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Vertical cultural transmission effects on demic front propagation: Theory and application
to the Neolithic transition in Europe
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It is shown that Lotka-Volterra interaction terms are not appropriate to describe vertical cultural transmission.
Appropriate interaction terms are derived and used to compute the effect of vertical cultural transmission on
demic front propagation. They are also applied to a specific example, the Neolithic transition in Europe. In this
example, it is found that the effect of vertical cultural transmission can be important (about 30%). On the other
hand, simple models based on differential equations can lead to large errors (above 50%). Further physical,
biophysical, and cross-disciplinary applications are outlined.
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I. INTRODUCTION

Front propagation models have been applied to many
physical, biological, and cross-disciplinary systems, including
combustion flames [1], Taylor-Couette and Rayleigh-Bénard
experiments [2], superconductors [3], viral infections [4],
tumor growth [5], and human invasions [6–12]. The latter
application is considered in this paper, going beyond previous
models by taking the role of cultural diffusion into account.

A. Demic diffusion

The motion of individuals is an efficient mechanism to
propagate ideas or other cultural traits. Such a mechanism is
called demic diffusion [13]. In contrast to demic diffusion, in
cultural diffusion the mechanism leading to the spread of ideas
is not the motion of individuals but imitation or interbreeding
(as explained in detail in the next section).

The earliest demic diffusion models [13,14] were based on
the equation [6,15]

p(x,y,t + T ) =
∫ +∞

−∞

∫ +∞

−∞
p(x + �x,y + �y,t)

×φ(�x,�y)d�x d�y + RT [p(x,y,t)]

−p(x,y,t), (1)

where p(x,y,t + T ) is the population density (number of
individuals per unit area) at the location (x,y) and time t + T .
The time interval T is that between two subsequent dispersal
events or jumps, i.e., one generation [6] (defined as the mean
age difference between an individual and her or his children).
In Eq. (1), which is useful in several anthropological [6,13,14]
and biophysical systems [4], the generation time T plays a role
analogous to that of a delay time in many physical systems [16].
The dispersal kernel φ(�x,�y) appearing in Eq. (1) is the
probability per unit area that the children of an individual
located at (x + �x,y + �y,t) become adults at (x,y,t + T ).
The last two terms, RT [p(x,y,t)] − p(x,y,t) correspond to net
reproduction (births minus deaths) during T . This is usually
well described by the logistic growth [15,17]

RT [p(x,y,t)] = p(x,y,t)pmaxe
aT

pmax + p(x,y,t)(eaT − 1)
, (2)

where a is called the initial growth rate and pmax is the carrying
capacity.

For isotropic kernels, Eq. (1) can be Taylor expanded up to
second order in space and first order in time to yield [6]

∂p

∂t
= D∇2p + F (p), (3)

where

D ≡ 1

4T

∫ +∞

−∞

∫ +∞

−∞
φ(�x,�y)

(�2
x + �2

y

)
d�x d�y

≡ 〈�2〉
4T

(4)

is the diffusion coefficient and F (p) is the time derivative
of p(x,y,t) due to net reproduction, i.e., RT [p(x,y,t)] −
p(x,y,t) = T F + T 2

2!
∂F
∂t

+ · · · [6,15].
Equation (3) is called Fisher’s equation [13,18,19] if a

logistic growth function is assumed,

F (p) = ap

(
1 − p

pmax

)
, (5)

which implies that, in the absence of diffusive effects [i.e.,
without the first term in the right-hand side of Eq. (3)],
the population density p(x,y,t) evolves logistically [i.e.,
according to Eq. (2)].

A major drawback of Eqs. (1)–(3) is the following. Accord-
ing to Eq. (1), newborn individuals can appear at (x,y) (last
two terms), while their parents migrate away from (x,y) (first
term on the right-hand side). In other words, in such models,
some parents leave their newborn children alone. However,
newborn humans can not survive away from their parents. This
inconsistency can be avoided by using so-called cohabitation
models, which are based on the following equation instead of
Eqs. (1) or (3) [20]:

p(x,y,t + T ) = RT

[ ∫ +∞

−∞

∫ +∞

−∞
p(x + �x,y

+�y,t) φ(�x,�y)d�x d�y

]
, (6)

where RT [p(x,y,t)] is given by Eq. (2). Note that, according
to Eq. (6), children can not appear away from their parents’
location, so that the cohabitation Eq. (6) is more reasonable
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than the noncohabitation equations (1)–(3), as discussed in
detail elsewhere [20].

In order to derive analytical front speeds, it is sufficient to
consider the leading edge of the front. There, the population
density p(x,y,t) is low, so Eq. (2) can be linearized into
RT [p(x,y,t)] � p(x,y,t)eaT , and Eq. (6) becomes

p(x,y,t + T ) = R0

∫ +∞

−∞

∫ +∞

−∞
p(x + �x,y

+�y,t)φ(�x,�y)d�x d�y, (7)

where

R0 ≡ eaT (8)

is called the net fecundity or reproductive rate (this is again
a net rate, i.e., it includes the effect of mortality). In some
papers [21,22], instead of the logistic growth (2), one assumes a
linear cutoff, i.e., Eq. (7) unless it yields p(x,y,t + T ) > pmax,

and p(x,y,t + T ) = pmax otherwise. Both approaches yield
the same front speed [23], but the linear cutoff is simpler when
including cultural transmission (see Sec. II) [24].

B. Cultural diffusion

An interesting application of the demic diffusion models
summarized above is the Neolithic transition in the Near East
and Europe. This is defined as the transition from hunter-
gathering (Mesolithic) to agricultural (Neolithic) economics,
which took place first in the Near East (about 10 000 years

ago) and later spread westward and northward across Europe
(during about 5000 years). Equations (3) and (7) have been
applied to the Neolithic transition in Refs. [13] and [21],
respectively (for some recent reviews on these and other
models, see Refs. [9,11]). Such models are typically based
on the assumption that the Neolithic transition was caused
by an invasion of farmers, i.e., by demic diffusion. However,
other possible mechanisms could have played a role in the
propagation speed of the Neolithic transition in addition
to demic diffusion, such as vertical cultural transmission
(interbreeding between farmers and hunter gatherers), hor-
izontal cultural transmission (imitation of the behavior of
farmers by hunter gatherers, without mating with farmers),
and local innovation (transition of hunter gatherers into
farmers without any influence from farmers) [13]. A crucial,
long-standing problem is that (in contrast to demic diffusion)
well-established mathematical models of the latter three
mechanisms still do not exist, despite 40 years of research
on reaction-diffusion models of the Neolithic transition [14].
There is an extensive literature on mathematical models
of cultural transmission (see Refs. [25,26] for two seminal
works). However, cultural transmission has been included only
in a few mathematical models to compute its effect on the
Neolithic front speed [22,27–31], and always on the basis on
Lotka-Volterra–type models. These are of two kinds.

(i) Sets of differential equations [27–31]. These can be
derived by extending the integrodifference Eq. (1) to two
interacting populations

{
pN (x,y,t + T ) = ∫ +∞

−∞
∫ +∞
−∞ pN (x + �x,y + �y,t) φN (�x,�y)d�x d�y + RT N [pN (x,y,t)] − pN (x,y,T ) + IN ,

pP (x,y,t + T ) = ∫ +∞
−∞

∫ +∞
−∞ pP (x + �x,y + �y,t) φP (�x,�y)d�x d�y + RT P [pP (x,y,t)] − pP (x,y,T ) + IP ,

(9)

where the subscript N stands for Neolithic farmers and the sub-
script P for Mesolithic (i.e., late Palaeolithic) hunter gatherers.
For simplicity, we have assumed the same generation time T

for both populations, which is a good approximation according
to anthropological data [32]. The terms IN and IP correspond
to the interaction between both populations (they depend on
the population densities pN and pP , and will be carefully
discussed below). As in the derivation above of Eq. (3), if the
kernels φN (�x,�y) and φP (�x,�y) are isotropic, Eqs. (9) can
be also Taylor expanded up to second order in space and first
order in time to yield{

∂pN

∂t
= DN∇2pN + F (pN ) + IN ,

T
∂pP

∂t
= DP ∇2pP + F (pP ) + IP

T
,

(10)

which generalize Fisher’s equation (3) to two interacting pop-
ulations. We will refer to Eqs. (10) as the differential-equations

(DE) model. Classical diffusive Lotka-Volterra systems are a
special case of this model. They are based on the assumption
that the interaction between both populations [last terms in
Eqs. (10)] is properly described by [17]{

IN = �pNpP ,

IP = −�pNpP .
(11)

Equations (10) and (11) and similar Lotka-Volterra differential-
equations models have been applied to the Neolithic transition
in several papers [27–31]. However, in Sec. II, it is shown that,
for vertical cultural transmission, more appropriate terms than
Eq. (11) can be derived.

(ii) Sets of cohabitation equations for interacting
species have been also applied to the Neolithic
transition [22]

{
pN (x,y,t + T ) = ∫ +∞

−∞
∫ +∞
−∞ [R0NpN (x + �x,y + �y,t) + IN (x + �x,y + �y,t)] φN (�x,�y)d�x d�y,

pP (x,y,t + T ) = ∫ +∞
−∞

∫ +∞
−∞ [R0P pP (x + �x,y + �y,t) + IP (x + �x,y + �y,t)] φP (�x,�y)d�x d�y,

(12)

which generalize the cohabitation Eq. (7) to two interacting populations. If the Lotka-Volterra interaction (11) is assumed,
Eqs. (12) become{

pN (x,y,t + T ) = ∫ +∞
−∞

∫ +∞
−∞ [R0N + �pp(x + �x,y + �y,t)]pN (x + �x,y + �y,t) φN (�x,�y)d�x d�y,

pP (x,y,t + T ) = ∫ +∞
−∞

∫ +∞
−∞ [R0P − �pN (x + �x,y + �y,t)]pP (x + �x,y + �y,t) φP (�x,�y)d�x d�y.

(13)
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In Sec. II, it is shown that, in fact, the Lotka-Volterra interaction
(11) is inappropriate for vertical cultural transmission.

The purpose of this paper is to develop a mathematical
model that takes into account vertical cultural transmission
(i.e., interbreeding between farmers and hunter gatherers) in
addition to demic diffusion. The need for such a model has been
also pointed out by several authors [33,34], but it does not exist
so far. This paper aims to solve this problem. Before presenting
this model, let us briefly describe the other two mechanisms
mentioned above. A mathematical model of the third mecha-
nism (horizontal cultural transmission [27,28,31,35]) will not
be tackled in this paper because it would require substantial
additional calculations since (i) it is well known from empirical
data that human individuals often use the frequency of a trait as
an indirect evaluation of its merit (biased transmission [26]),
and (ii) horizontal transmission takes place at much longer
distances than vertical transmission, even for pre-industrial
populations [36], and this will lead to a distance-dependent
probability of transmission. Finally, the fourth mechanism
(local innovation) will not be analyzed here either, for the
following reasons: (i) such local processes are probably not
amenable to mathematical modeling, and (ii) a gradual front
propagation in the Southeast-Northwest direction, with fairly
constant speed, is observed for the Neolithic transition in
Europe at the continental scale according to the archaeological
data [37,38], thus, local innovations probably did not have an
important effect on the global spread rate.

The plan of this paper is as follows. The derivation of the
interaction terms (appropriate to vertical cultural transmission)
is presented in Sec. II, considering homogeneous systems for
simplicity. Section III contains the extension of the results
to nonhomogeneous systems, and the analysis of their effect
on the speed of front propagation. Section IV discusses the
implications for the Neolithic transition in Europe. Section V
is devoted to concluding remarks and further applications of
these interaction terms.

II. VERTICAL CULTURAL TRANSMISSION

In this section, we consider homogeneous systems for
simplicity, i.e., the population densities per unit area (pN and
pP ) are independent of position. Nonhomogeneous extensions
will be analyzed in the next section. Let PN (t) = pN (t)S and
PP (t) = pP (t)S stand for the numbers of neolithic farmers
(N ) and of mesolithic hunter gatherers (P ), respectively, in a
system with area S at time t.

We assume that when a farmer mates a hunter gatherer, their
children are all farmers. This is reasonable from the perspective
that, if agriculture appeared at all, it was because some hunter
gatherers became farmers, i.e., there was a tendency of hunter
gatherers to become farmers. It is also in agreement with
anthropological observations [13,39]. However, it is very easy
to generalize the model below to the case in which not all
children from cross-matings are farmers [40].

We define IN � 0 as the number of new farmers (N ) per
generation due to vertical cultural transmission, and IP � 0 as
the corresponding decrease in the number of hunter gatherers
(P ) per generation. Because in this section we neglect the

dispersion of the populations for simplicity, the evolution
equations are

{
PN (t + T ) = R0N PN (t) + IN ,

PP (t + T ) = R0P PP (t) + IP .
(14)

Note that the cohabitation equations (12) without dispersal
[i.e., with φN (�x,�y) = δ(0) and φP (�x,�y) = δ(0) Dirac
deltas centered at � ≡√

�2
x+�2

y=0] reduce to Eqs. (14) [41].
In order to derive front speeds (next section), first we need

to derive the dependence of IN and IP on the population
numbers PN and PP for vertical cultural transmission. In the
following two sections, we present two different derivations,
both yielding the same results. However, first it will be useful
to write down the conditions that we expect IN and IP to
satisfy.

As explained in the previous section, by definition, vertical
transmission is due to interbreeding between populations N

and P [25]. Intuitively, we expect that the interaction term IN

should satisfy the following conditions (IP should also satisfy
them, but at this point it is enough to consider IN ).

(i) IN should vanish if PN = 0 and/or PP = 0.
(ii) If PN is increased but PP remains the same, then the

number of cross matings (and thus IN ) should become larger
[unless PN 
 PP ; see condition (iii)].

(iii) In the case PN 
 PP , it is reasonable to expect that,
on average, P individuals will have reached their maximum
possible number of social contacts (encounters per unit time,
personal relationships, etc.) with N individuals. Thus, if PN

is further increased but PP remains the same, we expect no
additional cross matings, i.e., IN should remain approximately
the same.

(iv) Similar to condition (ii), if PP is increased but PN

remains the same, then IN should become larger [unless
PP 
 PN , see condition (v)].

(v) Similar to condition (iii), in the case PP 
 PN , if PP is
further increased but PN remains the same, IN should remain
approximately the same.

A. Phenomenological approach

First, we present a phenomenological or macroscopic ap-
proach that will very quickly lead us to the correct dependence
of IN and IP on PN and PP . A more rigorous approach (which
yields the same results, and also a uniqueness theorem) will
be presented in the next sections.

Let us discuss the interaction term IN (the term IP is
analogous). The Lotka-Volterra term (11), namely,

IN = �PNPP , (15)

is widely used for predator-prey and competition systems in
ecology [17]. However, this term does not satisfy conditions
(iii) and (v). Therefore, it does not seem reasonable for vertical
cultural transmission. In fact, all power-law interaction terms
with the form

IN = �P α
NP

β

P (16)
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have the same problem. On the other hand, a conditional term
with the form

IN =
{
�PP if PN �= 0,

0 if PN = 0
(17)

does not satisfy conditions (ii) and (v). However, it is easy to
see that the term

IN = �
PN PP

PN + PP

(18)

satisfies all of the five conditions above for the interaction term
IN . Thus, this is the term that we will use for cultural vertical
transmission. Similarly, we obtain, for IP ,

IP = −	
PN PP

PN + PP

. (19)

A rigorous derivation of Eqs. (18) and (19) is presented in the
next section.

Note that the interaction terms (18) and (19) are similar
to the well-known interaction IN = � PN PP

c+PP
, IP = −	PN PP

c+PP

(with c a constant), which is called the Holling type-II interac-
tion [42], Michaelis-Menten kinetics [43], or the quasi-steady-
state approximation [44]. However, both pairs of interaction
terms are substantially different for the purposes of this paper
because their front speed is different (see Sec. III).

B. Mating-frequencies approach

Aside from the phenomenological or macroscopic approach
discussed in the previous section, a more detailed approach
is to use microscopic models, which are based on mating
frequencies [25]. Here, we show that, in this way, the same
result (18) as above can be obtained. This second approach
is of utmost interest in its own right because (i) it makes it
possible to show that Eq. (18) is in fact the only form for IN

that satisfies all of the five conditions above (see Sec. II C),
and (ii) it makes it possible to estimate the values of � and 	

from cross-mating probabilities [p(u) and p′(u) below].
Let

u = PN

PN + PP

, (20)

v = PP

PN + PP

(21)

stand for the frequencies of individuals N and P , respectively.
Obviously,

u + v = 1. (22)

Under random mating, marriage can occur with equal
probability between any members of the population. In that
special case, the probabilities of matings NN , PP , NP , and
PN would obviously be u2, v2, uv, and uv, respectively. In
other words, the mating matrix would be [25]

(pij ) =
(

u2 uv

uv v2

)
. (23)

Mating between members of two populations with substan-
tially different cultural traits (farmers and hunter gatherers in
our case) is obviously not random (e.g., NP and NN matings
are not equally likely). Let p(u) stand for the probability that

a N individual mates a P individual (i.e., the number of cross
matings divided by PN ). Let p′(u) stand for the probability
that a P individual mates a N individual (i.e., the number of
cross matings divided by PP ). Obviously,

p(u)PN = p′(u)PP . (24)

Let both probabilities p(u) and p′(u) depend on frequency u

(and, thus, on v = 1 − u). Indeed, I shall show that they must
be frequency dependent in order for the five conditions below
Eqs. (14) to be satisfied.

Under nonrandom mating, the mating matrix (23) is
obviously replaced by

(pij ) =
(

u [1 − p(u)] up(u)

vp′(u) v[1 − p′(u)]

)
, (25)

where Eqs. (20), (21), and (24) obviously imply that the
nondiagonal elements are equal, up(u) = vp′(u). On the
other hand, the random-mating matrix (23) is recovered from
Eq. (25) if p(u) = v and p′(u) = u, as it should.

As mentioned at the beginning of Sec. II, in agreement with
anthropological observations [13,39], we assume that farmers
(N ) tend to become hunter gatherers (P ), but not the other way
around, in such a way that only children from PP matings
remain hunter gatherers (P ). This means that children from
NN , NP , and PN matings are farmers (N ) [40]. In other
words, the probability matrix that a N child results from the
mating ij [25] is, in our case,

(bij ) =
(

1 1

1 0

)
. (26)

With this information, we can compute the probability that
children from a mating are farmers (N ) as

ϕN ≡
∑

pijbij = u[1 − p(u)] + up(u) + vp′(u)

= u + vp′(u). (27)

We neglect the individuals who do not mate and have
children because they will not affect the front behavior (this
is also done in mathematical models of vertical cultural
transmission [25] because they do not affect the evolution
of cultural traits). Then, the total number of matings in the
population is simply (PN + PP )/2. By multiplying this by the
probability (27) and by the average number of children per
mating (namely, 2R0N , where R0N is the average number of
children per farmer), we obtain that the number of farmers in
the next generation is

PN (t + 1) = R0N [u + vp′(u)] (PN + PP ), (28)

where time is measured in generations and Pi stands for Pi(t),
with i = N,P.

In the absence of net reproduction (R0N = 1 and R0P =
1, which implies a constant total population size PN + PP ),
Eq. (28) reduces to Eq. (2.2.1) in Ref. [25], namely, u(t + 1) =∑

pijbij [with pij and bij given by Eqs. (25) and (26)], as it
should.

Finally, subtracting to Eq. (28) the increase in the number
of farmers due to net reproduction, i.e., R0NPN [first term in
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the right of Eq. (14)], we obtain the increase in the population
number of farmers due to vertical cultural transmission,

IN = R0N [u + vp′(u)] (PN + PP ) − R0NPN. (29)

By using Eqs. (20) and (21), we can simplify this result into

IN = R0N PP p′(u), (30)

which simply states that the increase in the number of
farmers due to vertical cultural transmission is the number
of hunter gatherers who mate with farmers [PP p′(u)] times
the reproductive rate of farmers (R0N ).

It is easy to repeat the previous steps to derive the decrease
in the number of hunter gatherers. For this purpose, instead of
the matrix (26), we have to consider the probability cij that a
P child results from the mating ij , in our case [40]

(cij ) =
(

0 0

0 1

)
, (31)

and instead of Eq. (27), we now compute the probability that
children from a mating are hunter gatherers (P ) as

ϕP ≡
∑

pij cij = v[1 − p′(u)]. (32)

Following the same steps as above, we obtain that the analog
to Eqs. (28)–(30) for hunter gatherers instead of farmers is

PP (t + 1) = R0P v[1 − p′(u)](PN + PP ), (33)

IP = R0P v[1 − p′(u)](PN + PP ) − R0P PP , (34)

IP = −R0P PP p′(u), (35)

respectively. This last result simply states that the decrease
in the number of hunter gatherers due to vertical cultural
transmission is the number of hunter gatherers who mate
with farmers [PP p′(u)] times the reproductive rate of hunter
gatherers (R0P ). Again, this was to be expected intuitively.
But, it is very important to stress that, in Eq. (35), the fecundity
of hunter gatherers (R0P ) appears, whereas in Eq. (30), the
fecundity of farmers (R0N ) appears instead. Therefore, we
conclude that, in contrast to many ecological models [e.g.,
the Lotka-Volterra–type equations (10)–(12)] for vertical cul-
tural transmission, the interaction terms IN and IP in Eqs. (14)
must be different from each other (not only in sign but also in
magnitude).

In order to write the interaction terms IN and IP with
explicit dependencies on the population numbers PN and PP ,
we need first to relate the cross-mating probability p′(u) to the
N -population frequency u. In order to do so, it will be very
useful to consider several cases.

First, consider the special case in which p′(u) is frequency
independent, say,

p′(u) = a0. (36)

Then, we can rewrite Eq. (30) as

IN = R0N a0 PP , (37)

which corresponds (for PN �= 0) to the case given by the
phenomenological equation (17) (with � = R0N a0). However,
as explained below Eq. (17), such an interaction term is not
acceptable for vertical cultural transmission [because it is

inconsistent with the conditions (ii) and (v)]. Thus, the mating
probability p′(u) must be frequency dependent.

Second, consider the case in which the probability p′(u)
that a P individual mates a N individual is proportional to the
frequency of N individuals u, say,

p′(u) = ηu. (38)

Then, making use of Eq. (20), the number of farmers in the
next generation [Eq. (30)] is

IN = R0N η
PN PP

PN + PP

. (39)

This result agrees with that of the phenomenological approach
[Eq. (18)] (with � = R0N η), which satisfies all of the five
conditions stated below Eq. (14). Note from Eqs. (14) and (39)
that η is dimensionless. On the other hand, use of Eqs. (38)
and (20) into (24) yields

p(u) = ηv = η(1 − u), (40)

where we have applied Eq. (22). Therefore, not only p′(u) but
also p(u) must be frequency dependent.

Equations (30) and (35) imply that

IP = −R0P

R0N

IN, (41)

and, by using Eq. (39), the interaction term for hunter gatherers
due to vertical cultural transmission is finally

IP = −R0P η
PN PP

PN + PP

, (42)

which also agrees with the phenomenological result (19) (with
	 = R0P η). We stress that it is very easy to generalize the
model above to the case in which not all children from cross
matings are farmers [40], but this is not necessary for the
purposes of this paper.

In Secs. III and IV, these results will be applied to compute
the effect of vertical cultural transmission on the Neolithic
front speed. However, before doing so, the next section briefly
tackles the question of whether it is possible to find some other
forms for the interaction terms IN and IP such that they are
also compatible with vertical cultural transmission.

C. Uniqueness of the interaction terms for vertical
cultural transmission

In this section, we show that it is not possible to find any
other forms for IN and IP aside from those given by Eqs. (39)
and (42) such that they satisfy the five conditions stated below
Eq. (14) for vertical cultural transmission. In order to do so,
let us write the probability p′(u) as a Taylor series

p′(u) = a0 + ηu + a2u
2 + a3u

3 + · · · , (43)

and note the following points.
(i) The first term in the series (43) can not be accepted

because [as explained below Eq. (37)], when used in Eq. (30), it
gives rise to the term R0N a0 PP , which makes IN inconsistent
with condition (v) below Eq. (14) [45].

(ii) The third term in Eq. (43) can not be accepted neither
because, when used in Eq. (30), it will give rise to a term
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R0Na2P
2
NPP /(PN + PP )2 in IN , which obviously makes it

impossible for IN to fulfill condition (v) [45].
(iii) Similarly, all other terms aiu

i (with i �= 1) in Eq. (43)
give rise to terms R0NaiP

i
NPP /(PN + PP )i in IN , which are

also inconsistent with condition (v) [45].
Therefore, Eqs. (39) and (42) seem to be the only forms

for IN and IP suitable to describe vertical cultural transmission.
Using them in Eqs. (14) yields the nonspatial model of vertical
cultural transmission, namely,{

PN (t + T ) = R0N PN (t) + R0N η PN (t)PP (t)
PN (t)+PP (t) ,

PP (t + T ) = R0P PP (t) − R0P η PN (t)PP (t)
PN (t)+PP (t) .

(44)

In the next section, this model will be generalized to spatial
systems (in order to take care of population dispersal).

It is very important to stress that terms with the Lotka-
Volterra form (15) are widely applied in ecological mod-
els of interacting species for the so-called predator-prey
(IP = −IN = −�PNPp) and the competition (IP = IN =
−�PNPp) cases [17]. However, Eqs. (39) and (42) definitely
show that such Lotka-Volterra terms can not be applied to

vertical cultural transmission (interbreeding). Indeed, not only
the dependencies of IP and IN on the population densities
(PN and Pp) are completely different than in the Lotka-
Volterra case, but even their magnitudes differ from each other
(|IP | �= |IN |). We conclude that previous models of the effect
of interbreeding on Neolithic front dynamics, which were
based on Lotka-Volterra interaction terms [22,29,30], should
be replaced by models based on the interaction terms (39) and
(42) derived above. This is done in the following sections.

III. FRONT PROPAGATION

In order to generalize the nonspatial approach in the
previous section, the following two spatial models will be
analyzed.

(i) Sets of cohabitation equations. As explained above
Eq. (7), cohabitation equations should be preferred for bi-
ological reasons [20]. They are given by Eqs. (12) with
the interaction terms valid for vertical cultural transmission
[i.e., using Eqs. (39) and (42) instead of the Lotka-Volterra
interaction (11)]

⎧⎨⎩pN (x,y,t + T ) = R0N

∫ +∞
−∞

∫ +∞
−∞

[
1 + η

pp(x+�x ,y+�y ,t)
pp(x+�x ,y+�y ,t)+pN (x+�x ,y+�y ,t)

]
pN (x + �x,y + �y,t) φN (�x,�y)d�x d�y,

pP (x,y,t + T ) = R0P

∫ +∞
−∞

∫ +∞
−∞

[
1 − η

pN (x+�x ,y+�y ,t)
pp(x+�x ,y+�y ,t)+pN (x+�x ,y+�y ,t)

]
pP (x + �x,y + �y,t) φP (�x,�y)d�x d�y.

(45)

Let us recall that, for the case in which there is no dispersal
[φN (�x,�y) = φP (�x,�y) = δ(0), i.e., the Dirac function
centered at � ≡√

�2
x+�2

y=0], this set of cohabitation equations
reduces to the nonspatial model in Sec. II [Eqs. (14)] with IN

and IP given by Eqs. (39) and (42). Recall, also, that Eqs. (45)
are strictly valid only if they yield population densities below
the corresponding saturation values (see the last paragraph in
Sec. I A), but here this point will not be discussed further
because it would not change the result that we are interested
in, namely, the front speed [24].

(ii) Sets of differential equations (DE model). It is included
here only for comparison purposes, namely, to determine
whether it is a reasonable approximation or not [it should
be stressed again that this model (ii) is less reasonable than
the cohabitation model (i) for biological reasons, see the text
above and below Eq. (7) as well as Refs. [20]]. This model
(ii) is given by the classical diffusive Eqs. (10) with the
vertical-transmission interaction terms [i.e., Eqs. (39) and (42)
rather than Lotka-Volterra terms (11)]{

∂pN

∂t
= DN∇2pN + F (pN ) + R0N

T
η

pN pP

pN +pP
,

∂pP

∂t
= DP ∇2pP + F (pP ) − R0P

T
η

pN pP

pN +pP
,

(46)

where the net reproduction rate of species i = N,P is given
by the logistic growth function (5),

F (pi) = aipi

(
1 − pi

pimax

)
. (47)

In order to compare the predictions of Eqs. (46) and (47) to
those of Eqs. (45), we note that the reproductive parameters

appearing in Eqs. (47) and (45) are related according to Eq. (8),
namely [46],

ai = ln R0i

T
. (48)

A. Front speed in the cohabitation-equations model

This model corresponds to Eqs. (45). The Neolithic tran-
sition is widely regarded as an invasion of Neolithic farmers
N into a space populated by indigenous hunter gatherers [13].
Thus, we can assume that the invasion front of farmers (with
density pN ) spreads in a region where the density of hunter
gatherers (with density pP ) is initially equal to its maximum
possible value (pmax P ) [29]. Then, in the leading edge of
the invasion front, pN is very small whereas pP is close to
saturation:

pN (x,y,t) � ε(x,y,t) + O(2),
(49)

pP (x,y,t) � pmax P − δ(x,y,t) + O(2),

where O(2) stands for second- and higher-order terms
ε(x,y,t)  pmax N and δ(x,y,t)  pmax P . By performing a
two-variable Taylor expansion up to first order, it is easy to see
that

η
pp(x,y,t) pN (x,y,t)

pp(x,y,t) + pN (x,y,t)
� η pN (x,y,t) + O(2). (50)
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By using this result, the first of Eqs. (45) can be linearized and
the dependent variable pP (x,y,t) no longer appears in it:

pN (x,y,t + T ) � R0N

∫ +∞

−∞

∫ +∞

−∞
[1 + η] pN (x + �x,y

+�y,t)φN (�x,�y)d�x d�y. (51)

For isotropic kernels, invasion front speeds in two dimen-
sions (2D) can be found by choosing the x axis parallel to
the local velocity of the front [47]. Let c ≡ |cx | stand for the
front speed. Assuming constant-shape solutions with the form
pN = p0 exp[−λ(x − ct)] as x − ct → ∞ and an isotropic
kernel φ(�), we obtain, from Eq. (51),

exp[cT λ] = R0N (1 + η)
∫ ∞

0
d��φN (�)

×
∫ 2π

0
dθ exp[−λ� cos θ ] , (52)

where θ ≡ tan−1 �y

�x
. Finally, we need an expression for the

kernel φ(�) in order to integrate Eq. (52). Kernels appropriate
to Neolithic human dispersal have been recently discussed
[15]. However, here we want to focus our attention on the
effect of vertical cultural transmission. Therefore, we analyze
a simple model in which individuals either remain at rest (with
probability pe, which is called the persistence [21]) or move a
distance r (with probability 1 − pe):

φN (�) = peδ
(2)(0) + (1 − pe)δ(2)(r)

= pe

δ(1)(0)

2π�
+ (1 − pe)

δ(1)(r)

2π�
, (53)

where δ(2)(r) and δ(1)(r) are the 2D and 1D Dirac deltas
centered at r, respectively. After integrating Eq. (52), we
assume as usual that the minimum speed is that of the front [48]
and obtain

c = min
λ>0

ln{R0N (1 + η)[pe + (1 − pe)I0(λr)]}
T λ

, (54)

where

I0(λr) ≡ 1

2π

∫ 2π

0
dθ exp[λr cos θ ] (55)

is the modified Bessel function of the first kind and order zero.
In the limit in which the invading farmers N do not interbreed
at all with the invaded hunter gatherers, there is no vertical
cultural transmission (η → 0) but only demic diffusion, and
Eq. (54) becomes the speed corresponding to the cohabitation
Eq. (7) [see Eq. (14) in Ref. [21]], as it should [because then
the first of Eqs. (45) reduces to Eq. (7)].

B. Front speed in the differential-equations model

As explained above Eq. (7), cohabitation equations should
be preferred for biological reasons [20]. Therefore, the set of
differential equations (46) is at most of approximate validity.
But, can it really yield an approximately valid description of
the effects of vertical cultural transmission on demic front
propagation? In order to answer this question, we linearize

Eqs. (46) and (47) and use Eq. (50) to obtain, instead of
Eq. (51),

∂pN

∂t
� DN∇2pN + aNpN + R0N

T
η pN, (56)

and following the same approach as in the former section, the
speed of front solutions to this equation is easily seen to be

cDE = 2

√
ln R0N + R0Nη

T
DN, (57)

where we have used Eq. (48), and the subscript DE stands
for the differential-equations model. Obviously, Eq. (57) also
follows directly from Fisher’s speed 2

√
ãNDN if we note that

Eq. (56) is Fisher’s equation with a modified growth rate
ãN = aN + R0Nη/T . Finally, it is worthwhile to emphasize
two points: (i) the cohabitation result (54) is more reasonable
biologically for human populations than Eq. (57) [see the text
above Eq. (7) and the references in [20]]; and (ii) the simple
formula (57) is considered here only in order to determine
whether it is a useful approximation to the exact result (54).

Note that, for the Holling type-II interaction mentioned at
the end of Sec. II B, the front speeds (54) and (57) would
be different because the right-hand side in Eq. (50) would be
replaced by ηpN (x,y,t)cpmax P + O(2).

IV. APPLICATION TO THE NEOLITHIC TRANSITION
IN EUROPE

Application of the models above to the Neolithic transi-
tion requires parameter values appropriate for pre-industrial
populations. Population number data sets in previously
empty islands are available [49] and the average value
implied is R0N = 2.2 [21]. The generation time is T = 1
generation = 32 yr [50]. The mean value of the population
persistence is pe = 0.38 [21], which was estimated from the
mobility data in Ref. [51]. The value r = 50 km is estimated
directly from those of the persistence and the mean-squared
displacement 〈�2〉 = 1544 km2 [52]. Finally, the diffusion
coefficient is DN = 〈�2〉/(4T ) = 12 km2/yr.

In Fig. 1, we show the speed predicted by the cohabitation
model (full curve) [Eq. (54)] [53]. The front speed predicted by
Eq. (54) increases with increasing values of the dimensionless
interaction parameter η, as it was to be expected because,
according to Eq. (39), higher values of η correspond to
a stronger effect of vertical cultural transmission (i.e., to
more cross matings between farmers and hunter gatherers per
generation). It is remarkable that the observed speed range
(hatched region in Fig. 1) severely constrains the possible
range for the dimensionless vertical diffusion parameter as η <

0.1. Therefore, an important conclusion is that the observed
Neolithic speed range can be used to constrain the possible
range of a fundamental interbreeding parameter (η, introduced
in this paper). Moreover, according to Fig. 1, vertical cultural
transmission has an important effect on the front speed, up
to 30% relative to the speed predicted by the purely demic
model (i.e., η = 0). Figure 1 also includes the predictions
of the approximate DE model (dashed curve) [Eq. (57)]. By
comparing the dashed and solid curves in Fig. 1, it is found
that the DE model makes an error relative to the cohabitation
model that can be very important (up to 56%) if the effect of
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FIG. 1. Predictions for the Neolithic front speed as a function of
the dimensionless vertical cultural transmission parameter η, accord-
ing to the cohabitation model [Eq. (54)] (solid curve). For comparison,
the results for the approximate, noncohabitation differential-equation
model [Eq. (57)] are also shown (dashed curve). The corresponding
demic models (circle and square, respectively) are obtained if the
effect of vertical cultural transmission (interbreeding) is neglected
(η = 0). The hatched region corresponds to the observed speed range
for the Neolithic transition in the Near East and Europe, as implied by
the archaeological data using calibrated dates (0.6–1.1 km/yr) [37].

vertical cultural transmission is included (as compared to an
error of only 4% in the purely demic case η = 0).

V. CONCLUDING REMARKS

This paper contains two different derivations of the inter-
action terms under vertical cultural transmission (Sec. II).
Probably the most important result is that, in this case, the
interaction terms are not of Lotka-Volterra type [IN = �pNpp

and IP = −�pNpp, see Eq. (11)] but have another form
derived here [IN = R0N η

pN pP

pN +pP
and IP = −R0P η

pN pP

pN +pP
; see

Eqs. (39) and (42)]. These interaction terms have also been
used to compute the effect of vertical cultural transmission on
demic front propagation (Sec. III) and applied to a specific
example, the Neolithic transition in Europe (Sec. IV). The
effect of vertical cultural transmission can be important
(about 30%). Simple models based on differential equations
[Eqs. (46)] can lead to large errors [above 50%, as compared
to the integrodifference cohabitation model of vertical cultural
transmission, Eqs. (45)].

This paper deals with the front speed problem, but the
results should be applied in the future to another problem,
namely, the shape of genetic clines (i.e., space-dependent
gene frequencies). Simulations of genetic clines have been
performed using interaction terms of the Lotka-Volterra type
[i.e., similar to IN = �pNpp and IP = −�pNpp; see Eq. (11)]
[27,54]. However, according to this paper, interbreeding inter-
action terms of the type derived here should be used instead
[i.e., IN = R0N η

pN pP

pN +pP
and IP = −R0P η

pN pP

pN+pP
; see Eqs. (39)

and (42)]. Aside from Lotka-Volterra terms, interaction terms
of the type pN pP

(pN +pP )2 were also applied to simulate vertical
cultural transmission in Ref. [54], but such terms were
taken from a horizontal transmission model [35] and are

not valid for vertical transmission, according to the present
paper.

Moreover, a combination of cultural transmission and
demic diffusion (as modeled in this paper) is the leading
explanation for some genetic clines observed in present
European populations [55]. This may lead in the future
to another application of the work reported here because
genetic studies of the Neolithic transition have sometimes
led to contradictory results concerning the importance of
interbreeding between farmers and hunter gatherers [56–59].
This paper shows that the maximum value of a dimensionless
parameter that quantifies the intensity of interbreeding (η,

introduced here ) can be estimated directly from the observed
value of the front speed (Fig. 1).

The approach reported in this paper could be applied in
the future to similar human spread phenomena (e.g., the
Austronesian Neolithic expansion [60], preceramic dispersals
of maize and root crops into Panama [61], the diffusion of
maize to the southwestern United States [62], etc.).

Additionally, in future work, it would be of interest to
analyze whether these interaction terms (42) could be useful
even for some systems without vertical cultural transmission,
but such that it is reasonable to expect that the five conditions
stated below Eq. (14) could be satisfied, e.g., predator-
prey interactions [17], ecological competition (see Ref. [30],
Sec. 4.2), language competition [63], the spread of diseases
[64] and epidemics [17], and virus infection fronts [4].

In addition to biophysical and interdisciplinary applica-
tions, the results in this paper may also have purely physical ap-
plications because the interaction term given by Eq. (18) [i.e.,
IN = �

pN pP

pN +pP
] exhibits the following interesting saturation

effect. If pP is constant, we have IN → �pP for pN → ∞.

Similarly, if pN is constant, then IN → �pN for pP → ∞.
Such a saturation effect of a reaction rate that depends on the
concentrations of two species (pN and pP ) could be useful in
the analysis of front propagation in systems in which the reac-
tive process is locally limited due to impurities, porosity, etc.
In other words, assuming, e.g., that pP has a low local value,
then if the concentration of the other species (pN ) is increased,
we should expect intuitively the reactive rate to stop increasing
at some point (this will correspond to the limit IN → �pP for
pN → ∞). Thus, this saturation effect would correspond to the
fact that the reaction is limited in some spatial sites due to the
fact that a reactive component has a lower-than-average initial
concentration, e.g., because such sites are (partially) filled up
with additional, nonreactive substances (impurities). In future
work, this could be applied to study the effect of impurities
and/or porosity on chemical [65] and combustion [66] front
propagation. Even in the absence of impurities and porosity,
these interaction terms could be useful. Indeed, a saturation of
the reaction rate should be expected intuitively whenever the
concentration of a species is increased, if that of the the other
one is fixed and substantially smaller.
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