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We describe a toy that has the shape of a
bird. It has the intuitively astonishing
property that, no matter how far away
from the equilibrium position it is moved,
it oscillates back to this position. We
explain the behaviour of this physical
system and use it to illustrate the concept
of mechanical stability and the usefulness
of making simple, idealized models for the
description of complex systems.

The toy depicted in figure 1 consists of two parts.
One part has the shape of a bird; the other is
just a support. The sharp end of the bird’s
beak can be placed in contact with the support
(although the two parts arenot stuck together).
Figure 1(a) shows the equilibrium position. If
the bird is moved from this position (figure 1(b))

Figure 1. The bird that never falls down. In (a), the bird is at its equilibrium position. If moved from it, as
in (b) and (c), and released, the bird does not fall off but oscillates back to its equilibrium position.

and released, it turns out that it does not fall
off the support, as might be expected intuitively.
Instead, it oscillates around, and eventually returns
to, the equilibrium position. It is astonishing that
this happens even if the bird is initially in the
vertical position (figure 1(c)). This is a remarkable
physical system: why does the bird return to
the equilibrium position instead of falling off the
support?

Why the bird does not fall off

Our bird is made of a translucent plastic material
and, when observed against a lamp, it is seen that
there is a mass inside the end of each wing. The
reason for its behaviour is based on the following
point (see figure 2): in the equilibrium position,
the ends of the wings are at a height that is lower
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Figure 2. The ends of the bird’s wings are at a
lower height than the point of support (point O).
This, together with the fact that the outer part of
the wings contains two masses (shaded regions),
is the reason for the stability of the bird.

than the end of the beak (point O in figure 2). We
will now justify this explanation.

Consider the three simple systems depicted in
figure 3. They all consist of two equal masses,
joined by a light rod. At the middle point M, a
second rod begins. Its sharp end (point O) is in
contact with a support. Let us assume both rods to
be of negligible mass. In the case of system A, in
the equilibrium position the two masses are above
point O. For system B the centres of the masses
and point O are at the same height. Finally, in
the case of system C the centres of the masses are
below point O. For any one of the three systems,
in the horizontal position the mass on the right in
figure 3 exerts a torqueτ+ = mgL/2, which tends
to rotate the system in the clockwise direction, but
it is compensated since the mass on the left exerts
a torqueτ− = mgL/2 in the counterclockwise
direction. Herem is the value of each mass,g the
constant of gravitational acceleration andL the
length of the rod that connects the two masses.
Now assume that the systems are removed from
their equilibrium states. The right-hand side of
figure 3 defines the distancesl+ andl−. For system
A we have l+ > l− and thereforeτ+ − τ− =
mg(l+ − l−) > 0, so that the system rotates
away from the equilibrium position. Thus the
equilibrium is unstable [1]. For system B we have
l+ = l− and thereforeτ+− τ− = mg(l+− l−) = 0.
Finally, for system Cτ+ − τ− = mg(l+ − l−) < 0,
so that the system rotates towards the equilibrium
position, which is therefore stable.

We can now explain why the bird does not fall
off. The bird is a complex physical system that can

Figure 3. On the left we present the front view of
three simple systems at their equilibrium positions.
On the right, the same systems are depicted, in a
three-dimensional perspective, in a nonequilibrium
position.

be approximated to system C in figure 3: in both
cases, in the equilibrium position the masses (the
outer part of the wings in the case of the bird) are
below the point of support (the end of the bird’s
beak).

Experimental verification of the
proposed explanation

We took a piece of wire and modelled it as shown
in figure 4(a). In each end of the wire, we put
a drawing pin. This system is stable: if put on
one’s finger, it immediately begins to oscillate.
In equilibrium, the drawing pins are below the
point O of support. Thus this is an experimental
realization of system C in figure 3. However, if
the wire is modelled as in figure 4(b), it inevitably
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Figure 4. This simple system (a thin, light wire
with a drawing pin at each end) provides a
compelling experimental check of the reason why
the bird in figure 1 does not fall off (CG stands for
the centre of gravity).

falls down to the ground. This case corresponds
to system A in figure 3.

Let us assume that our bird can be approxi-
mated to three masses and rods (figure 5(a)). Con-
sider oscillations about the symmetry axis OR. The
weightMg crosses this axis and therefore makes
no torque. An observer located on axis OR sees
what is depicted in figure 5(b) if s/he is observing
the bird (if s/he were observing the simpler system
formed by the three masses and rods, s/he would
see what is depicted in figure 5(c)). The resulting
torque is

τ = mgl+ −mgl− (1)

= mg (a − h sinθ)−mg (a + h sinθ)

= −2mgh sinθ

where the necessary quantities have been defined
in figure 5(c).

The moment of inertia about the considered
axis is

I = 2mr2. (2)

For small oscillations we have sinθ ≈ θ . Since

Figure 5. The toy bird can be roughly
approximated to the simpler system shown in (a).
Broken lines correspond to the physical system
(the bird); full lines correspond to the simpler,
model system considered (three masses located
at points P, Q and R, and three light rods OP, OQ
and OR). OR is the symmetry axis of the bird and
of our simpler, model system. If a wing of the bird
is raised and then released, the bird oscillates
around the OR axis until it reaches equilibrium.

τ = I d2θ/dt2,

d2θ

dt2
= −gh

r2
θ. (3)

The period of this oscillation is

T = 2π
r√
gh

(4)

which is independent ofm.
For the bird (figure 5(a)) we measuredr =

76 mm andh = 14 mm. Thus equation (4)
predicts Ttheory = 1.3 s. We made use of a
chronometer to record the time that it takes the
bird to make 30 swings. Dividing by 30 we
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found Texp = 1.6 s. The relative difference with
respect to the theoretical value is 23%. This is
an important difference and cannot be entirely
attributed to measurement errors.

We can solve this problem by going back to
the simple experiment proposed at the beginning
of this section. We modelled a wire such that
the values ofr and d in figure 4(a) are the
same as those for the bird. After repeating the
measurements for the system in figure 4(a) instead
of the bird, we obtainedTexp = 1.4 s. In this
case the absolute difference with respect to the
theoretical value is only 0.1 s, which can be due
to measurement errors. Thus equation (4) is more
accurate for the system in figure 4(a) than for the

toy bird due simply to the fact that in the latter
case one should also take into account the mass
of the wings and other parts of the body, not just
the masses that are hidden inside the outer part of
the wings. However, the simple system depicted in
figure 4(a) has allowed us to check experimentally
the explanation for the bird’s behaviour.
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