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Approximate solution to the speed of spreading viruses
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Recently, it has been shown that the speed of virus infections can be explained by time-delayed reaction-
diffusion @J. Fort and V. Me´ndez, Phys. Rev. Lett.89, 178101~2002!#, but no analytical solutions were found.
Here we derive formulas for the front speed, valid in appropriate limits. We also integrate numerically the
evolution equations of the system. There is good agreement with both numerical and experimental speeds.
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I. INTRODUCTION

The role of the delay time in the spread of viruses in
plaque has been recently analyzed@1# by considering a delay
time for virus diffusion. It has been shown that the del
time plays a crucial role in the dynamics of the advanc
virus front, because it substantially reduces the value for
predicted speed as compared to the classical, parab
model @2#. In this sense,t is the time that a virus particle
spends, from the moment it is adsorbed into a host ba
rium, to take control of it, replicate its proper genetic ma
rial, reproduce, and kill the cell. We consider a model
three species, the virus particlesV, the host bacteriaB, and
the infected host bacteriaI. There are two reactions involve
in the virus expansion over the bacterial colony:~i! the ad-
sorption process, during which a virus particle couples t
host bacterium through its membrane and the cell beco
infected and~ii ! the lysis process, at the end of which the c
is killed and the virus progeny outbreak takes place. The
after,~iii ! the phages disperse and~iv! they infect new hosts
so the process begins again. Letk1 be the rate constant o
adsorption. The virus particle introduces its genetic mate
in the infected bacteria and begins the reproduction. Afte
certain delay timet ~latent or lag time!, the virus particle is
completely reproduced and the infected bacterium dies~ly-
sis!.

In this work we obtain an analytic expression for t
speed of the growth of virus plaques and compare them w
the numerical solution of the complete system and with
experimental data. Comparison with the classical or non
lay time models@2,3# are not included because it was alrea
done in@1#.

II. THE MODEL

A. Virus spreading dynamics

The process of infection, virus replication, and bacteri
death can be summarized by a three species reaction a
lows:
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V1B→
k1

I→
k2

YV. ~1!

ParameterY ~the ‘‘yield’’ ! is the production of new viruse
per infected bacterium andk2 is the rate constant of lysis o
infected bacteria.

In order to find a good quantitative agreement with t
experimental observations, it has been previously shown@1#
that a better way to model the virus diffusion process is
taking into account the delay time between virus adsorpt
and bacteria death and the spreading of the newborn viru
In practice, it implies that parabolic or classical reactio
diffusion equation must be replaced by its hyperbolic gen
alization @4,5#, where the mentioned delay time appears e
plicitly. Assuming logistic dynamics for the growth proces
the equations for our models are

t

2
@V# tt1@V# t5De f f@V# rr 2k1H @V#@B#1

t

2
~@V#@B# ! tJ

1Yk2H @ I #S 12
@ I #

@ I #max
D

1
t

2 F @ I #S 12
@ I #

@ I #max
D G

t
J , ~2!

@B# t52k1@V#@B#, ~3!

@ I # t5k1@V#@B#2k2@ I #S 12
@ I #

@ I #max
D . ~4!

In these equations@¯# denotes concentration and subindic
@¯# tt ,@¯# t , and @¯# rr stand for second time derivative
time derivative, and second spatial derivative in the rad
direction from the plaque center, respectively. In Eq.~2! De f f
appears instead of the usual diffusion coefficientD. The rea-
son is that the diffusing particles, i.e., viruses, do not move
a homogeneous continuous medium~agar in our case! but in
the presence of a suspension of ellipsoids~host bacteria!
which adsorb them. This is known as hindered diffusion, a
the effective diffusion coefficientDe f f for this type of diffu-
sion is related to the usual one,D, according to Fricke’s
equation@6#:
©2004 The American Physical Society09-1
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De f f5
12 f

11
f

x

D, ~5!

wheref 5B0 /Bmax is the ratio of bacteria concentration to i
maximum possible value andx takes care of the bacterium
shape.

Equations~2!–~4! can be written in terms of dimension
less variables B̄[@B#/B0 ,V̄[@V#/B0 , Ī [@ I #/B0 , t̄[k2t,
andr̄[rAk2 /De f f and dimensionless parameterst̄[k2t and
k[k1B0 /k2, whereB0 is the initial bacterium concentration
We look for solutions depending only on new variablez̄[ r̄

2 c̄ t̄ where c̄.0 is the dimensionless wave front spee
which is related to dimensional speedc by c̄[c/ADe f fk2. As
usual, we linearize our equations around the unstable ste
state (@V#,@B#,@ I #)5(0,B0,0), i.e., (V̄,B̄, Ī )5(«V,1
2«B ,« I), where«[(«V ,«B ,« I)!1. Then solutions to the
linearized version of Eqs.~2-4! are given by«;exp(2l z̄)
where, in order to avoid trivial solutions, the following cha
acteristic equation must be satisfied:

l31
211~11b d!c̄2

~b c̄221!c̄
l21

k~12b g!11

b c̄221
l

2
k g

~b c̄221!c̄
50. ~6!

For simplicity, we have introduced the parametersb
[t̄/2,g[Y21, andd[k11.

B. Wave front speed

In order to avoid nonpositive values for concentratio
we must impose that the three solutions forl in Eq. ~6! are
real, so it must be satisfied that

24C1
3C31C1

2C2
2118C1C2C324C2

3227C3
2>0, ~7!

whereC1 ,C2, and C3 are the coefficients of second, firs
and zeroth powers ofl, respectively. We rewrite condition
~7! in terms ofj[ c̄2 and then we get

a3j31a2j21a1j1a0>0, ~8!

where coefficientsai are given by

a0524gk,

a1512g~11bd!k227g2k2118gk@211~211bg!k#

1@211~211bg!k#2,

a25212g~11bd!2k154bg2k2

218bgk@211~211bg!k#

218g~11bd!k@211~211bg!k#

22~11bd!@211~211bg!k#2

24@211~211bg!k#3,
03190
,

dy

,

a354g~11bd!3k227b2g2k2

118bg~11bd!k@211~211bg!k#

1~11bd!2@211~211bg!k#2

14b@211~211bg!k#3. ~9!

The speed of the wave front can be calculated numeric
from c̄5minl.0@c̄(l)#, wherec̄(l) is given by Eq.~6! as it is
done in Ref.@1#, but now we shall try to obtain an approx
mated analytical expression for this minimum speed
though, for this purpose, we shall make some approxim
tions. On one hand, we definee[k1 /k2Bmax which implies
thatk5e f . As we shall see in detail in the following sectio
when typical experimental values for the parameters
used, one observes thate is always a small parameter, i.e
e!1. This fact allows us to expand the coefficientsai up to
first order ine, so we get

a0524 f ge,

a15112 f @11g~2315b!#e1O~e2!,

a252~12b!12 f @423b1g~312b24b2!#e1O~e2!,

a35~12b!212 f ~211b!@2112b1g~2212b1b2!#e

1O~e2!. ~10!

Moreover, if b@1 is verified, we can simplify Eqs.~10!
even further to get

a0524 f ge[r 0 ,

a1.1110f gbe[r 1 ,

a2.22b28 f gb2e[r 2 ,

a3.b212 f gb3e[r 3 . ~11!

Then Eq.~8! is reduced to

r 3j31r 2j21r 1j1r 0>0, ~12!

where coefficientsr i are defined in Eq.~11!. The condition
critical to the propagation speed is given by Eq.~12! when
equality holds, and then it is easy to show that positive
lutions for the speed are

c̄152A f ge

112 f bge
, c̄25A1

b
, ~13!

or, in terms of the dimensional variables,

c152AD
12 f

11 f /x

k1Bmax~Y21! f

11tk1Bmax~Y21! f
,

c25A2D

t

12 f

11 f /x
. ~14!

According to the principle of marginal stability@7,8#,
from both expressions for the wave front speed, we m
choose the minimal one. This will be confirmed in Sec.
9-2
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below by means of numerical integrations of Eqs.~2!–~4!. It
is easy to show the existence of a critical value off, namely,
f 0, such thatc1,c2 if f , f 0 andc1.c2 if f . f 0. Figure 1
shows bothc1 andc2 as functions off for typical experimen-
tal values of parameters. Then we can write the minim
speed as follows:

cmin55
2AD

12 f

11
f

x

f

t~ f 1 f 0! if 0< f < f 0

A2D

t

12 f

11
f

x

if f 0< f <1,

~15!

where f 0 is defined as

f 0[@tk1Bmax~Y21!#21. ~16!

III. COMPARISON TO OBSERVATIONS

We compare in this section the results of Eq.~15! with the
experimental values for virus T7 which spread in a medi
containing agar-immobilized E. coli bacteria. We also co
pare the new results with numerical integrations perform
on system~2!–~4!. The values of the parameters are:Bmax
51072108ml21, k15(1.2960.59)31029ml/min, k2
51.39 min21, t518.4 min, Y534.5, D5431028cm2/s,
and x51.67. To obtain Eq.~15! we have assumed thatb
@1 ~in fact b5k2t/2512.8) which basically implies tha
delay time is large enough, so comparison to nondelay t
modes are out of place. The other assumption ise!1 and
from the experimental data we have thate ranges from 5
31023 to 0.135.

In Fig. 2~a! we have takenBmax5107ml21 and the two
extreme values fork1. We plot the analytic solution for the

FIG. 1. Solutions to Eq.~12! when equality holds as functions o
the bacterial relative concentrationf. The selected value for the
speed is the minimal one, i.e.,c1 if f , f 0 and c2 if f . f 0. Both
functions are drawn forBmax5107ml21, k150.731029ml/min, k2

51.39 min21, t518.4 min, andY534.5.
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speed of the front~15! ~lines! and the results from numerica
solutions of the system~2!–~4! ~symbols! and observe good
agreement with the experimental results. In Fig. 2~b! we take
Bmax5107ml21 for the same values ofk1 as before where
good agreement with experimental results is also found.

IV. DISCUSSION

In the present paper we have found an explicit express
for the speed of the growth of virus plaques~15! which is
valid only if the parameter values satisfy the specified c
ditions, i.e.,e!1 and b@1. Moreover, we have performe
numerical integrations on Eqs.~2!–~4! in order to compare
their results with predictions from Eq.~15!. We can see this
comparison in Fig. 2 and we note that both approaches ar

FIG. 2. Curves: speed of the growth of T7 virus plaques on
coli as a function of the bacterial relative concentration according
expression~15!. Symbols: squares and triangles, numerical integ
tions of Eqs.~2!–~4!; open and closed circles, experimental data.
~a! e5531023 for the dotted line and square symbols ande50.013
for the dashed line and triangles. In~b! e50.05 for the dotted line
and square symbols ande50.13 for the dashed line and triangle
For all casesb512.8.
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good quantitative agreement, especially when the bacte
relative concentrationf is far from the valuef 0. We also
include in Fig. 2 experimental data to realize the validity
the time-delayed diffusion-reaction models to explain
wave front speed of these phenomena.
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