∼50% larger) than that of cultural transmission (spread of
ideas). Therefore, demic diffusion was the most important effect
driving the Neolithic range expansion in Europe, but the effect of
cultural diffusion was also important and cannot be neglected.

Discussion
We stress that this paper does not attempt to answer the ques-
tion of whether the genes of modern-day Europeans are pri-
marily of Middle Eastern farmer origin. Instead, we have focused
on whether the archaeological data imply that the main mech-
anism responsible for the spread rate was demic or cultural
diffusion. To tackle this question, here we have presented
a model of culture spread that combines cultural transmission
theory with the effects of demic dispersal and population growth.
The model is based on physical transport equations and an-
thropologically realistic assumptions and parameter values, and
it leads to an equation for the spread rate of the wave of ad-
vance, Eq. 5, that depends on the number C of hunter-gatherers
converted by farmer and generation at the leading edge of the
front, which seems reasonable. The model also shows that, at
the continental scale, demic diffusion was the most important

process responsible for the spread rate of the Neolithic transition
in Europe. This framework unifies demic front propagation (23)
and cultural transmission theory (20), and also shows how
Neolithic transitions are likely to function, driven by a combina-
tion of demic and cultural diffusion and amenable to physical
modeling. Of course, the 40% contribution of cultural diffusion
(as estimated above) is a continental average and will vary spa-
tially. Therefore, the model should be also applied to regional
analyses. For example, the Linearbandkeramic (LBK) Neolithic
culture in central Europe spread rate has been recently (26)
estimated as 0.8 km/y, which is consistent with the curves in Fig.
1 for C≈ 0 (0.7–0.9 km/y), implying a very small percentage for
the cultural effect (Fig. 2 for C≈ 0). This result is encouraging,
because the LBK range expansion is widely regarded as demic by
archaeologists (27). More detailed analyses of the LBK data will
be necessary to estimate the statistical errors in the LBK ob-
served speed and its cultural effect. Similar work should be
performed for other inland Neolithic cultures. On the other
hand, some local Neolithic speeds were substantially faster (26)
but, because sea travel was probably important, simulations in
real geographies will be necessary to perform detailed compar-
isons of our model with such data. Overall, this work opens a way
to discriminate the roles of demic and cultural diffusion at re-
gional scales within Europe, as well as for Neolithic transitions in
other regions of the world and for other historical transitions and
cultural diffusion phenomena. The approach in this paper will be
extended elsewhere to include interbreeding. Further specific
potential applications include the Austronesian Neolithic ex-
pansion (28), many examples of language substitution, crop dis-
persals (29), etc.

Methods
Homogeneous Systems. It is well known from ethnographic studies that
hunter-gatherers (P) sometimes become farmers (N), but the reverse tran-
sition is very rare (4). Thus, the cultural process P→N will be included in our
model, whereas N→P will not. For the number of individuals in the new
generation we write

�
P’
N = PN + I
P’
P = PP − I

; [6]

where I≥ 0 (the interaction term) is the number of hunter-gatherers be-
coming farmers per generation.
Special case. A derivation (20) for the interaction term I under cultural
transmission introduces n as the number of teachers (other than parents)
that a P individual contacts during his/her lifetime. This derivation also
assumes that, of these n teachers, a proportion u= PN

PN +PP
is of type N, so the

number of teachers of type N is nu=n PN
PN + PP

(in the next paragraph, we drop
this assumption and generalize this model). If g is the probability that a P
individual becomes N due to contact with a single N individual, the proba-
bility that he will become N after n contacts is 1− ð1−gÞnu (20). If g is small,
this simplifies to fu

�
with f =ng and u= PN

PN + PP

�
(20). Thus, the number of P

individuals becoming farmers (N) per generation is

I= fuPP = f
PNPP

PN + PP
: [7]

In systems without net reproduction (as in ref. 20, but not in our case), the
population size PN + PP is constant and the first equation of Eq. 6 becomes
the well-known equation u’ =u+ fuð1−uÞ (20). We also note that for
PN >> PP , the second equation of Eq. 6 becomes P’

P = ð1− fÞPP , which implies
that f ≤1. We have assumed that the number n of teachers that a P in-
dividual contacts during her/his lifetime is independent of PN and PP . Al-
ternatively, we could assume that n is proportional to PN + PP (leading to the
Lotka–Volterra interaction—namely, I= kPNPP). However, a constant value
for n seems more realistic because the number of teachers, friends, etc. per
individual is empirically observed to be roughly the same for many different
populations (30). Note also that according to Eq. 7, I becomes, e.g., in-
dependent of PN if PN >> PP , which seems reasonable because each P in-
dividual cannot interact with an arbitrarily large number of N individuals.
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Fig. 2. Cultural effect on the Neolithic front speed, defined as the percent
difference between the speed predicted by the demic-cultural model and
that predicted by the purely demic model (C = 0), relative to the former. This
figure shows that, for the range of C consistent with the observed speed in
Fig. 1 (hatched rectangle), the effect of cultural transmission on the spread
rate of the Neolithic transition in Europe was 40 ± 8%.
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More complicated models can be considered, based on the assumption
that the probability g (and therefore f =ng) depends on u= PN

PN + PP
. However,

the main conclusion of this paper would not change if this effect
were included (Frequency-Dependent Cultural Transmission), so frequency-
dependent models are not necessary here.
Generalized model. For our purposes, Eq. 7 has a serious limitation. If PN << PP ,
the first equation of Eq. 6 becomes P’

N = ð1+ fÞPN , which combined with f ≤ 1
implies that each N individual can at most convert a single P individual in
their lifetime. This result does not seem reasonable, in general, because
there are many historical events where a small number of immigrants can
introduce a new technology rapidly across a society. Therefore, we gener-
alize the special case in the previous paragraph as follows. That special case
assumes that a P individual is equally likely to contact with N or P individuals
(so that the number of N teachers he/she contacts is n PN

PN + PP
). Let us now

assume that, for learning purposes, a P individual contacts with only a frac-
tion α of his/her N neighbors and a fraction β of his/her P neighbors. Then,
the number of N teachers that he/she contacts is n αPN

αPN + βPP
=n PN

PN + γPP
, where

γ = β
α (the special case in the previous paragraph corresponds to α= β or γ =1).

Repeating the derivation in the previous paragraph leads to the following
generalization of Eq. 7:

I= f
PNPP

PN + γPP
; [8]

and this yields Eq. 1. The case γ < 1 corresponds to a higher tendency for
hunter-gatherers to select farmers rather than hunter-gatherers as teachers
(α> β). For PN << PP , Eq. 8 becomes I=CPN , where C = f

γ. Then the first
equation of Eq. 6 yields P’

N = ð1+CÞPN , which shows that C is the number of
hunter-gatherers converted by each farmer per generation at the leading
edge of the wave of advance (PN << PP ). Many hunter-gatherers will be
converted by each farmer if C >> 1. Note that I becomes independent of PP if
PN << PP , I becomes independent of PN if PN >> PP , and both results seem
reasonable (as explained below Eq. 7).

Nonhomogeneous Systems. In this case, the population densities Nðx; y; tÞ and
Pðx; y; tÞ depend on space ðx; yÞ and time t. We discuss the evolution equa-
tion for N only, because that for P is analogous. The simplest model is called
the noncohabitation model. As we shall now see, it includes Fisher’s equa-
tion as a special case. The noncohabitation model (9) is based on the fol-
lowing assumption for the change in Nðx; y; tÞ during a generation time T
(defined as the mean time interval between the migration of an individual
and one of her/his children),

Nðx; y; t +TÞ−Nðx; y; tÞ = R∞
−∞

R∞
−∞

N
�
x+Δx ; y +Δy

�
ϕN

�
Δx ;Δy

�
dΔxdΔy −Nðx; y; tÞ

+RT ½Nðx; y; tÞ�−Nðx; y; tÞ+ f
Nðx; y; tÞPðx; y; tÞ

Nðx; y; tÞ+ γPðx; y; tÞ
: [9]

In Eq. 9, the two first terms in the right-hand side are due to population
movement (dispersal), the third and fourth ones are due to net reproduction
(births minus deaths), and we have added the last term to include cultural
transmission, in agreement with Eq. 1 (9). Models with a distribution of
generation times T yield similar results (21). The dispersal kernel ϕNðΔx ;ΔyÞ
in Eq. 9 is the probability of migration from an area centered at
ðx +Δx ; y+Δy Þ at time t to an area centered at ðx; yÞ at time t + T . The third
term in the right-hand side of Eq. 9 corresponds to logistic dynamics,

8>>><
>>>:
RT ½Nðx; y; tÞ� = eaNTKN Nðx; y; tÞ

KN + ðeaNT − 1ÞNðx; y; tÞ
RT ½Pðx; y; tÞ� = eaPTKP Pðx; y; tÞ

KP + ðeaPT − 1ÞPðx; y; tÞ
; [10]

which agrees with many population data for humans (ref. 9 and citations
therein). Assuming isotropic kernels and performing a Taylor expansion up
to second order in Δx and Δy and up to first order in T yields Fisher’s
equation (9) with an additional term (due to cultural transmission),

∂N
∂t

¼ DN∇2N þ FðNÞ þ f
T

NP
N þ γP

[11]

where DN ≡
R∞
−∞

R∞
−∞ðΔ2

x þ Δ2
yÞϕNðΔx ;ΔyÞdΔxdΔy is the diffusion coefficient of

the Neolithic population and FðNÞ= aNN
�
1− N

KN

�
its logistic growth function

[second-order terms in T are sometimes also included (9), but they are not
necessary for our purposes here]. This step completes the derivation of the

reaction-diffusion Eq. 2. However, when applied to human populations,
reaction-diffusion equations can lead to substantial errors for two reasons:
(i) It has been shown that the diffusive approximation (i.e., the second-order
spatial Taylor expansion above) breaks down for realistic human dispersal
kernels (11). (ii) According to Eq. 9, newborn individuals can appear at (x,y)
(terms RT ½Nðx; y; tÞ�− Nðx; y; tÞ) while their parents migrate away from (x,y)
(first two terms in the right-hand side). In other words, some parents leave
their newborn children alone. Because newborn humans cannot survive
alone, it is more realistic to replace Eq. 9 by the so-called cohabitation
equation (figure 1 in ref. 11, and refs. 10 and 23)—namely,

N ðx; y; t + TÞ=
Z∞

−∞

Z∞

−∞

N
~ �

x +Δx ; y +Δy ; t
�
ϕN

�
Δx ;Δy

�
dΔxdΔy ; [12]

where

~Nðx; y; tÞ≡RT ½Nðx; y; tÞ�+ f
RT ½Nðx; y; tÞ�RT ½Pðx; y; tÞ�

RT ½Nðx; y; tÞ�+ γRT ½Pðx; y; tÞ�: [13]

This procedure leads to Eqs. 3 and 4, thereby generalizing the cohabitation
model (23) to include cultural transmission.We have assumed that reproduction
is followed by cultural transmission (Eq. 13) and then by dispersal (Eq. 12).
However, it is easy to see that the front speed (derived below) is the same re-
gardless of order of events. For more detailed derivations and discussions on the
order of events and the basic cohabitation Eqs. 12 and 13 (without the last term
in Eq. 13), see especially figure 1 of ref. 11, figure 17 of ref. 10, and ref. 23.

Front Speed. To model the Neolithic transition, we consider farmers initially
only in a given region (an area located in the Near East, according to ar-
chaeological evidence). Because humans disperse and reproduce, farmers can
gradually spread into other regions (e.g., into Europe, which was initially
occupied by hunter-gatherers but not by farmers, again according to ar-
chaeological evidence). In the leading edge of the advancing agricultural
population front, we may linearize the population densities as

�
Nðx; y; tÞ= εðx; y; tÞ+Oð2Þ
Pðx; y; tÞ= KP − δðx; y; tÞ+Oð2Þ; [14]

where ε ðx; y; tÞ � KN , δðx; y; tÞ � KP , and O(2) are second-order terms. Then
Eq. 10 becomes

8><
>:
RT ½Nðx; y; tÞ�= eaNT εðx; y; tÞ+Oð2Þ
RT ½Pðx; y; tÞ�= KP−

δðx; y; tÞ
eaPT

+Oð2Þ: [15]

Using Eq. 15 into 13 and performing a two-variable Taylor expansion yields

~Nðx; y; tÞ= eaNT ð1+CÞNðx; y; tÞ+O
�
2
�
; [16]

where C = f
γ; and finally Eq. 12 becomes simply

Nðx; y; t + TÞ≈ eaNT ð1+CÞ
Z∞

−∞

Z∞

−∞

N
�
x +Δx ; y +Δy ; t

�
ϕN

�
Δx ;Δy

�
dΔxdΔy : [17]

When observed dispersal data are used, the kernel per unit length φNðΔÞ is
defined as the probability to disperse into a ring of radius Δ and width dΔ,
divided by dΔ. If individuals of the population N have probabilities pj to
disperse at distances rj (j = 1, 2, . . ., M),

φNðΔÞ=
XM
j=1

pjδ
ð1Þ�rj�; [18]

where δð1ÞðrjÞ is the one-dimensional Dirac δ centered at rj (i.e., a function that
vanishes everywhere except at Δ= rj). Because the total probability must be 1,

1=
Z∞

0

φNðΔÞdΔ; [19]

and φNðΔÞ is clearly a probability per unit length. In contrast, the kernel
ϕNðΔx ;ΔyÞ in Eq. 17 is a probability per unit area (because it is multiplied
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by dΔxdΔy , which has units of area). The normalization condition for
ϕNðΔx ;ΔyÞ is therefore

1=
Z∞

−∞

Z∞

−∞

ϕN

�
Δx ;Δy

�
dΔxdΔy = 2π

Z∞

0

ϕNðΔÞΔdΔ; [20]

where we have used polar coordinates Δ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

x +Δ2
y

q
, θ= tan−1ðΔx=ΔyÞ, and

assumed the kernel is isotropic, ϕNðΔx ;Δy Þ=ϕNðΔÞ. Comparing Eqs. 19 and
20, we see that the dispersal probability per unit length [i.e., into a ring
of area 2πΔdΔ) φNðΔÞ is related to that per unit area ϕNðΔÞ, as in Fort and
Pujol (10)],

φNðΔÞ= 2πΔϕNðΔÞ; [21]

and Eq. 18 yields

ϕNðΔÞ=
XM
j=1

pj
δð1Þ

�
rj
�

2πΔ
: [22]

For homogeneous parameter values, the speed will not depend on direction
and can thus be more easily computed along the x-axis (y = 0). Consider a co-
ordinate frame z= x − st moving with the wave of advance (s is the wave

speed). The population density of farmers will be equal to its saturation
density KN in regions where the Neolithic transition is over, and it will decay to
zero in regions where few farmers have arrived (N << KN). Thus, we assume as
usual the ansatz Nðx; y; tÞ=N0 exp½−λ z� for z→∞ (with λ> 0)(10). Then Eq. 17
becomes

eλsT= eaNT ð1+CÞ
Z2π

0

dθ
Z∞

0

e−λΔcosθϕNðΔÞΔdΔ; [23]

where we have applied that Δx =Δcosθ. Finally, using Eq. 22 and assuming
that the minimum speed is that of the front, we reach Eq. 5 for the front
speed s. Numerical simulations of Eqs. 3 and 4 confirm the validity of Eq. 5
(symbols vs. curves in Fig. 1). Details on the numerical simulations can be
found in Numerical Simulations, where it is also shown that the width of the
Neolithic front (as obtained from the simulations) agrees reasonably well
with the available archaeological observations.
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