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Speed of reaction-diffusion fronts in spatially heterogeneous media
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The front speed problem for nonuniform reaction rate and diffusion coefficient is studied by using singular
perturbation analysis, the geometric approach of Hamilton-Jacobi dynamics, and the local speed approach.
Exact and perturbed expressions for the front speed are obtained in the limit of large times. For linear and
fractal heterogeneities, the analytic results have been compared with numerical results exhibiting a good
agreement. Finally we reach a general expression for the speed of the front in the case of smooth and weak
heterogeneities.
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I. INTRODUCTION

Front propagation modeled by reaction-diffusion equ
tions has been applied in many areas of science such as p
ics, biology, ecology, and chemistry@1,2#. Since the pioneer-
ing works by Kolmogorov, Petrovskii, and Piskunov~KPP!
@3# and Fisher@4#, both in 1937, this field has been contin
ously growing. The basic phenomena have been describe
using parabolic reaction-diffusion equations derived un
the assumption that the medium in which fronts are mov
is homogeneous. Although heterogeneities are alw
present in nature, studies of fronts in heterogeneous m
have been much more recent. Some examples are po
media, random media, noisy media, ecological patchin
etc.

Experimental studies have been developed for hetero
neous excitable media. In this context, two-dimensional fr
propagation in the photosensitive Belousov-Zhabotin
modulated reaction@5,6# and patchy media@7# have been
explored. Successful theoretical efforts have been also m
to understand the phenomenon of front propagation in ex
able media. In particular, Xin@8# has studied front solution
for reaction-diffusion equations in periodic and random m
dia @8#, and Shigesadaet al. @9# have given analytical restric
tions for the existence of propagating fronts in ecologi
patchy environments. Heterogeneous models have been
used, via computer simulations, to describe the dynamic
brain tumors@10#. Moreover, diffusion coefficients depend
ing on spatial and temporal coordinates have been rece
proposed to study the formation of Alzheimer’s disease
nile plaques @11#. Nakamura et al. @12#, have studied
reaction-diffusion equations when the spatially inhomo
neous reaction rate is much larger than the diffusion coe
cient. Keener@13,14#, Mitkov et al. @15# and Rotsteinet al.
@16# have studied bistable-type models in heterogeneous
dia in the context of calcium release waves@17#. Petrovskii
has analyzed the case of a spatially periodic environm
@18#. Many authors have recently studied the effect of
external multiplicative noise on the speed and the width
1063-651X/2003/68~4!/041105~11!/$20.00 68 0411
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the front. These studies may be seen as a way to introd
stochastic heterogeneities in the reaction-diffusion equa
through a control parameter@19#. Therefore, the effect of
heterogeneities on front propagation is of wide theoreti
and practical interest.

Our goal in this work is to understand how determinis
heterogeneities influence the front speed of parab
reaction-diffusion equations with a monostable react
term, when either the diffusion coefficient or the reacti
term depend on the spatial coordinate. Methods such as
ginal ~linear! stability @20# and variational@21# analysis have
been widely used to find the asymptotic speed of a fro
However, both methods do not hold, or at least they sho
be adequately generalized, when the reaction-diffusion eq
tion has an explicit dependence on the spatial coordin
Instead, we will make use of well-known analytical tec
niques such as singular perturbation analysis and the l
speed approach, both valid for weak heterogeneities,
geometrical methods for general heterogeneities, in orde
study how heterogeneities introduce corrections to
asymptotic front speed, both for pulled~KPP! and pushed
~but monostable! fronts. We will also compare the analytica
results and numerical simulations.

The methods we employ here have some limitations. S
gular perturbative analysis may be efficiently compared
numerical results when the solution to the leading orde
known and for reaction-diffusion equations with non-KP
kinetic terms. The solution for the lowest order may be fou
for some particular non-KPP kinetic terms but it is n
known in general, although in those cases numerical solu
may always be calculated. This method requires, of cours
small parameter present in the model. Therefore, it is ne
sary to assume that the spatial heterogeneities of the m
introduce a small variation in the reaction rate and/or
diffusion coefficient~weak heterogeneities! and the charac-
teristic length of the heterogeneities must be greater than
characteristic width of the front~smooth heterogeneities!
@22#. On the other hand, the geometrical method we pres
here, based on Hamilton-Jacobi dynamics, only holds
©2003 The American Physical Society05-1
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KPP kinetics but, contrary to the previous method, there
no need to assume either weak or smooth heterogene
The local speed approach is based in the assumption tha
weak and smooth heterogeneities the speed of the fron
given by the local value of the reaction rateU and/or the
diffusion coefficientD in each spatial point, i.e., the fron
speed would bev.2AU(x)D(x) for KPP kinetics. There-
fore, fronts withU5b ~constant! and D5 f (x) would have
v.2Ab f(x), and the same would hold for fronts in med
with U5 f (x) andD5b. But, as we shall see, in general th
simple approach is not consistent either with our analyt
results or with our numerical simulations.

In this paper we study first the dynamics of front moti
for the following smooth heterogeneous problems

] tf5]xxf1U~«x! f ~f!,

] tf5]x@D~«x!]xf#1 f ~f!, ~1!

where the function f satisfies f (0)5 f (1)50, f(x,0)
5u(x) where u(x) is an initial condition that may rang
from the Heaviside step function@f(x,0)51 for x,0 and
f(x,0)50 for x.0] to a fully developed front,D andU are
the dimensionless diffusion coefficient and reaction rate,
spectively, and« is a small parameter. Since we expect s
lutions to behave like totally developed fronts, we shou
look at them in the asymptotic regime~large-space and large
time limit! t→t/« and x→x/«. The scaling considered i
equivalent to assuming that the front is totally develop
independent of the way it developed from initial condition
Equations~1! then become

«] tf5«2]xxf1U~x! f ~f!,

«] tf5«2]x@D~x!]xf#1 f ~f!. ~2!

Consistent with the initial conditions and the existence o
front we require the solution to satisfy lim

x→2`
f51 and

lim
x→`

f50.

II. NONUNIFORM REACTION

We consider the problem

«] tf5«2]xxf1U~x! f ~f!,

U~x![11dhu~x!, ~3!

whered is the amplitude of the heterogeneities andhu(x) is
the reactive heterogeneity.

A. Singular perturbation analysis

This method of perturbative analysis has been already
ployed to study the speed of pulled fronts and it has b
shown that the solvability integrals diverge@23#. Therefore,
we will use this method only for non-KPP kinetics. We a
sumed5O(«) ~weak heterogeneities!, i.e., d[s«, where
s5O(1) in Eq. ~3!. Equation~3!, together with the corre-
sponding boundary conditions, becomes
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« ] tf5«2 ]xxf1@11s « hu~x!# f ~f!,

lim
x→2`

f51, lim
x→`

f50. ~4!

In order to study Eqs.~4! we will make a nonrigorous
asymptotic analysis. We assume that the domain is divi
into two regions according to the space scales: a bound
layer region, whose width isO(«), in which f is rapidly
varying; and an external region in whichf is almost con-
stant, i.e., eitherf5O(«n1) or f511O(«n2), where n1
andn2 are positive real numbers.

In order to solve Eq.~4! in the outer region we expandf
as follows:

f~x,t;«!5F0~x,t !1« F1~x,t !1«2 F2~x,t !1O~«3!.
~5!

By substituting Eq.~5! into Eq. ~4! and collecting terms
with the same powers of« we get

f ~F0!50, lim
x→2`

F051, lim
x→`

F050, ~6!

] t F05 f 8~F0!F11s hu~x! f ~F0!, lim
x→6`

F150, ~7!

and

] t F15]xx F01
1

2
f 9~F0!F1

21 f 8~F0!F2

1s hu~x! f 8~F0!F1 , lim
x→6`

F250. ~8!

The solution of Eq.~6! is F051 to the left of the bound-
ary layer andF050 to the right of the boundary layer. Th
solutions of Eqs.~7! and~8! areF1[0 andF2[0, respec-
tively. Thus, f(x,t;«)5O(«3) to the left of the boundary
layer andf(x,t;«)511O(«3) to the right of the boundary
layer. Note that to the order of magnitude considered h
there is no effective difference between the homogene
and heterogeneous cases, i.e., there is no difference in
shape of the front.

In order to study the dynamics in the interior of th
boundary layer we translate Eq.~4! to the reference frame o
the front, i.e., we define the new variablez5@x2S(t)#/«
whereS(t) represents the position of the front. The deriv
tives in Eqs.~2! transform according to

] t→2
Ṡ

«
]z1] t ,

]xx→
1

«2
]zz, ~9!

where the dot symbol stands for the temporal derivative.
expandf andS in powers of«:
5-2
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f~z,t !5f0~z!1«f1~z,t !1«2f2~z,t !1•••,

S~ t !5S0~ t !1«S1~ t !1«2S2~ t !1••• ~10!

and, in consequence,

hu~x!5hu~S01z«1S1«1••• !.hu~S0!1hu8~S0!~z1S1!«

1•••,

f ~f!5 f ~f0!1 f 8~f0!f1«1 1
2 f 9~f0!f1

2«21 f 8~f0!f2«2

1•••, ~11!

where hu8(S0)5dhu(x)/dxux5S0
and f 8(f0)5d f(f)/

dfuf5f0
. Inserting Eqs.~10! and~11! into Eq.~4! once Eqs.

~9! are taken into account, and collecting terms with eq
powers of« one getsO(1), O(«), andO(«2), respectively:

L~f0!50, ~12!

L1~f1!52s f ~f0!hu~S0!2Ṡ1]zf0 , ~13!

L1~f2!52Ṡ2]zf02Ṡ1]zf12 1
2 f 9~f0!f1

2

2shu~S0! f 8~f0!f1

2s f ~f0!hu8~S0!~z1S1!1] tf1 , ~14!

whereL5]zz1Ṡ0]z1 f (f0) andL15]zz1Ṡ0]z1 f 8(f0).
Since we assumef05f0(z), Eq.~12! is equivalent to the

homogeneous («50) parabolic reaction-diffusion equatio
translated to the front reference frame (z5x2Ṡ0t) which
travels at constant speedṠ0. We call Ṡ0[c and therefore
S05ct where we assumeS(0)50. From the solvability con-
dition for the equation at each order of the expansion we
obtain the corresponding corrections to the speed of
front. The solvability integral condition of Eq.~13! is
*2`

` cL1(f1)dz50 @24#, wherec is such thatL 1
†(c)50,

L 1
†5]zz2Ṡ0]z1 f 8(f0) being the self-adjoint operator o

L1 @24#. It is easy to show thatc5eczdf0 /dz is an eigen-
function ofL 1

† with null eigenvalue. The solvability integra
condition for Eq.~13! may be written as

E
2`

`

ecz
df0

dz F2s f ~f0!hu~S0!2Ṡ1

df0

dz Gdz50 ~15!

so that

Ṡ152

shu~ct!E
2`

`

ecz
df0

dz
f ~f0!dz

E
2`

`

eczS df0

dz D 2

dz

. ~16!

The integral in the numerator of Eq.~16! may be simplified
by using Eq.~12! and integrating by parts
04110
l
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E
2`

`

ecz
df0

dz
f ~f0!dz52E

2`

`

ecz
df0

dz

d2f0

dz2
dz

2cE
2`

`

eczS df0

dz D 2

dz

52
1

2
cE

2`

`

eczS df0

dz D 2

dz.

Finally one can obtain the first correction to the speed

Ṡ15 1
2 schu~ct!. ~17!

Note that in Eq.~17! there is no dependence on the soluti
of f0 but only on the functionhu .

The speed of the front reads, after inverting the hyperbo
scaling,

v~ t !5c1 1
2 chu~ct«!d1O~d2!. ~18!

Before proceeding with the following order in the expa
sion it is necessary to solve Eq.~13!. As L1(df0 /dz)50 we
look for a solution of the form f1(z,t)5(df0 /dz)
1(df0 /dz)zF(t) in Eq. ~13!, finding that F(t)
5 1

2 shu(ct). Thus

f1~z,t !5
df0

dz F11
1

2
shu~ct!zG . ~19!

After substituting S05ct, Eqs. ~17! and ~19! into Eq.
~14!, and applying the solvability condition @24#
*2`

` ecz(df0 /dz)L1(f2)dz50 for Eq. ~14! we get

Ṡ252
cs2

8
hu~ct!21ashu8~ct!1

cs

2
hu8~ct!S1~ t !,

~20!

wherehu8(ct)[dhu(x)/dxux5ct , S1(t)5 1
2 s*cthu(x)dx @as-

sumingS(0)50], and

a52
1

2
1c

E
2`

`

zeczS df0

dz D 2

dz

E
2`

`

eczS df0

dz D 2

dz

. ~21!

Note that in this caseṠ2 depends explicitly on the solution o
f0. In order to compute analytically the second-order c
rection of the speed it is necessary to have an analyt
expression for the zeroth order solutionf0(z). Some exact
solutions are known in the literature@1# for reaction terms of
the form f (f)5fq11(12fq) for q>1. This source term
has been applied to forest fires@25,26# and the spread o
microorganisms@27#. In this case, the solution for the homo
geneous case takes the form

f0~z!5
1

~11ebz!a
, c5

1

A11q
, b5qc, a5

1

q
.

5-3
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It is easy to check that the integrals involved in Eqs.~16! and
~21! are convergent for anyq. For example, forq51 we
have f (f)5f2(12f), a51, and the speed of the front i
given by

vSP~ t !5Ṡ~ t !5
1

A2
1

s

2A2
huS t

A2
D «1H 2

s2

8A2
huS t

A2
D 2

1shu8S t

A2
D 1

s2

4A2
hu8S t

A2
D E t/A2

hu~x!dxJ «2

1O~«3!, ~22!

where we have made use of Eqs.~17! and ~20!.
For mathematical and numerical simplicity let us illustra

the above results for the case wherehu(x)5x is linear. Tak-
ing s51 we have from Eq.~22! v(t)51/A21t«/41«2 and
inverting the hyperbolic scaling we obtain, fort!O(«22),

vSP~ t !5
1

A2
1S 11

t

4D «21O~«3!, ~23!

where the subscriptSP stands for ‘‘singular perturbation’
result. For any non-KPPf (f) one has

vSP~ t !5c1S c2t

2
1a D «21O~«3!. ~24!

The local speed approach assumes that the front pos
changes adiabatically in time as the front moves into a reg
where the characteristic parametersD andU change. For the
first of Eqs.~1! and for a source termf (f)5f2(12f) the
speed of the front is locally given byv5ADU(«xf)/2,
wherexf is the position of the front. To be more specific, l
us take alsohu(x)5x ands51. In consequence, the depe
dence of speed of the front on the time is obtained by in
grating the differential equation

dxf

dt
5A11«2xf

2
~25!

for the position of the front in dimensionless units. Taki
xf(0)50 the local speed approach yields, for this case,

vLA~ t !5
1

A2
1

t«2

4
, ~26!

where the subscriptLA stands for ‘‘local approach.’’ In Fig.
1 we compare, for different values of«, the numerical results
for the front speed of the first equation in Eqs.~1! for
U(«x)511dhu(«x), hu(x)5x, and f(x,0), a Heaviside
function, to the analytical solutions~23! and ~26!. We ob-
serve thatvSP is in better agreement with numerical sol
tions thanvLA , after an initial transient. This transient is du
to two factors: it takes a certain interval of time for the fro
to fully develop and the asymptotic approximation is va
for hu(x)5O(1).
04110
on
n
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B. Hamilton-Jacobi dynamics

The use of the Hamilton-Jacobi dynamics to study
front propagation is initially devoted to Freidlin@28# who
treated the KPP minimal speed for slowly varying med
using probabilistic~large deviation! approach but also rigor
ous mathematics has done by Ga¨rtner @29# and Evans@30#.
However, as we will show in the last section, it is not ne
essary to assume either smooth or weak heterogeneities
stress that singular perturbation analysis~preceding section!
does not yield a fully analytical result for the very importa
KPP kinetic f (f)5f(12f) @1,31# if one needs to go be
yond first order ind, because the exact unperturbed soluti
is unknown and the solvability integrals diverge. In this se
tion we determine the temporal evolution of the position
the reaction front for the logistic case. We repla
f(x/«,t/«) in Eq. ~3! by an auxiliary field G(x,t)>0
through the exponential transformation

f~x,t !5e2G(x,t)/«. ~27!

We expect thatf(x,t) tends to a unit step function as«
→0. The equalityG(x,t)50 determines the position of th
front. Substituting Eq.~27! into Eq.~2!, for the KPP kinetics
f (f)5f(12f), we get, to leading order, the equation («
50)

] tG1~]xG!21U~d,x!50 ~28!

for the action functional whereU(d,x)511dhu(x). From
the analogy with the Hamilton-Jacobi equation] tG
1H(]xG,x)50, we define the Hamiltonian

H5p2111dhu~x!,

FIG. 1. Comparison of the temporal evolution of the speed
fronts ~in dimensionless units! between the singular perturbatio
analytical result given in Eq.~23! ~solid lines!, the local speed ap-
proach~26! ~dashed lines!, and the numerical results~symbols! for
different values of«. This is the casehu(x)5x and f 5f2(1
2f) for nonuniform reaction rate.
5-4
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wherep[]xG plays the role of conjugated momenta ofx.
Equation~28! may be solved by using the Hamilton equ
tions

dx

ds
5]pH52p,

dp

ds
52]xH52d

dhu

dx
, ~29!

from which we get the differential equation forx(s)

ẍ~s!12d
dhu@x~s!#

dx
50 ~30!

under the boundary conditions

x~s50!5x,

x~s5t !50. ~31!

The solution for the action functionalG(x,t) is given by

G~x,t !5 min
x(s50)5x,x(s5t)50

E
0

t

L@x~s!,p~s!#ds, ~32!

whereL@x(s),p(s)# is the Lagrangian function defined b
L@x(s),p(s)#5p(s) ẋ(s)2H. As the Hamiltonian function
does not depend explicitly on the times there exists the
energy integral

ẋ~s!2

4
111dh@x~s!#5E, ~33!

and therefore, from Eq.~32! one has

G~x,t !52Et1
1

2E0

t

ẋ~s!2ds. ~34!

Let us now detail the calculations of two specific a
simple choices ofhu where Eq.~30! has exact solution. The
first one ishu(x)5x as in the preceding section. In this ca
Eq. ~30! yields, together with conditions~31!,

x~s!5x2ds22
sx

t
1dst, for 0<s<t

and

E511 1
2 xd1 1

4 d2t21
x2

4t2
.

Finally, from Eq.~34!

G~x,t !52t2 1
12 d2t32 1

2 xtd1
x2

4t
. ~35!

The position of the front given byG(x,t)50 is
04110
x~ t !5dt212tA11
1

3
d2t2

and theexact relationship for the speed after inverting th
hyperbolic scaling is

vHJ~ t !5
dx

dt
52d«t1

4«2d2t216

A3«2d2t219
~36!

for any d. For weak inhomogeneities (d!1) one has fors
51, in Eq. ~36!,

vHJ~ t !.212t«21t2«41O~«8!, ~37!

which holds only fort!O(«22). The subscriptHJ stands
for ‘‘Hamilton-Jacobi’’ result.

The local speed approach for the KPP kinetics yieldsv
52ADU(«xf) and the differential equation for the positio
of the front is

dxf

dt
52A11«2xf ,

which after integrating under the initial conditionxf(0)50
may be written as

vLA~ t !5212t«2. ~38!

In Fig. 2 we compare Eqs.~36! and~38! with the numerical
solution for the first equation in Eq.~1! for different values
of «. After the initial transient, we observe, in general, go
agreement. However,vHJ is in better agreement with nu
merical solutions thanvLA , after the initial transient.

Another case with exact solution ishu(x)5x2. In this
case the Hamiltonian is the same as for the simple harm
oscillator. Equation~30! with Eq. ~31! yields

FIG. 2. Comparison of the temporal evolution of the speed
fronts ~in dimensionless units! between the Hamilton-Jacobi ana
lytical result given in Eq.~36! ~solid lines!, the local speed ap-
proach~38! ~dashed lines!, and the numerical results~symbols! for
different values of«. This is the casehu(x)5x and f 5f(12f)
for nonuniform reaction rate.
5-5
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x~s!5xFcos~2Ads!2
cos~2Adt !

sin~2Adt !
sin~2Ads!G for 0<s<t.

The energy integral and action functional are

E511
dx2

sin2~2Adt !
,

G~x,t !52t1
Adx2cos~2Adt !

2sin~2Adt !

and the position of the front is given by

x~ t !5A 2tsin~2Adt !

Adcos~2Adt !
. ~39!

From Eq.~39! one can see that the position as well as
speed of the front takes the infinite value just whent
5p/4Ad. However, for weak heterogeneities~d!1! one has

vHJ~ t !5214t2d«2176/9t4«4d21O~d3!, ~40!

which does not have singularities but is valid only fort
!O(«21).

If we assume weak heterogeneities~d!1! we can approxi-
mate the speed of the front for any generalh(x). Details of
the calculations are given in the appendix. It is important
note that Eq.~A7! is, up tod order, equal to Eq.~18! for the
KPP kinetic term wherec52 but differs for higher orders
For hu(x)5x and x2, from Eq. ~A7! we recover Eqs.~37!
and ~40!, respectively.

III. NONUNIFORM DIFFUSION

We consider now the problem

«] tf5«2]x@D~x!]xf#1 f ~f!,

D~x![11dhD~x!, ~41!

whered is the amplitude of the heterogeneities andhD(x) is
the heterogeneity function in diffusion. In this case, the lo
speed approach yields the same speed as for nonuniform
action rate ifhD(x)5hu(x). As we will see below, this re-
sult is in disagreement with the singular perturbative and
Hamilton-Jacobi results.

A. Singular perturbation analysis

As in the preceding section, we assumed[s« in Eq. ~41!
wheres5O(1) and we assume the existence of an outer
a boundary layer region. Equation~41!, together with the
corresponding boundary conditions, becomes

« ] tf5«2 ]xxf1«3FdhD

dx
]xf1hD~x!]xxfG1 f ~f!,

lim
x→2`

f51, lim
x→`

f50. ~42!

In order to solve Eq.~42! in the outer region we use
expansion~5!. We can easily see that the effect of the h
04110
e

o

l
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erogeneity in the coefficient of diffusion does not affect t
solution at least untilO(«3). Thusf(x,t;«)5O(«3) to the
left of the boundary layer andf(x,t;«)511O(«3) to the
right of the boundary layer.

In order to study the dynamics of Eq.~42! inside the
boundary layer we substitute Eqs.~9!–~11! into Eq.~42! and
collect terms with equal powers of«. We obtain Eq.~12! for
the lowest order, and

L1~f1!52]zzf0shD~S0!2Ṡ1]zf0 ,

L1~f2!52Ṡ2]zf02Ṡ1]zf12
1

2
f 9~f0!f1

2

2shD~S0!]zzf12shD8 ~S0!~z1S1!]zzf0

2shD8 ~S0!]zf01] tf1

for first and second orders, respectively. From the solvab
conditions and assumingf5f0(z) one hasṠ05c constant
and

Ṡ15
1

2
cshD~ct!,

Ṡ252
c

8
s2hD~ct!22

s

2
hD8 ~ct!1

c2s2

4
hD~ct!hD8 ~ct!,

f1~z,t !5
df0

dz F12
1

2
hD~ct!szG .

The speed of the front is finally given by

vSP~ t !5c1
1

2
cshD~ct!«1F2

c

8
s2hD~ct!22

s

2
hD8 ~ct!

1
c2s2

4
hD~ct!hD8 ~ct!G«21O~«3!. ~43!

It is very interesting to note that, in this case, up to seco
order in« the speed correction does not depend on the s
tion of f0. For hD(x)5x, s51, and general non-KPP ki
netic term one has, fort!O(«22),

vSP~ t !5c1S c2t

2
2

1

2D «21O~«3!, ~44!

after inverting the hyperbolic scaling. In Fig. 3 we compa
Eq. ~44! for f 5f2(12f) and Eq.~26! with the numerical
solution of the second equation in Eqs.~1! with D(«x)51
1dhD(«x) andhD(x)5x for different values of«. In this
casevLA is in slightly better agreement with numerical sol
tions thanvSP, contrary to the previous case.

B. Hamilton-Jacobi dynamics

The Hamilton-Jacobi equation for problem~41!, to lead-
ing order~«50!, with a KPP kinetic term is
5-6



E

at
ap-
his
the

ods
rm

de-
and
the
nds
en-

eri-
-
ery
ffu-

on-
ms

o
a-

of
-

SPEED OF REACTION-DIFFUSION FRONTS IN . . . PHYSICAL REVIEW E68, 041105 ~2003!
] tG1@11dhD~x!#~]xG!21150.

The Hamilton equations are

dx

ds
5]pH52@11dhD~x!#p,

dp

ds
52]xH52dp2

dhD

dx
. ~45!

The equation forx(s) is

ẍ~s!2
d ẋ~s!2

2~11dhD@x~s!# !

dhD

dx
@x~s!#50, ~46!

the corresponding integral energy is

ẋ~s!2

4~11dhD@x~s!# !
115E, ~47!

and the action functional is

G~x,t !52Et1
1

2E0

t ẋ~s!2

11dhD@x~s!#
ds. ~48!

Let us now be more specific for the two cases where
~46! has exact solution. First we takehD(x)5x. From Eqs.
~31! and ~46! one has

x~s!5x1
s2

dt2
~A11dx21!22

2s

dt
~11dx2A11dx!

for 0<s<t,

FIG. 3. Comparison of the temporal evolution of the speed
fronts ~in dimensionless units! between the singular perturbed an
lytical result given in Eq.~44! for c51/A2 ~solid lines!, the local
speed approach~26! ~dashed lines!, and the numerical results~sym-
bols! for different values of«. This is the casehD(x)5x and f
5f2(12f) for nonuniform diffusion coefficient.
04110
q.

E511
1

d2t2
~A11dx21!2,

and from Eq.~48! one gets

G~x,t !5
1

d2t
~A11dx21!22t.

Therefore the speed is given, in an exact form, by

vHJ~ t !5212td« ~49!

after inverting the hyperbolic scaling. Note first of all th
this result is equal to that obtained from the local speed
proach. As in Sec. II, note that the result obtained in t
section is essentially a leading order approximation while
result obtained in Sec. III A is anO(«) approximation.

In Fig. 4 we compare Eqs.~49! ~taking d5«) and ~38!
with the numerical result of the second equation in Eqs.~1!.
In this case the agreement between both analytical meth
and the numerical results is not so good as for nonunifo
reaction rate.

From the local speed approach the speed for a given
pendence of the reaction rate on the spatial coordinate
constant diffusion coefficient is equal to the speed when
reaction rate is constant and the diffusion coefficient depe
on the spatial coordinate with the same functional dep
dence as the above reaction rate. We have checked num
cally for some values of« that the speed for the linear de
pendence of the reaction rate is not equal, although v
similar, to the speed for the linear dependence of the di
sion coefficient.

From the singular perturbative analysis and the Hamilt
Jacobi methods we can conclude that for the proble
] tf5]xxf1@11dhu(«x)# f (f) and ] tf5]x$@1

f FIG. 4. Comparison of the temporal evolution of the speed
fronts ~in dimensionless units! between the Hamilton-Jacobi ana
lytical result given in Eq.~49! ~solid lines!, the local speed ap-
proach~38! ~dashed lines!, and the numerical results~symbols! for
different values of«. This is the casehD(x)5x and f 5f(12f)
for nonuniform diffusion coefficient.
5-7
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1dhD(«x)#]xf%1f(f) with non-KPP f (f), such thatf (0)
5 f (1)50, whered, «!1 ~weak and smooth heterogen
ities! andhu,D(x) is a continuous and derivable function, th
speed of the front has the formal solution

v~ t !5c1 1
2 chu,D~ct«!d1O~d2!,

for t!O(«21) where c is the asymptotic~constant! speed
for the homogeneous problem] tf5]xxf1 f (f). If h is
an increasing/decreasing function of space, the fron
accelerated/decelerated.

IV. FRACTAL MEDIA

In this section we illustrate the advantages of using
Hamilton-Jacobi method for dealing with heterogeneous m
dia. In particular, we get an exact expression for the fr
speed propagation in fractal media. The reaction-diffus
process in a fractal may be described by the equation for
probability density of O’Shaughnessy and Procaccia@32#
coupled to a KPP kinetic term

] tf5
1

r d21
] r~Dr d212u] rf!1Uf~12f!, ~50!

whered is the dimension of the fractal,u is an index which
is 0 for the classical normal situation~Euclidean media!, and
D is a kind of diffusion coefficient. After taking into accoun
the hyperbolic scalingr→r /« and t→t/« and the field
G«(r ,t)52« lnf(r,t), one has from Eq.~50!,

2] tG
«52«11uD~d212u!r 212u] rG

«1«uDr 2u~] rG
«!2

2«11uDr 2u] rr G
«1U. ~51!

The first and third terms in the right-hand side of Eq.~51!
have the same order of magnitude and in the asymptotic l
(«→0) both terms may be neglected in front of the seco
term and in consequence, the Hamilton-Jacobi for the fr
propagation in a fractal media is

] tG1~«/r !uD~] rG
«!21U50,

whereG(r ,t)5 lim
«→0

G«(r ,t). Proceeding as in the abov

sections one has

G~r ,t !5
r 21u

tD«u~21u!2
2Ut

and the exact expression for the speed of the front, once
hyperbolic scaling is inverted, is

v~ t !52F DU

~21u!utuG 1/(21u)

, ~52!

which describes a decelerated front. In Fig. 5 we compare
exact result~52! with the results of the numerical solution
of Eq. ~50! for different values ofu. We stress that in
this case of physical interest, in contrast to what wo
04110
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happen if using the local approach, we have not assum
weak or smooth heterogeneities because we have applie
Hamilton-Jacobi method.

V. CONCLUSIONS

We have studied how deterministic heterogeneities in
ence the front speed of parabolic reaction-diffusion equati
where the reaction term and/or the diffusion coefficient d
pend on the spatial coordinates. We have derived ana
expressions for the speed of fronts that are valid for initia
fully developed fronts or for more general initial condition
in the asymptotic limit. The singular perturbative analys
and the geometrical method of Hamilton-Jacobi have b
employed to find the speed of the fronts propagating in
terministic heterogeneous media. The singular perturba
analysis has been used when spatial heterogeneities are
(d!1) and smooth («!1) and may be successfully applie
only for fronts with non-KPP kinetics~pushed fronts!. The
expressions obtained for the speed are power series o«,
where secular terms appear and in consequence are no
formly valid in time. However, for the simplest case of line
heterogeneities these expressions have been compared
merical solutions exhibiting a good agreement.

The Hamilton-Jacobi method we used here only holds
fronts with KPP kinetics~pulled fronts!. However, this
method allows us to work without assuming either smooth
weak heterogeneities. We have compared the results for
simplest case of linear heterogeneities with numerical so
tions and a good agreement is found again. Exact solution
the speed of fronts traveling in fractal media is obtained a
compared to numerical solutions. We have found an ex
lent agreement and it has been shown both analytically
numerically that the front is decelerated.

Finally, the local speed approach has been compared
the above analytical methods and numerical solutions.
nonuniform diffusion coefficient this approach slightly im

FIG. 5. Comparison of the temporal evolution of the speed
fronts ~in dimensionless units! derived from the Hamilton-Jacob
method ~52! ~dashed lines! with numerical solutions of Eq.~50!
~symbols! for fractal media. Foru50 one recovers the Fisher re
sult. We have takenD5U5d51.
5-8
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proves the singular perturbative method and yields the s
result found with the Hamilton-Jacobi method. However,
nonuniform reaction rate both singular perturbative a
Hamilton-Jacobi are in better agreement with numerical
sults than the local speed approach.
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APPENDIX: WEAK HETEROGENEITIES IN
HAMILTON-JACOBI DYNAMICS

In this appendix we develop the calculations to obtain
speed of fronts for weak heterogeneities (d!1) for both
nonuniform reaction and nonuniform diffusion.
04110
e
r
d
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1. Nonuniform reaction rate

The first step is to solve Eq.~30! under Eq.~31! by using
regular perturbation analysis. By substituting the expans
x(s)5x0(s)1dx1(s)1d2x2(s)1O(d3) into Eq. ~30! one
hasẍ0(s)50 for the lowest order,

ẍ1~s!522
dhu@x0~s!#

dx
~A1!

for the first order, and

ẍ2~s!522x1~s!
d2hu@x0~s!#

dx2
~A2!

for the second order. From Eqs.~31! x0(0)5x, x0(t)50 and
xi(0)5xi(t)50 for i>1 one obtains for 0<s<t,
x0~s!5x2xs/t,

x1~s!5
2t

x E hu~x2xs/t !ds2
2ts

x2 E0

x

hu~x8!dx81
2t2

x2 Ex

hu~x8!dx8,

x2~s!52
4t4

x4
hu~x2xs/t !Ex

hu~x8!dx82
8t3

x4 Ex

hu~x8!dx8E hu~x2xs/t !ds1
4t3

x4
shu~x2xs/t !

2
4t3

x3
hu~x2xs/t !E hu~x2xs/t !ds1

6t3

x3 E hu
2~x2xs/t !ds1

8t3s

x5 F E
0

x

hu~x8!dx8G2

2
6t3s

x4 E
0

x

hu
2~x2xs/t !ds2

8t4

x5 Ex

hu~x8!dx81
6t4

x4 Ex

hu
2~x8!dx8. ~A3!

The energy integral~33! reads

E511
x2

4t2
1

d

xE0

x

hu~x8!dx81O~d2! ~A4!

and from Eq.~34!,

G~x,t !5
x2

4t
2t2

dt

x E0

x

hu~x8!dx81d2
t3

x4 H F E0

x

hu~x8!dx8G2

2xE
0

x

hu
2~x8!dx8J 1O~d3!. ~A5!

The positionx5x(t) of the front comes fromG(x,t)50 which has to be solved, by using the expansionx(t)5x0(t)
1dx1(t)1d2x2(t)1 O(d3), to obtain

x~ t !52t1
d

2E0

2t

hu~x8!dx81
d2

4 H hu~2t !E
0

2t

hu~x8!dx81
1

2E0

2t

hu
2~x8!dx82

1

t F E
0

2t

hu~x8!dx8G2J 1O~d3! ~A6!

and the speed is
5-9
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v~ t !521dhu~2t«!1d2H 1

4«2t2 F E
0

2t«

hu~x8!dx8G2

2
hu~2t«!

t« E
0

2t«

hu~x8!dx81
3

4
hu

2~2t«!1
1

2

dhu

dx U
x52t«

E
0

2t«

hu~x8!dx8J
1O~d3! ~A7!

once the hyperbolic scaling is inverted.

2. Nonuniform diffusion coefficient

Proceeding analogously as in the preceding section the perturbed solution to Eq.~46! is given by

x0~s!5x2xs/t,

x1~s!52
x

2tE hD~x2xs/t !ds1
s

2tE0

x

hD~x8!dx82
1

2E
x

hD~x8!dx,

x2~s!5
s

4t
hD~x2xs/t !E

0

x

hD~x8!dx82
1

4
hD~x2xs/t !Ex

hD~x8!dx2
x

4t
hD~x2xs/t !E hD~x2xs/t !ds

1
3x

8t E hD
2 ~x2xs/t !ds2

3s

8t E0

x

hD
2 ~x8!dx81

3

8E
x

hD
2 ~x8!dx, ~A8!

for 0,s,t, and the energy integral and the action functional are

E511
x2

4t2
1

d

xE0

x

hD~x8!dx81d2F t2

x4 S E
0

x

hD~x8!dx8D 2

1
3x

16t2E0

x

hD
2 ~x8!dx8G1O~d3!,

G~x,t !52t1
x2

4t
1

dt

x E0

x

hD~x8!dx81d2F t3

x4 S E
0

x

hD~x8!dx8D 2

1
3x

16tE0

x

hD
2 ~x8!dx8G1O~d3!. ~A9!

Finally, from the temporal derivative of the position of the front given byG50 one gets

v~ t !521hD~2t«!d1d2F1

2

dhD

dx U
x52t«

E
0

2t«

hD~x8!dx82
1

4
hD

2 ~2t«!G1O~d3!. ~A10!
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