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Reaction-diffusion waves of advance in the transition to agricultural economics
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In a previous paper@J. Fort and V. Me´ndez, Phys. Rev. Lett.82, 867 ~1999!#, the possible importance of
higher-order terms in a human population wave of advance has been studied. However, only a few such terms
were considered. Here we develop a theory including all higher-order terms. Results are in good agreement
with the experimental evidence involving the expansion of agriculture in Europe.@S1063-651X~99!19110-4#
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I. INTRODUCTION

Allowance of a time delay between cause and eff
yields equations that are more reasonable from a concep
perspective. For example, the Fourier heat conduction e
tion

qW ~xW ,t !52l¹W T~xW ,t ! ~1!

predicts that a temperature gradient¹W T causes the instanta
neous appearance of a heat fluxqW (l is the thermal conduc
tivity, xW is the position vector, andt is the time!. This physi-
cally unpleasant property was noted long ago. Authors s
as Cattaneo@1# and Vernotte@2# proposed to avoid it by
letting the heat flux be retarded with respect to the temp
ture gradient, i.e., using a relationship of the form

qW ~xW ,t1Y!52l¹W T~xW ,t !, ~2!

whereY plays the role of a delay or relaxation time. Such
simple modification leads to generalized heat conduc
equations that have been used in the description of sec
sound in crystals@3#. Similarly, time-delayed equations fo
viscous flow@4#, diffusion @5#, and heat radiation@6# have
been considered, as well as for electrical@7# and chemical@8#
systems. Applications include shear waves@9#, ultrasound
propagation@10#, shock waves@11#, pores in biological
membranes@12#, rheology @13#, etc. It is worth stressing
however, that simple theories based on replacing, e.g.,
left-hand side in Eq.~2! by its first-order Taylor expansion
@1#,

qW ~xW ,t1Y!'qW ~xW ,t !1Y
]qW ~xW ,t !

]t
, ~3!

usually provide only a qualitatively valid description@14–
16#. Such approaches lead to the so-called telegrapher e
tion ~see Sec. II!, which has the appealing property that
predicts a finite speed for the propagation of sign
@14,15,17#. A special case of time-delayed transport is rela
ational diffusion, which has been applied to turbulence@5#,
propagation of light in turbid media@18#, diffusion in glassy
polymers @19#, photon emission from stellar atmospher
@17#, Taylor dispersion@20#, etc. Again, these approaches a
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based on a linearization of the type of Eq.~3! for the diffu-
sion flux JW instead of the heat fluxqW ,

JW~xW ,t1t!'JW~xW ,t !1Y
]JW~xW ,t !

]t
, ~4!

which ignores additional terms in the expansion. For t
reason, it is important to develop more general models. T
is one of the purposes of this paper, which has neverthe
been inspired by a specific application that we shall n
summarize within its proper context.

In the last few years, a lot of interest has been focused
the application of time-delayed models to systems in wh
diffusion and reaction processes coexist. Applications
clude chemically reacting systems@21,22# as well as many
biological applications such as epidemics@23#, forest fire
models@24#, and population growth@25#. Most authors have
presented formalisms based on simplifications which are
sentially of the type of Eq.~4!. This leaves doubt as to th
possible importance of the additional, neglected terms.
particular, application of such a model to the expansion
human populations has very recently led@26# to corrections
higher than 40% with respect to the usual, nondelay
model. Since this modification is very large, there is no r
sona priori to expect that keeping only a first-order corre
tion in the series~4! will give quantitatively trustworthy re-
sults. It is thus necessary to analyze carefully the role of
higher-order terms, and this is our main purpose here.
will focus our attention on a specific application of th
model, namely, the population expansion in the Europ
Neolithic transition, in order to determine whether or not t
conclusions in Ref.@26# remain valid or not when additiona
terms are included. However, we would like to remark th
the formalism we will present here is valid in general, a
should be useful in a variety of systems, specially those d
ing with time-delayed approaches to reaction-diffusion@21–
25#.

The plan of the paper is as follows. In Sec. II, we deri
a time-delayed reaction-diffusion equation including ter
of up to an arbritrarily high order. Its wave-front solution
are analyzed in Sec. III. This generalizes the theory p
sented in Ref.@26#. In Sec. IV, we explain why such an
equation is a reasonable approach to the modeling of hu
expansions~with special emphasis on the transition to ag
5894 © 1999 The American Physical Society
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cultural economics!, we briefly survey how the parameters
the equations are determined experimentally, and find g
agreement between the predictions of the new equations
the rate of spread of agricultural communities as determi
experimentally from the archeological record. Sec. V is
voted to concluding remarks.

II. GENERALIZED REACTION-DIFFUSION EQUATION

The usual approach to reaction-diffusion is based on
so-called Fisher equation@27#, in fact already derived by
Luther in 1906@28#. This equation can be obtained fro
Fick’s law of diffusion, namely,

JW~xW ,t !52D¹W p~xW ,t !, ~5!

where D is the diffusion coefficient andp is the particle
concentration. This is the diffusion analog to Fourier’s h
conduction equation~1!. When Eq.~5! is combined with the
mass balance equation, one obtains the well known re
~see, e.g., p. 236 in Ref.@29#!

]p

]t
5D¹2p1F, ~6!

which is Fisher’s equation. HereF5F(p) is the source func-
tion corresponding to reactive processes in the system. F
er’s derivation of Eq.~6! was inspired by the problem of th
spread of advantageous genes@27#. It was rederived more
recently by Noble@30# for application to the propagation o
epidemics. Although the use of time delays in homogene
(¹W p50W ) models of population dynamics is well know
@29,31#, only recently have some authors@25# applied time
delays to inhomogeneous systems by replacing Eq.~5! with

JW~xW ,t !1Y
]JW~xW ,t !

]t
'2D¹W p~xW ,t !, ~7!

in complete analogy to Eqs.~2! and ~3!. This leads to~see
Sec. II.B in Ref.@25#!

]p

]t
1Y

]2p

]t2
5D¹2p1F1Y

]F

]t
, ~8!

which in the absence of time delay (Y→0) reduces to the
Fisher equation~6!, whereas forF50 it becomes the teleg
rapher’s equation@14#, as mentioned in Sec. I. This summ
rizes the derivation presented in Ref.@25#. Here we want to
stress that such a phenomenological derivation, altho
completely consistent and in the spirit of the classical w
in Refs.@1,2#, does not yield a microscopic interpretation f
the delay timeY. It means that on this basis we cann
determine the value ofY when dealing with, e.g., a popula
d
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e

t

ult
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tion expansion. The same problem arises if one resort
derivations based on the assumption of a correlated ran
walk: in this caseY can be related to a parameter charact
izing the correlation between successive walks@32#. ThusY
may be estimated in the case, e.g., of cell or insect disper
because individual trajectories can be observed directly
such cases@33#. However, this is not possible for huma
expansions that took place thousands of years ago. Th
why in Ref. @26# we presented a new derivation of Eq.~8!.
The starting point was to write the total change in the po
lation density as a sum of a contribution due to migratio
~i.e., diffusion!, and another contribution due to populatio
growth ~i.e., ‘‘reactions’’!,

@p~x,y,t1t!2p~x,y,t !#ds5@p~x,y,t1t!2p~x,y,t !#mds

1@p~x,y,t1t!2p~x,y,t !#gds,

~9!

wherep(x,y,t) is the population density~measured in num-
ber of families per square kilometer!, x and y are Cartesian
coordinates,t is the mean time between two successive m
grations, andds5dxdy is a differential of surface. In Ref
@26# we derived the simplest possible model leading to
time-delayed extension of Fisher’s Eq.~6! by writing the first
and third terms in Eq.~9! as

@p~x,y,t1t!2p~x,y,t !#ds'F t
]p

]t
1

t2

2

]2p

]t2 Gds,

and

@p~x,y,t1t!2p~x,y,t !#gds'FtF1
t2

2

]F

]t Gds,

respectively, withF the source function corresponding
population growth. As explained in Sec. I, it is necessary
determine to what extent these approximations are reliabl
seems reasonable to try to conserve the simplicity of
model in Ref.@26# as far as it is possible to do so. Thus w
will simply keep an arbitrary numberN of terms in the ex-
pansions above, i.e., we rewrite Eq.~9! as

(
k51

N
tk

k!

]kp

]tk
5@p~x,y,t1t!2p~x,y,t !#mds1 (

k51

N
tk

k!

]k21F

]tk21
,

~10!

where ]0F/]t0[F. It remains to calculate the migratio
term. We follow Einstein’s approach to diffusion@34# by
letting Dx andDy stand for the changes in the position c
ordinates of a given family during the time intervalt, and
writing the migration term as
@p~x,y,t1t!2p~x,y,t !#mds5dsE
2`

1`E
2`

1`

p~x1Dx,y1Dy,t !f~Dx,Dy!dDxdDy2dsp~x,y,t !, ~11!
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wheref(Dx,Dy) is the fraction of those families lying a
time t in an areads, centered at (x1Dx,y1Dy), such that
they are at timet1t in an areads, centered at (x,y). The
following equations hold for the functionf(Dx,Dy)
@34,26#:

f~Dx,Dy!5f~2Dx,Dy!

5f~Dx,2Dy!5f~2Dx,2Dy!, ~12!
o
r

al
in
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E
2`

1`E
2`

1`

f~Dx,Dy!dDxdDy51. ~13!

We replace the right-hand side in Eq.~11! by its Nth-order
Taylor expansion and make use of Eq.~13!,
@p~x,y,t1t!2p~x,y,t !#mds5 (
k51

N E
2`

1`E
2`

1`

f~Dx,Dy!
1

k! S ]p

]x
Dx1

]p

]y
DyD (k)

dDxdDy. ~14!
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In Ref. @26# the approximationN52 was analyzed, i.e., only
terms up to

S ]p

]x
Dx1

]p

]y
DyD (2)

[
]2p

]x2
Dx212

]2p

]x]y
DxDy1

]2p

]y2
Dy2

were considered. Here we include an arbitrary number
such terms, which can be written analogously. After inse
ing Eq. ~12! into ~14!, Eq. ~10! becomes

(
k51

N
tk

k!

]kp

]tk
5

1

2! S ^Dx2&
]2p

]x2
1^Dy2&

]2p

]y2D
1

1

4! S ^Dx4&
]4p

]x4
16^Dx2Dy2&

]4p

]x2]y2

1^Dy4&
]4p

]y4D 1•••1 (
k51

N
tk

k!

]k21F

]tk21
, ~15!

where

^Dx2&[E
2`

1`E
2`

1`

f~Dx,Dy!Dx2dDxdDy

is the mean square displacement in thex direction during the
time intervalt, etc.

One may in principle introduce an infinite set of gener
ized diffusion coefficients and use them in the terms conta
ing ^Dx4&, ^Dx2Dy2&, etc. in Eq.~15!. However, this would
require the estimation of many parameters, which wo
complicate or even preclude the comparison of theory to
periment. A much simpler model can be built by assum
that all families move approximately the same distance6Dx
in the x and y directions during the time intervalt. Then
^Dxk&5Dxk5^Dyk& for k52,4, etc. Such lattice models ar
widely used in biological applications@35,29#, although they
have not been previously applied to time-delayed react
diffusion. Then, Eq.~15! becomes
f
t-

-
-

d
x-
g

-

(
k51

N
tk

k!

]kp

]tk
5

^Dx2&
2! S ]2p

]x2
1

]2p

]y2D
1

^Dx2&2

4! S ]4p

]x4
16

]4p

]x2]y2
1

]4p

]y4D 1•••

1 (
k51

N
tk

k!

]k21F

]tk21
. ~16!

A. Hyperbolic equation „N52…

Equation~16! has been derived from the series expansio
in Eqs.~10! and~14!. A possible approximation is to includ
only terms of up to second order, i.e., to neglect time a
space derivatives of third and higher order. Then we reco
from Eq. ~16! the hyperbolic reaction-diffusion equation d
rived in Ref.@26#,

]p

]t
1

t

2

]2p

]t2
5DS ]2p

]x2
1

]2p

]y2D 1F1
t

2

]F

]t
, ~17!

which is Eq.~8! with a diffusion coefficient and relaxation
time given by

D5
1

4tE2`

1`E
2`

1`

f~Dx,Dy!D2dDxdDy

[
^D2&
4t

5
^Dx2&

2t
5

^Dy2&
2t

, ~18!

and

Y5
t

2
, ~19!

respectively. We have introducedD[ADx21Dy2. Accord-
ing to Eq.~19!, the relaxation time appearing in the phenom
enological equation~7! is half the mean time between tw
subsequent migrations. For the reasons explained in Se
this microscopic interpretation is necessary in order to co
pare theory to experiment in the application considered. T
former derivation is valid for an arbitrary system: one nee
only to consider the mean time between collisions instead
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between migrations. This can also be of interest in the an
sis of chemically reacting systems@21,22#. However, such
applications are not within the scope of the present pape

B. Higher-order equations

From Eqs.~16! and ~18! we find

(
k51

N
tk

k!

]kp

]tk
5

2Dt

2! S ]2p

]x2
1

]2p

]y2D
1

~2Dt!2

4! S ]4p

]x4
16

]4p

]x2]y2
1

]4p

]y4D 1•••

1 (
k51

N
tk

k!

]k21F

]tk21
. ~20!

Equation ~20! is the fundamental equation we have be
looking for: it generalizes the time-delayed reactio
diffusion equation considered in Refs.@32,33# and @23–26#
by including terms of up to an arbitrary orderN. This equa-
tion can be used in order to find better solutions than th
following from Eq. ~17!. In Eq. ~17!, only time and spatial
derivatives of up to second order were retained. Less
proximate results will be obtained by application of Eq.~20!
including spatial and temporal derivatives of up to orderN
.2.

III. WAVE-FRONT SOLUTIONS

Wave fronts can be defined as traveling waves with c
stant shape and speed of propagation@29#. It is observed both
numerically and experimentally that, although a continuo
range of wave-front speeds is consistent with the stab
requirements, the system rapidly evolves toward the m
mum possible speed@29#. In the application considered her
propagation of such a wave across a given geographical
describes the immigration and establishment of farm
communities. Simple calculations are possible for the gen
alized reaction-diffusion equation~20! if we assume that
when a sufficiently long time has elapsed from the onse
agriculture, the farmers’ wave of advance is approximat
planar at scales much larger than that of individual mig
tions. We may then choose thex axis parallel to the loca
velocity of the wave. Letv5uvxu stand for its speed (vy
50). We introduce the variablez5x2vt and look for
constant-shape solutions, i.e., solutions such thatp depends
only on z. In general, we haveF(p)5ap1b2p21•••, but
the migration waves of advance under consideration tra
into areas where farming communities were previously
sent, so thatp'0 and thusF(p)'ap. It is now easy to
rewrite Eq. ~20! as a differential equation involving onl
derivatives off with respect to the variablez,

(
k51

N
~2tv !k

k!

]kp

]zk
5 (

k51

~2Dt!k

~2k!!

]2kp

]z2k

1a(
k51

N
tk~2v !k21

k!

]k21p

]zk21
, ~21!
y-
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where, as explained below Eq.~20!, for a given order of
approximationN one should keep temporal and spatial d
rivatives of up to orderN.

We are interested in determining the speed of propaga
v. A usual method is based on reducing the reacti
diffusion equation to a system of first-order differential equ
tions and finding its eigenvalues. ForN52 the problem thus
reduces to a second-order equation@25#. However, this will
not hold forN.2. Thus we will use a different method: th
existence and stability of wave fronts can be studied by c
sidering small perturbations of the formp5exp@lz# about
the statep50 @29#. We can require thatlPR, since other-
wise we would have an oscillatory behavior withp,0 for
some values ofz, which is a meaningless result. The syste
evolves toward a stable state provided thatl,0 @29#. This
method is applied below to four increasingly complicat
cases.

A. Fisher’s model

Fisher’s equation~6! is recovered from the approximatio
N52 @Eq. ~17!# in the limit of vanishingly small delay time
t→0. We denote the corresponding speedv by vt→0. In this
case, use ofp5exp@lz# yields the dispersion relation

Dl21vt→0l1a50, ~22!

and the requirementlPR gives Fisher’s well known mini-
mal speed

vt→052AaD. ~23!

B. Simplest time-delayed model„N52…

We denote the corresponding speed byv (2). Substitution
of p5exp@lz# into Eq. ~17! leads to

2v (2)l1
tv (2)

2
l25Dl21aS 12

tv (2)l

2 D ,

and after finding the solutions forl we find that stable wave
fronts can only exist with speeds equal to or higher than
critical value

v (2)5
2AaD

11
at

2

, ~24!

with at,2, which is the expression used in Ref.@26#. It
generalizes Fisher’s classical result and is in agreement
recent results from the linearization@25# and path-integral
@36# methods. Here we are interested in determining whet
this result can be trusted for application to human populat
wave fronts. This is the reason we have developed a m
general approach that will now be applied.
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C. Higher-order solutions

Use of the same form forp as above into Eq.~21! yields

(
k51

N
~2tvl!k

k!
5 (

k51

~2Dtl2!k

~2k!!
1a(

k51

N
tk~2vl!k21

k!
,

~25!

which is a polynomial equation. It can be solved analytica
e.g., in the third-order approximation (N53). However, the
results are rather lengthy. One may solve Eq.~25! numeri-
cally for increasing values ofN and study their convergenc
with increasingN. Nevertheless, we prefer to study the exa
solution. Its validity will be checked in the next section, b
means of the result~25!.

D. Exact solution

In the limit N→`, Eq. ~25! can be written as

~e2vtl21!S 11
a

vl D5@cosh~lA2Dt!21#. ~26!

It could at first sight seem possible to follow an altern
tive approach based on the diffusive analogue to Eq.~1!, i.e.
JW (xW ,t1Y)52D¹W p(xW ,t) and the mass balance equatio
Such an approach would lead to a phenomenological, m
roscopic, time-delayed Fisher equation, but not to the mic
scopic results~18! and ~19!; these results are necessary b
causeD andY are not directly measurable: in the applicati
we are interested in, what has been derived from experim
tal observations are the values of^D2&/t and t ~see, e.g.,
Ref. @26#!. Moreover, Eq.~18! cannot be simply borrowed
from Fickian diffusion, which holds near equilibrium; he
we have shown that Eqs.~18! and ~19! hold arbitrarily far
away from equilibrium. In our application~see Sec. IV!,
^D2& is the mean square displacement per generation andt is
the generation time~in chemically reactive systems, the
correspond to the mean square displacement and the m
free time between reactive collisions, respectively!. Thus a
microscopic approach, such as that presented in Sec.
necessary in order to compare the theory to experiment~Sec.
IV !. Consistency with the classical results can be checked
noting that Eq.~17! has been obtained by dividing Eq
~16!—in the second-order approximation—byt. Accord-
ingly, if we divide Eq. ~26! by t and consider the limitt
→0, we recover Fisher’s dispersion Eq.~22!, as it should be.

Although Eq.~26! cannot be solved analytically, we ca
show that it leads to wave fronts with a finite minimu
velocity of propagation. In order to see this, in Fig. 1 we p
the functions on the left- and right-hand sides of Eq.~26!.
For given values ofl, D, and t, the RHS has the shap
shown in the figure. Then, to each possible value of
reaction ~or growth! parametera there will correspond a
minimum possible value of the velocityv, since the require-
mentl,0 implies that the LHS of Eq.~26! increases with
increasingv: the functions on the LHS and RHS will ce
tainly not cross for low enough values ofv. Thus for given
values of the parameters, a real solution to Eq.~26! will exist
only for speeds above minimum value, in complete analo
to the Fisher and hyperbolic results obtained above by
same method.
,

t

-
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-
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IV. APPLICATION TO THE NEOLITHIC TRANSITION
IN EUROPE

Ammerman and Cavalli-Sforza were the first to presen
scientific, testable model of one of the most important p
cesses in human history@37#: the change from hunter
gatherer to agricultural economics~i.e., the Neolithic transi-
tion!. This transition triggered the acceleration of hum
population growth@38#. The motivation to build a math-
ematical model of this process was the discovery that,
cording to archeological data, agriculture did not arise in
pendently in different European regions. Instead, it spr
gradually@39#. Ammerman and Cavalli-Sforza proposed th
this was not purely a process of cultural diffusion~imitation!
but of physical~or demic! diffusion, i.e., of movement of
farming communities. It has been pointed out that this h
pothesis is backed by the experimentally measured gen
gradients in human populations@40,41#, as well as by the
common origin of Indo-European languages@42,43#. Based
on the hypothesis of physical diffusion, the wave-of-advan
model was proposed@44# by making use of Fisher’s equa
tion. This is a very reasonable choice to find approxim
results because of the simplicity of Fisher’s approach. R
cently it has been shown that agreement with the archeol
cal data is improved by taking into account that this proc
took place in two dimensions@26#. This certainly contradicts
those criticisms of the wave-of-advance model based on
claim that it predicts a much higher velocity for the spread
agriculture as compared to that determined experiment
@45,46#. The role of second-order terms has also been
cussed recently@26#. In this context, it is very important to
explain how the values of the parameters, used in Ref.@26#,
were derived from anthropological observations. We th
this point requires a very brief discussion here, so that
reader can judge the scientific character of the applica
considered. Such values will then be applied to the equat
derived above, in order to present a more rigorous anal
than that in Ref.@26#.

A. Determination of the values ofa, D, and t from field data

As explained in Sec. III, when the first farmers arrive in
geographical area, the population density is very smallp

FIG. 1. Plot of the left- and right-hand sides of Eq.~26!. It is
seen that a solution to this equation exists provided thatv is higher
than a certain minimum value which will depend on the values
the diffusive and reactive parametersD, t, anda.
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FIG. 2. This figure shows the prediction
taking into account infinite higher-order term
in the mathematical model@see Eq.~26!#. By
contrast, Fig. 2 in Ref.@26# was obtained by
including only terms of up to second order. Th
hatched rectangle gives the values for the re
tion and diffusion parameters (a andD, respec-
tively! implied by independent observation
The curves give the values ofa andD for wave-
front velocities of 0.8 km/yr, 1.0 km/yr, and
1.2 km/yr, according to the model derived i
the text. Since the velocity inferred from ar
chaeology is 1.060.2 km/yr, there is good
agreement between theory and experiment.
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tly
'0, and the growth function isF'ap. It means that, in the
absence of migrations, the initial evolution of the populati
density will follow the approximate lawdp/dt5ap @see,
e.g., Eq.~6!#, which corresponds to an exponential grow
The value ofa cannot be derived from archeological da
because they do not reach such a level of detail. Howe
plausible values fora can be inferred from observations o
populations that settled in empty areas. Birdsell was abl
collect such data from the 18th century on the island
Pitcairn~East of Chile! and also from the 19th century on th
islands in Bass Strait~between Australia and Tasmania!.
What is impressive about these data is that a plot of
population size versus the generations of elapsed time g
almost exactly the same curve in both cases@47# . Combin-
ing this result with a mean generation time of 25 yr one fin
a value of a50.03260.003 yr21, with 80% confidence
level. An estimation for the diffusion coefficientD
5^D2&/4t @see Eq.~18!# can also be made from anthrop
logical data of the mobility of Ethiopian shifting agricultu
alists and Australian aborigines. The corresponding val
@44,48# yield a mean square displacement per generation
^D2&/t515446368 km2/generation, with 80% confidenc
level. The parametert @which is twice the phenomenologica
delay time; see Eq.~19!# is more difficult to measure. As in
Refs.@49# and @26#, we assume that it can be approximat
to the mean generation time. This corresponds to one mi
tion per generation, although we would like to stress t
future archeological observations could be very useful in
termining to what extent this is a realistic estimate: the use
manure and crop rotation avoids having the land becom
exhausted@50#, but in case early agriculturalists did not u
these techniques, then the value oft could certainly be
smaller than the mean generation time. In the present pa
we will use a mean generation time oft525 yr @44#. This
completes our brief discussion on the parameter values
in Ref. @26#. We apply them below to the theory develop
in the preceding sections.

B. Comparison to observations

The archeological data on the earliest recorded farm
settlements in Europe yield a rate of advance for the exp
sion of the farming communities of 1.060.2 km/yr @39,44#
~see, e.g., Fig. 1 and the discussion in Ref.@26#!. By contrast,
.
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use of the mean values fora, D, andt given above in Fish-
er’s velocity~23! givesvt→051.41 km/yr. Use of the same
values in the hyperbolic equation~24!, which was used in
Ref. @26#, yieldsv (2)51.00 km/yr. This value is completely
within the experimental range, but we note that the diff
ence with respect to Fisher’s result is higher than 40%. S
a large difference makes it necessary to use the results in
present paper in order to determine whether or not
second-order approximationv (2) can be trusted. The point i
thus to analyze the role of the terms involving derivatives
order higher than the second in Eq.~21!. In order to do so,
we use the same values ofa, D, andt as those given above
in the exact solution~26!. After solving this equation nu-
merically in the manner explained in Sec. III and Fig. 1, w
find v50.98 km/yr. Thus we see that the second-order
sult v (2) is very similar to the exact one, and both of the
yield a wave-front velocity that lies completely within th
experimental range(1.060.2 km/yr!. This shows that the
hyperbolic velocity~24! is quite a reasonable approximatio
in contrast to the classical velocity~23!, which neglects the
role of the time delay, for the application and parameter v
ues considered here. For the sake of completeness, we
tion that in fact one can also obtain the resultv
50.98 km/yr by solving Eq.~25! numerically for increasing
values ofN: the solutions are seen to converge rapidly~for
example, the approximationN54, which corresponds to in
cluding derivatives of up to fourth order, already yield
v (4)50.98 km/yr!. However, we think that the procedur
based on the application of thè-order Eq.~26! should be
more practical in general, since it will certainly require le
computation time for possible applications in which ma
terms could be necessary.

Because the calculations above have been performed
the mean values of the reaction and diffusion parametera
andD respectively, it is important to analyze the results f
other possible values. These results are shown in Fig. 2.
see that there is good agreement between theory and ex
ment, and that this figure is very similar to Fig. 3 of Re
@26#. This result is important because Fig. 2 in the pres
paper has been obtained by including an infinite numbe
terms, whereas Fig. 3 of Ref.@26# corresponded to the
second-order approximation. Comparing both figures,
also note that use of all higher-order terms yields a sligh
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lower wave-front velocity than that corresponding to t
second-order equation~24!. This velocity is, in turn, lower
than Fisher’s result~23!, which neglects any possible effe
of the time delay on the evolution of the system.

We have seen that the approach reported shows tha
hyperbolic model presented in Ref.@26# is a reasonable ap
proximation. This can be relevant from two points of vie
~i! it shows that the hyperbolic wave-front velocity~24! is
rather accurate in the application here considered;~ii ! it
opens the way to a more general approach to chemic
reactive systems, a case in which it is very important
understand the propagation speed of wave fronts~see, e.g.,
Refs. @21,22#!. Finally, it is worth mentioning that we hav
here derived and analyzed linear equations, i.e.,

F~p,pt ,ptt , . . . ,px ,py ,pxy ,pxx ,pyy ,pxy , . . . !50,

where F is a linear function inp, pt , etc. @51#, but the
method in Sec. III also applies to some nonlinear equatio
For example, consider the time-delayed equation

]p

]t
1Y

]2p

]t2
5D

]2p

]x2
1lS ]p

]x D 2

1F1Y
]F

]p
, ~27!

which, neglecting the delay time (Y'0), has been propose
in the analysis of the profile evolution of a growing interfa
in solidification and crystallization processes@52#. The sec-
ond term on the right-hand side is nonlinear, andl is a
parameter related to nonlocal effects; without this nonlin
term we recover the hyperbolic equation~8! in one dimen-
sion. It is simple to follow exactly the same steps as in S
III, but in this case the exponentials do not cancel out. T
the linearization method does not yield a lower bound for
speed of the front. It would be interesting to apply variation
techniques to this problem, which will be tackled in futu
work. We do expect, however, that the delay time will affe
the speed of fronts even in the nonlinear case, which d
not apply to the problem analyzed in the present paper
may be relevant in other applications.

V. CONCLUDING REMARKS

It had been previously shown that hyperbolic reactio
diffusion equations can be useful in the description of hum
n

he
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r

c.
s
e
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n

population expansions@26#. However, it was also shown tha
the corrections with respect to the classical, parabolic
proach~based on Fisher’s equation! can be relevant indeed
@26#. Thus the validity of a hyperbolic, second-order a
proach used was not clear. Here we have developed a m
that allows one to include terms of up to an arbitrarily hi
order. We have shown how an infinite number of such ter
can be taken into account@see Eq.~26!#. We have applied
this to perform estimations of the velocity of spread of t
Neolithic expansion in Europe. The results obtained are
good agreement with the empirical evidence from archae
ogy and anthropology that is available at present. This g
eralizes previous models of time-delayed reaction-diffus
@24–26#, @36# and puts them on a more rigorous basis.

Before closing, we would like to mention that there a
several additional fields of application of the results he
reported. On one hand, chemically-reacting syste
@21,22,53,54#, superconductors@55#, liquid crystals@56#, and
solidification @57# are topics in which extensive simulation
are being performed in order to determine wave-front velo
ties: the methods presented here could be a useful analy
approach in situations such that the effect of a delay ti
could be important. On the other hand, here we have focu
our attention on the Neolithic transition in Europe simp
because the quantity of archeological observations is hig
in this case than for other human expansions. However, th
is evidence that similar processes took place in Africa@58#,
America@59#, Polynesia@60#, and China@61#. The approach
we have presented should, in our opinion, be applied to th
expansions as soon as sufficient and reliable empirical
become available. Finally, we stress that the model prese
is not restricted to a specific system and could thus be us
in the study of animal and plant expansions@62# and other
biophysical topics in which reaction-diffusion is of utmo
importance, such as the spread of epidemics@29,23#, nerve
conduction@29,63#, cellular sensitivity@64#, growth of bac-
terial colonies@65#, and models of mitochondrial tissue@66#.
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