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Parameter Values and Observed Neolithic Front Speed Range. Initial
growth rate aN. Consider individuals of a farming population N in an
area S. For low values of the population density Nðx; y; tÞ, the first
equation of Eq. 10 can be linearized, and the net reproduction
function becomes

RT ½Nðx; y; tÞ�≈ eaNTNðx; y; tÞ: [S1]

Then, integration of Eq. 9 over the whole area S (so that there is
no net migration, i.e., the first and second terms on the right-
hand side cancel out) yields for a single population (f ¼ 0),

PNðtþ TÞ≈ eaNTPNðtÞ; [S2]

and the total population number PN ¼ RSNðx; y; tÞ dS grows expo-
nentially, in agreement with observations (later on, the growth
becomes gradually slower until the saturation density is reached,
thereby yielding the typical S-shaped logistic curve). A continuous-
time exponential dynamics PNðtÞ≈ eaN tPNðt ¼ 0Þ, consistent with
the discrete-time Eq. S2, has been fitted to observed data for sev-
eral human populations of farmers who settled in spaces originally
empty of farming populations. Fits for the Pitcairn, Bass Strait,
Tristan da Cunha Islands, and the United States yield the values
aN ¼ ð0:02995± 0:00119Þy−1, aN ¼ ð0:02626± 0:00052Þy−1, aN ¼
ð0:02527± 0:00032Þy−1, and aN ¼ ð0:03135± 0:00063Þy−1, respec-
tively, which imply the overall range aN ¼ ð0:028± 0:005Þy−1, with
80% confidence level (1); this is the range used in Fig. 1.
Besides the ethnographic estimations of aN above, it is also very

interesting that in recent years Guerrero et al. (2) have performed
estimations directly from archaeological data based on the rise in
fertility (detected as a rise in the proportions of immature skeletons
in early Neolithic cemeteries) and a sample of 45 reference historic
life tables. In this way they have estimated aN ¼ 0:024y−1, which is
within the range aN ¼ ð0:028± 0:005Þy−1 applied in our paper.
Generation time T. A theory of front propagation with distributed
delays (3) (i.e., with several possible values of T and a probability
for each possible value) showed that T is the mean age difference
between a person and all of her/his children, not just with the
oldest one (the latter is sometimes called the generation time in
demography). A statistical analysis of the observed values of T
for preindustrial farmers yields the range ðT ¼ 32± 3Þ y, with
80% confidence level (4); this is the range used in Fig. 1.
Dispersal kernel. A dispersal kernel is defined as the probability of
motion as a function of the distance between the initial and final
locations. Strictly, when analyzing population front spread, the
dispersal kernel should be estimated as the probability as a function
of distance between birthplaces of a parent and his/her children
(3). Unfortunately, such kernels have not been measured for any
preindustrial farming population. However, several authors have
considered the following approximations to estimate the dispersal
kernel of preindustrial farmers:

i) Mating distances are often used (5) and are defined as the
distances between the birthplaces of spouses. For preindus-
trial farmers, such distances have been measured for the
Issocongos in the Central African Republic (5). The corre-
sponding probabilities and distances are fpjg ¼ {0.42; 0.23;
0.16; 0.08; 0.07; 0.02; 0.01; 0.01}, fΔjg ¼ {2.3; 7.3; 15; 25; 35;
45; 55; 100} km, where the distances are the central points in
the published histogram (1); this is the kernel used in Fig. 1
in the main paper.

ii) Another approximation is given by distances between the birth-
place and the current place of residence. For preindustrial
farmers, reliable data of this kind are only known for the Ma-
jangir in Ethiopia (1, 5, 6), but unfortunately only for age groups
10–19 y old and 20–29 y old. For our purposes, the ideal data
would be for 29–35 y old (i.e., the range of T found above). The
most reasonable of these data are thus those in the 20- to 29-y
interval. They yield the following probabilities and distances
(1, 6): fpjg ¼ {0.40; 0.17; 0.17; 0.26}, frjg ¼ {2.4; 14.5; 36.2;
60.4} km. Note that this kernel is less detailed than that in (i)
above, so this is an additional reason to consider computations
based on this kernel as less precise than those in the main text,
but despite this, its predictions (Fig. S1) lead to the same con-
clusions as Figs. 1 and 2, as we now explain. In Fig. S1A, the
observed range of C (hatched vertical rectangle), the observed
speed range (hatched horizontal rectangle), and the predicted
speed range (i.e., that between the full and dashed curves) have
a consistency interval (black area, 1:0≤C≤ 1:3). For this in-
terval, in Fig. S1B the cultural effect is 27± 3%, still lower
than the effect for the Issocongos kernel used in the main text
(40± 8%). Thus, the main conclusion (that the demic effect
was larger than the cultural one) remains the same.

iii) There are also estimations of mating distances for nonagri-
culturalist populations, such as hunter-gatherers (7) (Agta,
Aka, and !Kung) and horticulturalists (7) (Yanomano), but
they are not necessary here.

Conversion intensity C. This parameter obviously depends on the
cultural trait transmitted, agriculture in our case, and must be es-
timated from the observed cultural dynamics of hunter-gatherers
becoming farmers. Quantitative observations of this kind exist for
the Agta living in the Philippines (8), but they correspond to the
case PN >>PP, and in this limit the interaction term (8) becomes
I ¼ fPP, so we cannot estimate the parameter C ¼ f=γ, which ap-
pears in Eq. 5 for the front speed. However, if PN <<PP, the in-
teraction term (8) becomes I ¼ CPN , so we obtain from Eq. 1 that
PN′ ¼ ð1þ CÞPN , i.e., C ¼ ΔPN=PN , where ΔPN¼ PN′ −PN is
the number of hunter-gatherers converted to farming per genera-
tion. Fortunately, some quantitative observations for this case
(PN <<PP) exist for the Ache living in Paraguay (9). Consider first
the following example. In the 1970s a Protestant missionary and his
family contacted with a band of 28 Ache hunter-gatherers and
converted them to farming. If we take into account that about half
of the hunter-gatherers died due to virgin soil epidemics in all
contacts without medical attention (9), then ΔPN¼14 and, as-
suming that the number of individuals of the missionary family PN
was in the range 3–6, we find the range 2.3–4.7 for C. Similar es-
timations yield the C ranges 5.3–9.7 for a Catholic mission
(ΔPN ¼ 26), 1.0–2.0 for an Evangelical mission (ΔPN ¼ 6Þ, and
5.5–10.9 for a farm that became a reservation (ΔPN ¼ 109;
10≤PN ≤ 20) (9). Therefore, we have used the overall range 1.0–
10.9 forC in our paper. Note that the upper limit (C ¼ 10:9) would
be larger if the deaths due to virgin soil epidemics were neglected,
but the observed and predicted speeds would imply the same
consistency range in Fig. 1 (namely, 1:0≤C≤ 2:5), so Fig. 2 and all
of the results in our paper would not be affected. Note also that if
some other case study yielded lower values of C, then the cultural
effect would be still smaller (Fig. 2 and Fig. S1B), thus the main
conclusion of the paper (that the demic contribution was more
important than the cultural one) would not change.
Speed range.The speedof theNeolithic transitionhasbeenestimated
previously fromananalysisof 735Neolithic sites in theNearEast and
Europe (4). Linear fits were performed by computing great-circle
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and shortest-path distances. Great-circle distances are defined as
shortest paths between two geographic points on the Earth, con-
sidered a sphere. Shortest-path distances take into account the
Mediterranean but allow for short sea trips, as implied by the ex-
istence of Neolithic sites on islands such as Cyprus (for details, see
supplemental text 2 in ref. 4). Several Neolithic origins were used to
compute distances, and the origin yielding the highest correlation
coefficient (R> 0:8 in all cases) was used to estimate the speed
range using dates vs. distances regressions (they should be preferred
to distances vs. dates, because radiocarbon dates have some error,
whereas the great circle-to-shortest path comparison is devised to
take care of distance uncertainties). Great-circle distances yielded
the speed range 0.9–1.1 km/y (4), whereas shortest-path distances
yielded 1.1–1.3 km/y (95% confidence intervals). The overall range
is thus 0.9–1.3 km/y, which is the range used in Fig. 1.

Frequency-Dependent Cultural Transmission.Here we will show that
frequency-dependent models of cultural transmission do not
change the conclusions of our paper.
In the beginning of Methods, we introduced a model (10) that

leads to the result that the probability that a P individual becomes
N is fu; i.e., proportional to the N frequency u¼ PN

PN þPP
. However,

in many examples of cultural transmission, f is not a constant but
depends on u:Usually, f is replaced by f þ h½2u− 1� (11–13), where
the terms within the square brackets give the effect of so-called
frequency-dependent biases, and the parameter f includes (if they
exist) the effect of other biases (11, 12) (namely, direct biases, i.e.,
those due to the intrinsic merit of the cultural trait, and indirect
biases, e.g., those due to the prestige of individuals) (14). The pa-
rameter h measures the strength of frequency-dependent trans-
mission, which is also called conformist transmission, and its
minimumpossible value is h ¼ 0 (then ourmodel in themain text is
recovered) (11–13). Eq. 1 is thus generalized into8>>><

>>>:
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N¼ PN þ PNPP

PN þ γPP

 
f þ h

�
2

PN

PN þ PP
− 1
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P’
P¼ PP−
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PN þ γPP

 
f þ h

�
2

PN

PN þ PP
− 1
�! : [S3]

It is easy to see that using Eq. S3 instead of Eq. 1, the final result
for the front speed (Eq. 5) is the same with C replaced by C− h.
However, the speed is an increasing function of C (Fig. 1 and
Fig. S1A). Therefore, for any value of C, frequency-dependent
transmission (h≠ 0) will lead to a slower speed than the model
considered in the main text (h ¼ 0). Thus, the cultural effect
(Fig. 2 and Fig. S1B) will be surely smaller. Moreover, this result
would not change for other frequency-dependent generalizations
because frequency-dependent effects are well known to lead to
slower cultural transmission for u≈ 0 (11, 12) than the non–
frequency-dependent case (h ¼ 0), and this is precisely the rea-
son why the front speed (and thus the cultural effect) is smaller
than in the main text (h ¼ 0). Thus, we can safely conclude that
demic diffusion will be more important than cultural diffusion.
The spatial spread of frequency-dependent cultural traits can

be also formulated in terms of payoffs depending on frequency
(15, 16), although this does not seem necessary for the case of
agriculture. Moreover, in such more complicated models it may
be extremely difficult (or even impossible) to estimate all of the
necessary parameter values from empirical data to compare the
results of the models to archaeological observations.

Nonlocal Cultural Transmission. The model in Eqs. 3 and 4 is such
that without cultural transmission (f ¼ 0) a wave of advance
propagates, but without demic diffusion [ϕNðΔx;ΔyÞ ¼ 0 ] a wave
cannot propagate, due to the assumption that cultural transmission
takes place locally, i.e., kernels are used for the dispersal of in-

dividuals but not of culture. The transmission of culture is modeled
by the following term in Eq. 4:

f
RT ½Nðx; y; tÞ�RT ½Pðx; y; tÞ�

RT ½Nðx; y; tÞ�þ γRT ½Pðx; y; tÞ�; [S4]

where all population densities are evaluated at the same spatial
point, ðx; yÞ; this is the reasonwhy the transmissionof culture is local
in this model. Let us now include an additional, nonlocal mecha-
nism of culture transmission. For this purpose we assume that
hunter-gatherers visit farmers and copy their culture [this is more
reasonable according to ethnographical observations (9, 17, 18), but
a model in which farmers visit hunter-gatherers would yield the
same final result for the front speed]. Under this assumption, we
have to evaluate the hunter-gatherer population density P at the
point ðx; yÞ where conversion takes place (i.e., where the number of
farmers increases), and the farmer population density N at other
points ðxþ Δx; yþ ΔyÞ, which are visited by hunter-gatherers with
probability given by a kernel of visits, say ϕP′ ðΔx;ΔyÞ. Then Eq. 3 is
generalized into

Nðx; y; tþ TÞ ¼ R∞
−∞

R∞
−∞

~N
�
xþΔx; yþΔy; t

�
ϕN

�
Δx;Δy

�
dΔxdΔy

þ
Z∞
−∞

ϕP′ ðΔx;Δy
�
dΔxdΔyf

RT
�
N
�
xþΔx; yþΔy; t

��
RT ½Pðx; y; tÞ�

RT
�
N
�
xþ Δx; yþΔy; t

��þ γRT
�
Pðx; y; tÞ�;

[S5]

where in the right-hand side, the new additional term corresponds
to nonlocal cultural transmission. In the first term, ~Nðx; y; tÞ is
given by Eq. 4, i.e.,

~Nðx; y; tÞ≡ RT ½Nðx; y; tÞ� þ f
RT ½Nðx; y; tÞ�RT ½Pðx; y; tÞ�

RT ½Nðx; y; tÞ� þ γRT ½Pðx; y; tÞ�
≈ eaN tð1þ CÞNðx; y; tÞ; [S6]

where we have linearized the population densities a the leading
edge of the wave of advance (Methods) and applied that C ¼ f=γ.
The demic model is recovered if there is no local cultural
transmission (f ¼ 0 and C ¼ 0) neither nonlocal cultural trans-
mission [ϕP′ ðΔx;ΔyÞ ¼ 0 ]. By combining the former two equa-
tions and linearizing, we arrive at

Nðx; y; tþ TÞ ≈ eaNTð1þ CÞR∞
−∞

R∞
−∞

N
�
xþ Δx; yþ Δy; t

�
ϕN
�
Δx;Δy

�
dΔxdΔy

þ eaNTC
Z∞
−∞

Z∞
−∞

N
�
xþ Δx; yþ Δy; t

�
ϕP′ ðΔx;Δy

�
dΔxdΔy;

[S7]

which generalizes Eq. 17. Recall that for the demic kernel, N
individuals have probabilities pj to disperse at distances rj (j = 1,
2, . . . , M). Analogously, assume that for the cultural kernel, P
individuals have probabilities p’j to disperse at distances r’j (j = 1,
2, . . . , N). Then, by following the same approach as in Methods,
we obtain for the front speed

s¼ min
λ> 0

aNT þ ln
h�
1þ C

��PM
j¼1pjI0

�
λrj
�	iþ C

�PN
j¼1pj′I0

�
λrj′
�	

Tλ
;

[S8]

which generalizes Eq. 5 with an additional term due to the cul-
tural kernel. Without cultural transmission (C ¼ 0), we recover
the speed in Fort et al. (19) (purely demic model).
Humans often visit the places where their relatives live, and the

dispersal kernels of hunter-gatherers and farmers are rather
similar (ref. 20 and references therein), so it is reasonable to
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assume that the migration (demic) and the visit (cultural) kernels
are approximately the same. Then the previous equation is sim-
plified into

s≈ min
λ> 0

aNT þ ln
h�
1þ 2C

��PM
j¼1pjI0

�
λrj
�	i

Tλ
: [S9]

The predictions of this equation are shown in Fig. S2A. In-
terestingly, the asymptotic speeds sp for C→∞ are the same as
without nonlocal transmission (Fig. 1), which is very reasonable,
because sp is simply the maximum kernel distance divided by the
generation time (as explained in Results). However, for C→ 0,
the local and nonlocal models also yield the same speeds (be-
cause then there is no cultural transmission and the wave
propagation is purely demic). For these reasons, and the obvious
fact that the speed increases with increasing values of C (i.e.,
with more hunter-gatherers becoming farmers per generation),
the predictions of the local and nonlocal model (Fig. S2A) are
not substantially different. Indeed, the cultural effect for the
nonlocal model (Fig. S2B) is 44± 4%, rather similar to that for
the local model in the main text (40± 8%). In other words, as-
suming that nonlocal cultural transmission took place in the
spread of such a complex trait as farming, it would have led to an
additional contribution to those of the migration of people
(demic spread) and local cultural transmission, but this does not
change the conclusion that the cultural effect was significant,
albeit less important, than the demic one.
Finally, note that in Eqs. S7–S9 we have assumed the same

value C for the conversion intensities of the local and nonlocal
components of cultural transmission. Certainly, it is reasonable
to expect than for the nonlocal component, the efficiency of
cultural transmission (and thus the value of C) could be lower
than for the local component. However, obviously this would
lead to still-smaller differences relative to the local model and,
therefore, to the same conclusion as that reached in the previous
paragraph. Similarly, a cultural kernel with smaller distances
than the demic one would yield the same conclusion.

Reaction-DiffusionModel. In the main text we have added the effect
of cultural transmission to a previously known model of demic
spread (19). The differences between that demic model and
Fisher’s wave of advance model (which is also demic, but based
on regular diffusion) are that the former takes into account
a dispersal kernel as well as the cohabitation time between
newborn children and their parents. When including cultural
transmission, the question arises whether simpler models, based
on regular diffusion, lead to similar conclusions. One such model
is Fisher’s wave of advance model extended to include cultural
transmission, namely (Eq. 2):8>>><

>>>:
∂N
∂t

¼ DN∇2N þ FðNÞ þ f
T

NP
N þ γP

∂P
∂t

¼ DP∇2P þ FðPÞ− f
T

NP
N þ γP

: [S10]

This model assumes the validity of several Taylor expansions, and
this approximation leads to the operator ∇2, which is typical in
diffusion theory. Let us thus refer to Eq. S10 as our reaction-
diffusion model; it is less precise than that in the main text be-
cause of the Taylor expansions mentioned, and also because it
neglects the cohabitation effect (see the text above and below
Eq. 11). Using the procedure explained in Methods, it is easy to
show that the speed of the waves of advance of farmers for the
reaction-diffusion model described by Eq. S10 is

sreaction�diffusion ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
aN þ C

T

�
DN

s
; [S11]

where DN¼ 1
4T

PM
j¼1 pjr

2
j (21). Without cultural transmission

(C ¼ 0), Eq. S11 reduces to Fisher’s speed 2
ffiffiffiffiffiffiffiffiffiffiffiffi
aNDN

p
, as it should

(22). Fisher’s speed was applied by Ammerman and Cavalli-
Sforza in their demic diffusion model (5). The maximum and
minimum speeds, obtained from Eq. S11, are shown in Fig. S3A.
Note that these speeds do not reach a finite bound for C→∞. In
contrast, the kernel model used in the main text (also shown for
comparison in Fig. S3A) has a maximum speed (sp in Fig. S3A,
which is the maximum kernel distance divided by the generation
time; Results). We think that this also shows the limitations of
using reaction-diffusion models compared with dispersal-kernel
equations in realistic models of range expansions. In fact, such
limitations are well known in dispersal ecology (23).
If we used the reaction-diffusion model predictions (dash-

dotted and dotted curves in Fig. S3A), then the observed ranges
from Parameter Values and Observed Neolithic Front Speed Range
(0.9–1.3 km/y for the speed and 1.0–10.9 for C) imply that
1:0≤C≤ 5:0, and the cultural effect is 45± 15%, a little higher
than for the kernel model (40± 8%, from Fig. 2).
However, it is important to recall that (as explained above)

conclusions based on regular diffusion (reaction-diffusion model)
are surely less precise that conclusions based on the kernel model
(indeed, this is why we have used the kernel model in the main
text). Thus, the most precise range for the cultural conversion
intensity C is clearly that obtained from the kernel model,
namely 1:0≤C≤ 2:5 (see main text). For this range of C, the
cultural effect predicted by the reaction-diffusion model (Fig.
S3B) is 40±10%, almost the same as that predicted by the kernel
model in the main text (40± 8%).
It may seem surprising that the cultural effect predicted by the

reaction-diffusion model is similar to that predicted by the kernel
model, because intuitively we expect a long-distance kernel to
yield faster speeds than a reaction-diffusion model (for low-
enough C, see Fig. S3A), and at first sight, it could seem that this
might underlie the primacy of the demic effect over the cultural
one. However, consider a typical value of C (e.g., C ¼ 2). Cer-
tainly, the reaction-diffusion model does lead to a slower speed
than the kernel model (Fig. S3A), but their predictions for the
cultural effect are similar (Fig. S3B) because this effect is com-
puted as the difference between the speed for the value of C
considered (e.g., C ¼ 2) minus the speed for C ¼ 0 (demic
model), divided by the former. However, the speed for C ¼ 0 is
also slower for the reaction-diffusion than for the kernel model
(Fig. S3A for C ¼ 0), which is why the cultural effect predicted
by the kernel model and by the reaction-diffusion model are
rather similar for realistic values of C (Fig. S3B).
Besides the model given by Eq. S10, other reaction-diffusion

models have been proposed in the literature. Some such models
(5, 24, 25) consider two populations with a Lotka–Volterra in-
teraction (Methods); one of them was successfully applied to test
the ability of principal component analysis to separate the effects
of several migrations on the genetic composition of populations
(25), thereby lending support to the application of principal
components to real genetic data (26). A three-population model
(again with Lotka–Volterra cultural transmission) was used by
Aoki et al. (27) to determine the theoretical conditions under
which genetic clines form, and this model has been generalized
in two directions. On one hand, Patterson et al. (28) have ex-
tended it to nonhomogeneous environments, and compared its
predictions to the archaeological observations of the Neolithic
transition in the Indian subcontinent. On the other hand, Ack-
land et al. (29) have introduced additional competition terms to
explain the formation of cultural and linguistic boundaries in
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Europe, India, and Southern Africa. Besides those Lotka–Vol-
terra reaction-diffusion models, an integrodifference model (also
with Lotka–Volterra interaction) has been applied to the com-
putation of the neolithization time (30). In terms of archaeology,
the main difference between the present work and those pre-
vious papers is that here we have estimated the importance of
cultural transmission on the front speed.

Numerical Simulations. To confirm the validity of Eq. 5, numerical
simulations of Eqs. 3 and 4 were performed as follows. A square
grid with 3,000·3,000 nodes was considered. Initially there were
no farmers in any node [Nðx; yÞ ¼ 0] except at the central one,
where Nðx; yÞ ¼ KN , and all nodes were saturated with hunter-
gatherers [Pðx; yÞ ¼ KP], but the front speed was the same if
using Pðx; yÞ ¼ 0 at the central node and/or using the initial
conditions in the central node for a finite region. At each node,
the population densities Nðx; y; tÞ and Pðx; y; tÞ were updated
according to the following three-step cycle (each cycle corre-
sponding to one generation).
Step 1. Logistic growth was applied by computing the new pop-
ulation densities as given by Eq. 10 with the observed values KN=
1.28 km−2 (30), KP ¼ 0:064 km−2 (30), and (20) aP ¼ 0:59 gen−1

(however, none of these values had any effect on the front speed),
and the values of aN and T considered in each case (Fig. 1 legend).
Step 2. Cultural transmission was applied by using Eq. 4 and
several values of f and γ, with ratios C ¼ f=γ corresponding to the
symbols in Fig. 1 (but only the ratio C ¼ f=γ had an effect on the
front speed); if at some nodes this yielded a negative population
density [~Pðx; y; tÞ< 0], which makes no biological sense, we lim-
ited cultural transmission so that ~Pðx; y; tÞ ¼ 0 at those nodes.
Similarly, if at some nodes this step yielded a value above the
saturation density [~Nðx; y; tÞ>KN ], which makes no biological
sense either, the effect cultural transmission was limited so that
~Nðx; y; tÞ=KN at those nodes.
Step 3. Population dispersal was applied according to Eq. 3 with
a single observed kernel for computational simplicity: fpjg ¼
{0.42; 0.23; 0.16; 0.08; 0.07; 0.02; 0.01; 0.01} for frjg ¼ {2.3; 7.3;
15; 25; 35; 45; 55; 100} km ≈f1; 3; 6; 10; 14; 18; 22; 40g2:5 km (as
stated in the main text and explained in Parameter Values and
Observed Neolithic Front Speed Range). This dispersal step con-
sisted of distributing each population density at each “original”
node into the nodes located on the edges of a set of squares
centered at the original node: 8 nodes on a square with side 2d
and a total probability of 0.42; 8·3 nodes on a square with side
2·3d and total probability 0.23; . . . ; 8·40 nodes on a square with
side 2·40d and total probability 0.01. The value of d was com-
puted so that the mean dispersal distance of all those jumps is
equal to that of the observed kernel (

P piri ¼ 12.075 km,
yielding d ¼ 2:166 km).

This three-step cycle was repeated at all nodes for both pop-
ulation densities, until the Neolithic front speed was constant (this
happened after ∼30 generations or cycles, and took less than 3.5 h
of computing time). The speed was computed by a linear fit, over
the last 10 generations, of the front position [defined as the position
at which Nðx; y; tÞ ¼ 0:1KN , but varying the factor 0.1 did not
change the results]. The speed was computed both along a vertical
(or horizontal) direction and along a diagonal direction, and both
results were averaged. In this way, the simulation speeds (rhombus
in Fig. 1 in the main text) were obtained, and the differences be-
tween them and the analytical results from Eq. 5 (curves in Fig. 1)
are below 5%, mainly due to the fact that it is necessary to dis-
cretize space in the simulations. Indeed, according to Eqs. 3 and 5,
individuals can jump along all directions, but simulations can be
computed only on a finite number of points (the grid nodes), so
dispersal can take place only along a finite number of directions.
We can check this effect simply by recalling that the maximum
front speed is Δmax

T and is obtained for C→∞ (Results). In discrete
space, for the kernel above and T ¼ 29 y, this implies a maxim
speed of 40d29 ¼ 2:99 km/y along the vertical/horizontal direction, and
of 40

ffiffi
2

p
29 ¼ 4:22 km/y along the diagonal direction. Both speeds

agree exactly with the corresponding simulation results for suffi-
ciently large values of C (C ¼ 10; 000 in Fig. 1). The average of
those two speeds is 3.61 km/y, and corresponds exactly to the
rhombus at Fig. 1 Upper Right.
Finally, the front profile provided by the simulations can be

easily used to estimate the front width [i.e., the distance along
which the value of Nðx; y; tÞ changes from approximately zero
to KN ]. For the realistic range of C used in the main text
(1:0≤C≤ 10:9Þ, the front width obtained from the simulations is
320–430 km. Unfortunately, to the best of our knowledge, the
front width has not been measured directly by archaeologists.
However, an indirect estimate seems possible thanks to the fact
that Shennan and Edinborough (31) succeeded in estimating the
population number as a function of time in three countries. In
this way, a population rise to a ceiling was detected, corre-
sponding to the Neolithic transition in Germany (from 6,550 cal
y B.C.), Poland (from 6,400 cal y B.C.), and Denmark (from
4,000 cal y B.C.). In all three cases, the time required for the
population to saturate was ∼300 y (figure 3 in ref. 31). Multi-
plying this time interval by the mean observed speed, namely 1.1
km/y (Fig. 1), yields an estimation of 330 km for the front width,
which is in reasonable agreement with our estimated interval
320–430 km from the numerical simulations. We stress, however,
that a direct comparison would be more accurate, and that this
could in principle become possible if in the future the population
number as a function of time is estimated in smaller areas.
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Fig. S1. Predicted speed (A) and cultural effect on the Neolithic front speed (B) using the Majangir dispersal kernel discussed in Dispersal kernel, point ii.
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Fig. S2. Predicted maximum and minimum speeds (A) and cultural effect on the Neolithic front speed (B), including nonlocal cultural transmission. In A, the
maximum and minimum speeds under local transmission are also shown for comparison (those two curves are the same as in Fig. 1).
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Fig. S3. Predicted maximum and minimum speeds (A) and cultural effect on the Neolithic front speed (B) according to our approximate, reaction-diffusion
model (Eqs. S10 and S11). The results from our more-precise kernel-cohabitation model (main text) are also shown for comparison (the corresponding curves,
labeled as kernel model, are the same as in Figs. 1 and 2).
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