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h i g h l i g h t s

• An approximate front speed holds for systems presenting time-delayed dispersal.
• The approximate front speed explains the observed spread of several focal infections.
• Approximate spread rates for the Neolithic transition agree with observed data.
• Observed spread rates of tree colonizations are predicted by our approximate speed.
• The approximate speed is derived from the equations for the three systems above.
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a b s t r a c t

Front propagation is a ubiquitous phenomenon. It arises in physical, biological and cross-
disciplinary systems as diverse as flame propagation, superconductors, virus infections,
cancer spread or transitions in human prehistory. Here we derive a single, approximate
front speed from three rather different time-delayed reaction–diffusion models, suggest-
ing a general law. According to our approximate speed, fronts are crucially driven by the lag
times (periods during which individuals or particles do not move). Rather surprisingly, the
approximate speed is able to explain the observed spread rates of completely different bio-
physical systems such as virus infections, the Neolithic transition in Europe, and postglacial
tree recolonizations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Fronts are widely used in physical models of flame propagation [1], superconductors [2], virus infections [3], cancer
spread [4], transitions in human prehistory [5], etc. In many systems, individuals or particles are at rest during some time
intervals, and for this reason the corresponding fronts become time-delayed [5]. For single-species systems, the dynamics
is governed by the hyperbolic reaction–diffusion (HRD) equation [6]:
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where p = p(x, y, t) is the population (or particle) number density at point (x, y) and time t , D is the diffusion coefficient,
and the subindex · · · |g indicates that the corresponding time derivatives take into account growth (i.e., net reproductive)
but not diffusive processes [6]. In Eq. (1), terms proportional to T are second-order Taylor expansion terms [6] and account
for the effects of the delay (or lag) time T which is elapsed between two successive motions of particles or individuals. If no
delay time is considered (i.e., if T = 0), Fisher’s classical reaction–diffusion equation [7] is recovered.

A set of coupled equations is required when extending the scope to multiple-species systems. For example, focal
infections provide a convenient experimental platform to study the replication (reaction) and spread (diffusion) of viruses
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Fig. 1. Focal infections. Front speed versus lag time. The curves stand for the approximate solution c =
√
2D/T . The solid curve corresponds to VSV

(D = 1.44 · 10−4 cm2/h) and the dashed curve to the two T7 mutants (D = 8.55 · 10−5 cm2/h). The full (empty) symbols correspond to the results of
the exact theory (simulations). The triangles represent the results for VSV (Y = 4983 [11]). The stars stand for the wild T7 strain (Y = 34.5 [3]), and the
rhombus for the p005 T7 mutant (Y = 63.6). The circles represent a hypothetical low-yield case Y = 5. The hatched (shaded) area corresponds to the
observed ranges of T and c for VSV (T7) viruses. Details on the parameter values and the simulations appear in Appendix A.

in a cell monolayer [3,8,9]. The interactions between viruses (V ), non-infected cells (C) and infected cells (I) give rise to the
following evolution equations [3,10,11]:

∂[C]

∂t
= −k1[C][V ], (2)

∂[I]
∂t

= k1[V ][C] − k2[I]

1 −

[I]
IMAX


, (3)

where k1 stands for the rate constant of adsorption of viruses V to non-infected cells C and k2 is the death (or lysis) rate
of infected cells I (each infected cell releases a new generation of Y viruses after a delay time T ). If we replace p by the
virus number density [V ](r, t) (where r is the radial coordinate centered at the inoculation point of the infection) in the
above HRD equation (1), we obtain the evolution equation for the virus population. In agreement with Eqs. (2)–(3), the virus
population growth reads

δ[V ]

δt
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g

= −k1[V ][C] + k2Y [I]

1 −

[I]
IMAX


. (4)

Hence, in order to determine the dynamics of focal infections, the set of differential equations (1)–(4) must be solved.
Whereas the exact speed of front solutions to Eqs. (1)–(4) is very complicated (see Appendix A), recently we derived an
approximate solution for the spread of virus infections which reads [11]1

c =

2D/T . (5)

Note that dimensional analysis could also suggest that c is proportional to
√
D/T , but other dependences are possible on

this ground, e.g.
√
k2D for Eqs. (1)–(4),

√
aD (Fisher’s speed [7]),


a2D/T for Eq. (1), etc. Moreover, dimensional analysis

cannot predict the factor
√
2, which was derived by marginal stability analysis in Ref. [11].

Wewould like to emphasize the following physical interpretation of Eq. (5). First, the parameter T is defined as themean
time a virus needs to reproduce inside an infected cell. If this lag T is substantially longer than the rest of the interval times
involved in a virus life cycle (i.e., the death time of cells k−1

2 , the mean travel time in the extracellular medium, and the
time viruses need to cross the cell membrane k−1

1 C−1
0 ), then T becomes the only relevant time scale in our model. On the

other hand, the parameter D is related to how easily the virus diffuses in the extracellular medium. It is thus reasonable that
the parameters T and D determine the front speed under these assumptions. But is this framework valid in real situations?
Before closing this introduction, we address this question by applying Eq. (5) to several virus infections.

Fig. 1 compares the results from the approximate speed (5), the exact theory, and simulations for the front speed of focal
infections for Vesicular Stomatitis Virus (VSV) [11]. Moreover, for the first time Eq. (5) is applied to the T7 virus [3]: in Fig. 1

1 In Ref. [11] we presented an approximate infection front speed in dimensionless variables which is equivalent to Eq. (5) in the present paper.
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we present results for two T7 strains, namely the wild type and the p005mutant [9]. Both for T7 and VSV, perfect agreement
between the exact result (which is rather complicated, see Appendix A) and the approximate speed (5) is observed. Hence
Eq. (5) provides convenient results to predict virus infection speeds. Moreover, both exact and approximate results in Fig. 1
show consistency with the corresponding experimental data (shaded rectangles).

The main aims of the present paper are (i) to derive mathematically the same approximate Eq. (5) for two other systems,
which are driven by equations completely different to the virus reaction–diffusion equations (1)–(4), and (ii) to show that a
fair agreementwith observations can be attained also for those two additional systems. Accordingly, in Section 2we consider
a single-population model (and apply it to the Neolithic transition front in Europe) and in Section 3 we analyze a structured
population model (and apply it to forest recolonization fronts).

2. Approximate front speed for non-structured populations

Two major processes drive the spatial population dynamics of biophysical systems: population growth (reproduction
minus deaths) on one hand, and migration (dispersal) on the other. In many cases, these two processes can be considered
independent of each other. Typically, such an assumption is implicit in the study of non-structured populations [5,6].Within
this framework, in this section we derive an approximate front speed from reaction–diffusion equations applied to non-
structured population systems involving a single species. For the sake of clarity, we first review briefly the derivation of the
HRD speed [5,6].

The variation of the population number density due to population growth can be generally expressed as a Taylor series,

[p(x, y, t + T ) − p(x, y, t)]g = T
δp
δt


g
+

T 2

2
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δt2
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g
+ · · · (6)

where the subindex · · · |g indicates that the corresponding time derivatives take into account growth (i.e., net reproductive)
but not migration processes [6]. In most biological applications the lag T corresponds to one generation [5] (see, e.g., the lag
time in focal infections above).

In order to account for migration (dispersal), it is useful to define the dispersal kernel φ(∆x, ∆y) as the probability per
unit area that an individual initially placed at (x + △x, y + △y) has reached the position (x, y) after a time T . This leads to
the following change for the population density due to the migration process [5,6],

[p(x, y, t + T ) − p(x, y, t)]m =


+∞

−∞


+∞

−∞

p(x + ∆x, y + ∆y, t)φ(∆x, ∆y)d∆x d∆y − p(x, y, t). (7)

Thus, the evolution of a system involving both processes (i.e., population growth andmigration) is driven by the sum of both
contributions,
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If isotropic migration is assumed (i.e., if φ(∆x, ∆y) = φ(∆), with ∆ =


∆2

x + ∆2
y), then Taylor-expanding the above Eq. (8)

up to second order in time and space yields the HRD equation (1). The diffusivity of the population in the HRD equation is
defined asD =

⟨∆2
⟩

4T [5]. In order to solve the HRD equation, it is convenient to define F(p) as the population growth function
F(p) =

δp
δt


g . Assuming (i) low population densities at the leading edge of the front, (ii) that the front is locally planar for

t → ∞ and r → ∞, and (iii) constant-shape solutions with the form p = p exp[λ(x − ct)], then the exact solution of
Eq. (1) yields the HRD front speed, namely [6]

c =

2

DF ′(0)


1 +

T
2 F

′(0)


1 + TF ′(0)
, (9)

where the growth rate at the front’s edge has been approximated as F ′(0) =
dF
dp


p=0

.

Let us now consider the limiting case of a high reproduction rate, F ′(0) → ∞, into the above Eq. (9). This leads to the
very simple expression

c =

2D/T . (10)

Remarkably, this simple approach has led us to the very same approximate front speed as for the case of focal infections
above (see Eq. (5)). It is worth noting that the single-species systems analyzed in this section are very different (both
mathematically and physically) from the focal infections considered in the introduction (in which the equations of the
systemmust account for the interactions between three species, so a set of coupled equations is involved instead of a single
equation).
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a b

Fig. 2. TheNeolithic transition. (a) Invasion front speed versus T (using ⟨∆2
⟩ = 1531m2 [14]). The solid curve corresponds to the approximate c =

√
2D/T .

The dashed–dotted curve represents the exact theoretical speed (9) for the mean observed value a = 2.8 · 10−2 yr−1 [14]. The dashed and dotted curves
stand for the maximum (a = 3.3 · 10−2 yr−1) and minimum (a = 2.3 · 10−2 yr−1) values of the observed range, respectively. The symbols correspond to
numerical simulations as indicated in the legend (see Appendix B for details on the simulations). The hatched area indicates the observed ranges of T [15]
and c [12]. (b) Invasion front speed versus the mean-squaredmigration distance. The curves and the symbols stand for the same cases presented in (a), but
for T = 32 yr. The hatched rectangle represents the observed ranges of ⟨∆2

⟩ and c [12,14].

Let us now apply the HRD equation [6] to the invasion front of the Neolithic transition, in order to check the results of
the approximate speed c =

√
2D/T . Previous HRD models for this single-species system [5,6] have shown good agreement

with the observed dates from hundreds of European Neolithic sites [12]. Applying the HRD exact speed (9) involves the
computation of the Neolithic population growth function. For this purpose, we consider the logistic growth function, which
agrees very well with many human populations [5,13], namely

F(p) =
δp
δt


g

= ap

1 −

p
pmax


, (11)

where a is called the initial growth rate and pmax is the saturation density. Note that considering logistic growth leads to
F ′(0) = a.

Fig. 2a plots the invasion speed of the Neolithic transition as a function of T . In this case, T represents the generational
lag during which children stay with their parents until they reach adulthood and canmigrate [15]. Fig. 2b plots the Neolithic
front speed as a function of the mobility ⟨∆2

⟩ [14]. In both Fig. 2a and b we observe differences (about 15%) between the
approximate speed (5) and the exact solution (9) if themean observed growth rate a = 0.028 yr−1 [14,16–18] is considered.
Interestingly, both the approximate and the exact solutions are consistent with the observed invasion speed of the Neolithic
front, as estimated from archeological data (hatched area in Fig. 2a–b) [12,15].

3. Approximate front speed for structured populations

In somebiophysical systems, the age structure of the population plays amajor role on the evolution of the system [19–21].
In some cases (e.g., for tree species), the fertile ages of several generations widely overlap. Thus it is necessary to introduce
pi(x, y, t) as the number density of the subpopulation which is i years old (i = 1, 2, . . . ,N). The system dynamics is then
controlled by the vector equation [19]

−→p (∆x, ∆y, t + 1) =


+∞

−∞


+∞

−∞

−→
−→
Φ ◦

−→
−→
A ·

−→p (x + ∆x, y + ∆y, t)d∆xd∆y, (12)

where


−→
−→
Φ ◦

−→
−→
A


ij

= ΦijAij. The elements Aij of the demographic matrix
−→
−→
A describe the rate at which an individual in state

j gives rise to individuals in state i per unit time. Similarly, the elementsΦij of the dispersalmatrix
−→
−→
Φ indicate the probability

that an individual moves from (x+△x, y+△y) to (x, y)when its stage changes from j to i. For example, any adult tree which
is j years old will be j + 1 one year after (i.e., after t has increased to t + 1). Thus Aij = 1 if i = j + 1. However, trees cannot
move, so Φij = δ2D(∆) if i = j+ 1 (where δ2D(∆) is the 2-dimensional Dirac delta centered at ∆ = 0). Indeed, a single stage
could be used to represent several years in the life of an individual (as in some structured population models [20,21]), but
this would not significantly change the discussion below. In Eq. (12) growth and dispersal are not necessarily independent
processes, in contrast to the case in the previous section. For example, note that for tree populations only seeds are dispersed,
hence dispersal immediately follows reproduction [19,22] (see also Appendix C).
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For clarity, let us briefly recall that the exact solution for the front speed from the evolution equation (12) is derived as
follows by looking for constant-shape solutions for each subpopulation, pi(x, y, t) = wi exp[−λ(x − ct)]. Using this into
Eq. (12) yields

exp(λc)−→w =


+∞

−∞


+∞

0

−→
−→
Φ ◦

−→
−→
A exp [−λr cos θ ] drdθ


−→w , (13)

and the exact theoretical front speed is given by [19]

c = min
λ

ln [ρ1(λ)]
λ

, (14)

where ρ1 is the largest real of the eigenvalues of the matrix


+∞

0

−→
−→
Φ ◦

−→
−→
A exp [−λr cos θ ] drdθ .

Given the substantial complexity of Eq. (13), an explicit expression for the exact front speed cannot be derived. For

instance, the high lifespan of trees can lead both
−→
−→
A and

−→
−→
Φ to be of order above 100 when applying the model to tree re-

colonizations [19]. For this reason, we need to make some simplifying assumptions in order to derive an approximate ex-
pression for the front speed (later wewill assess the validity of our assumptions by comparing to the exact speed (14)). First,
we assume that the following non-structured equation [22] provides an approximately valid description of the evolution of
the structured population at the leading edge of the front:

p(x, y, t + T ) = R0g


+∞

−∞


+∞

−∞

p(x + △x, y + △y, t) φ(△x, △y)d△x d△y, (15)

where R0g is the generational initial growth rate (i.e., the average reproductive rate per individual and generation). Note
that a major effect of considering the structure of the population (i.e., Eq. (12) instead of Eq. (15)) is that the reproduction
of elder individuals is taken into account. However, such contribution to the population growth has been shown to play a
minor role on the front speed when reproduction rates are above a certain threshold [19], because then the reproduction at
the leading edge of the front is mainly produced by young individuals. Thus, if we assume a fast growth rate it is reasonable
to expect that Eq. (12) can be approximated by the non-structured Eq. (15). Next, we Taylor-expand Eq. (15) up to second
order in time and space and obtain

δp
δt

+
T
2

δ2p
δt2

=
(R0g − 1)

T
p(x, y, t) + D


δ2p
δx2

+
δ2p
δy2


, (16)

where D = R0g⟨∆
2
⟩/4T . As usual, we look for solutions with the form p = p0 exp[−λ(x − ct)] with λ > 0. Using this into

Eq. (16) yields

λ =

Tc ±


(Tc)2 − 4(R0g − 1)


DT −

T2c2
2


2


DT −

T2c2
2

 , (17)

and, assuming as usual that the minimum speed is the one of the front [23], we obtain

c =

 2D

T

1 +

1
2(R0g−1)


1/2

. (18)

Since we are considering high values of the reproduction rate, we assume that the condition 1 ≫

2(R0g − 1)

−1 is satisfied
in Eq. (18). Interestingly, this finally simplifies into the same approximate front speed as that in the previous two sections,
namely

c =

2D/T . (19)

It is worth noting that in Eq. (15) dispersal (of seeds) occurs immediately after reproduction (this is a major feature of tree
populations). This is why the diffusivity D in this section (see its definition below Eq. (16)) depends on the growth rate R0g .
For the applications to postglacial recolonizations below, we consider R0g = TR0 (where R0 is the average reproduction rate
per tree and year). In other words, we assume that R0g corresponds to the sum of the seasonal fecundities of the T repro-
duction events in which a parent tree is involved before individuals of the next generation become adults.2Details on the
empirical data for the tree species considered below, aswell as the definition of thematrix elements Aij andφij, are presented
in Appendix C.

2 This is a smoother approach than those in some previous nonoverlapping-generationsmodels, such as considering R0g = R0 [22,19], or assuming R0g is
equal to R0 times a mean fertile age [24].
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a b

c

Fig. 3. Postglacial recolonizations. (a) Invasion front speed versus lag time for the yellow poplar (∆ = 6000 m). The solid, dashed and dotted curves
stand for the approximate c =

√
2D/T , for the cases R0 = 30, 10 and 3 yr−1 , respectively. The probability (1 − pe) for long-distance dispersals (with

pe = 0.99798 [22]) has been taken into account when computing ⟨∆2
⟩. The full (empty) squares, triangles and rhombus correspond to the exact theoretical

solutions (numerical simulations) for R0 = 30, 10 and 3 yr−1 , respectively. The hatched rectangle is the observed range of T [25]. Additional information
on simulations and empirical data is provided in Appendix C. (b) Invasion front speed versus seed dispersal distance. The lines and symbols correspond to
the same cases in (a), but for T = 18 yr [25]. (c) Black alder postglacial recolonization of the British Isles (color online). Colored regions depict the predicted
arrival times for an invasion with the constant speed c = 462 m/yr, computed from Eq. (5) with T = 6 yr [26], ∆ = 6500 m [27], pe = 0.99798 and
R0 = 30. The black isochrone curves correspond to those inferred from pollen data by H. Birks in Ref. [28]. The arrow indicates the direction of arrival of
black alder trees into the British Isles [28].

Fig. 3a shows the exact speed for the overlapping-generations model (14) and three values within the observed range
of R0 for the yellow poplar (Liriodendron tulipifera) species, which was previously used to study postglacial recolonization
fronts [19,22]. Both the exact theory and the simulations in Fig. 3a are in good agreement (the observed differences, about
7%, are due to the discretization of the space in the simulations [19]). In Fig. 3a, within the observed range of T , the differ-
ences between approximate (5) and exact (14) theory are below 15% for the case R0 = 30 yr−1 (the lower reproduction rates
R0 = 10 yr−1 and R0 = 3 yr−1 present higher differences). However, if R0 ≥ 10 yr−1 the approximate, exact and numerical
front speeds all laywithin 102–103 m/yr (which is the observed range for postglacial recolonizations [29]). On the other hand,
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long-distance dispersal events (due to atmospheric turbulence) have been shown to spread seeds along distances∆ ∼ 103–
104 m for this species [30,31].3 The front speed dependence on the seed dispersal distance∆ is shown in Fig. 3b. Remarkably,
if the reactive process is fast enough (curve for R0 = 30 yr−1) then the approximate solution derived above, Eq. (19), closely
agreeswith the exact solution to Eq. (14),which is very complicatedmathematically (see the discussion above). Furthermore,
for R0 = 30 yr−1 and ∆>3000 m we observe predicted speeds within the observed range for postglacial recolonizations
(102–103 m/yr) [29]. Finally, in Fig. 3c we have applied our approximate Eq. (5) to model the Holocene invasion of the black
alder (Alnus glutinosa), across the British Isles [28]. Obviously, the invasion predicted by Eq. (5) gives a circular-shaped front,
corresponding to a constant speed. Although admittedly simple, this approximate front is in remarkable agreementwith the
observed colonization dates of the black alder, specially for the isochrones ≥ 6500 yr before present (BP). The slowdown
of the observed invasion front when reaching high latitudes (<6500 yr BP) is not surprising, because such a slowdown is
observed in many tree species and could be due to adaptations to the harsher northern climate [28].

4. Discussion

When studying the three systems presented above, we observe the following general trend: the higher the reproduction
rate (i.e., Y in Fig. 1, a in Fig. 2, and R0 in Fig. 3a and b), the closer our approximate speed c =

√
2D/T is to the corresponding

exact solution. For virus infections, both the VSV and the T7 display high enough values of Y and Eq. (5) agrees well with
observations. In contrast, when introducing the hypothetical low-yield case where Y = 5 (circles in Fig. 1), the approximate
speed does not provide accurate results for T < 60 min. This is not a problem at all (because such values of Y and T are far
below the observations for T7 [9]).4

The approximate speed (5), originally derived for a very special case (namely focal infection systems), has been shown
here to be valid for a wide range of systems, from non-structured single-species systems (Section 2) to rather complicated
structured systems (Section 3). In all of those cases, we have also shown that observations agree reasonably well with our
approximate Eq. (5). Thus, we find many substantially different systems with the same front speed (5) and, remarkably,
this makes all parameter values related to the reactive processes (a, Y , k1, k2, R0, etc.) irrelevant. Obviously, this enormously
simplifies the task of comparing theory and experiment.

In this paper we have analyzed a wide variety of propagating fronts in biophysical systems, where the lag time T plays an
important role in the systemdynamics.We have shown that the approximate speed c =

√
2D/T provides convenient results

to explain the advance of rather different fronts such as several virus infections, the Neolithic transition and postglacial tree
recolonizations. We have noted that our approximate speed c =

√
2D/T is valid if high values of the reproduction rate are

assumed. This suggests Eq. (5) could be a general trend in front propagation. Futurework could report further applications of
our simple approximate speed to other systems in which a lag time is important, e.g. crystallization fronts [32], combustion
fronts (where the ignition time plays the role of the lag T ) [33], etc.
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Appendix A. Exact equations, numerical simulations and empirical data for virus infections

In the main text, Eqs. (1)–(4) are used to model the invasion front of several focal infection systems (then [V ] replaces
p in Eq. (1)). In such experiments cells are not able to diffuse because they are immobilized by agar [9]. Hence, Eqs. (2) and
(3) contain reactive but not diffusive terms. Viruses are the only species able to diffuse in the system; see Eq. (1). In order to
compute the invasion speed, we introduce a framemoving with the front and look for solutions depending only on the new
variable z ≡ r − ct , where c > 0 is the front speed. As usual, we linearize our Eqs. (1)–(4) around the unstable steady state
([V ], [C], [I]) = (0, C0, 0). Hencewe consider ([V ], [C], [I]) = (ϵV , 1−ϵC , ϵI)C0 at the front edge,where−→ϵ = (ϵV , ϵC , ϵI) =
−→ϵ 0 exp(−λz). For non-trivial solutions (ϵV , ϵC , ϵI) ≠ (0, 0, 0) to exist, the determinant of the matrix corresponding to the
linearized set of three evolution equations must vanish. Therefore, the following characteristic equation must be satisfied:

λ3
+

−α2c2 (1 − β) + 1
αc(1 − α2βc2)

λ2
+

κ (βκ − 1) + βκY − 1
1 − α2βc2

λ +
(1 − βκ) (κY − κ)

αc(1 − α2βc2)
= 0, (20)

where α = (k2D)−1/2, β = T/2 and κ ≡ k1C0/k2.

3 The values of ∆ considered in this paper correspond to long-distance jumps, which produce a much more important effect on the front speed than
short-distance jumps (see Ref. [22]).
4 However, this was exactly the expected result, since high values of Y and T were assumed to derive Eq. (5) [11].
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Table A.1
Parameter values applied to compute the invasion speeds of VSV and T7 infections in the
main text, using both analytical solutions and numerical integrations of Eqs. (1)–(4).

VSV T7 (wild) T7 (p005) T7 (low-yield hypothesis)

D (cm2/h) 1.44 × 10−4 8.55 · 10−5 8.55 · 10−5 8.55 · 10−5

k1 (cm3/h) 1.4 × 10−10 7.74 · 10−8 7.74 · 10−8 7.74 · 10−8

k2 (h−1) 2.47 83.4 44.5 83.4
Y 4389 34.5 63.6 5

According to marginal stability analysis [23], the wave front speed can be finally calculated numerically from
c = min

λ>0
[c(λ)]. (21)

This summarizes the computation of the exact infection front speed from Eqs. (1)–(4) (full symbols in Fig. 1). Usually
dimensionless variables are used, but the final equations for the front speed are still rather complicated. Details, exact and
approximate results can be found in our previous Ref. [11].

Besides the exact speed summarized above (full symbols in Fig. 1) and the approximate speed c =
√
2D/T (curves in

Fig. 1), simulated speeds have been obtained by integrating numerically the set of Eqs. (1)–(4) (empty symbols in Fig. 1). In
order to do so, we have used finite differences to approximate the partial derivatives in Eqs. (1)–(4). Typical values for the
space and time steps used in our simulations were below 1 µm and below 1 s, respectively. All simulations considered the
initial conditions [C] = C0 and [I] = 0 everywhere, and a viral concentration of [V ] = 9.3 × 108 /ml in a small central
region with a radius of 0.075 cm [34] (this region represents the initial inoculum starting the focal infection).

In this paper we have studied infections of both VSV and T7 viruses (including mutants for the latter). VSV infections
infect mammalian cells, whereas T7 viruses infect bacteria. We have used VSV and T7 infections because these are the only
ones for which front speeds have been measured experimentally [8,9]. Table A.1 contains the parameter values used to
compute the invasion speed.

For VSV, the parameter values in Table A.1 are the same as in Ref. [11] (to the best of our knowledge, no experimental
data on the adsorption rate of the VSV are available, but the front speed is independent of the value of k1 for several orders
of magnitude [11]). For the wild type of T7, we use the values of k1, k2 and Y derived in Ref. [3] from experimental data.
Using the same procedure as in Ref. [3], we have computed k2 and Y for the T7 p005 mutant from the experimental data
in Ref. [9] (the other parameter values are the same as for the wild T7 strain). The last column in Table A.1 corresponds
to a low-yield hypothetical case of the T7 wild strain, which appears in Fig. 1 in the main text and is considered only to
understand better the results there. The values of the diffusivity D in Table A.1 are based on the diffusivity of the P22 virus in
agar, D = 1.44 ·10−4 cm2/h [3]. Since the P22 virus is similar in size and shape to the VSV [11] and T7 viruses [3], it provides
convenient approximations for the diffusivities of the viruses analyzed here. In Ref. [3] it was noticed that the presence of
host cells in the medium actually hinders virus diffusion. To account for this effect, a convenient correction factor for the
diffusivity of the virus must be computed (see Section V in Ref. [3]). In the present paper we consider the data from Ref. [9],
so the bacterial concentration is 3 · 106 /ml, and the maximum possible bacterial concentration is 107 /ml. Thus, after taking
into account the hindered-diffusion correction factor in Ref. [3] we obtain D = 8.55 · 10−5 cm2/h for T7 viruses. In the case
of VSV, experiments [8], there are no data indicating any hindered-diffusion effect; hence in Table A.1 we have considered
free diffusion for VSV (as in Refs. [11,34]). According to the data from Ref. [9], the speed range for the T7 is 0.016–0.027 cm/h
(from the minimum and maximum values in Figs. 4b and c in this reference). Note that the range of speed of the mutant
p005 (Fig. 4b in Ref. [9]) widely overlaps with the range for the wild type (Fig. 4c in Ref. [9]). Thus, in our Fig. 1, we have
used a single range for T7 viruses. In our previous paper [11] we estimated the experimental speed of VSV infections from
the data in Fig. 2b in Ref. [8]. This led us to the experimental range of 0.066–0.08 cm/h [11]. However, additional data on
infection profiles of the same experiments are available in Fig. S3 in Ref. [34], so in Table A.1we take into account that amore
realistic minimum experimental speed is 0.056 cm/h (from the evolution of the experimental radial profiles in Ref. [34]).
The maximum value for the experimental speed is the same we proposed in Ref. [11], namely 0.08 cm/h.

Appendix B. Numerical simulations for the Neolithic transition

For the numerical simulations in Fig. 2, we have used a very simple model proposed in Ref. [14]. We consider a 2D square
gridwith the initial condition p(x, y, t = 0) = pmax at the central node, and p(x, y, t = 0) = 0 everywhere else in the square
grid. Each time step in the simulations represents an interval time of T = 1 generation. At every time step, the population
density is equally distributed into the 8 nearest neighbors, so the mean-squared displacement is

⟨∆2
⟩ =

1
8

1

j=0
4


d2 + (jd)2


, (22)

where d is the distance between two neighboring nodes. Also, we compute the effect of population growth at each node and
each time step by applying the solution for the logistic growth given by Eq. (11),

RT [p(x, y, t)] =
p(x, y, t)pmaxeaT

pmax + p(x, y, t)

eaT − 1

 . (23)
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Finally, the population density at each node for the next step p(x, y, t + 1) is computed as the sum of RT [p(x, y, t)] and the
dispersive contribution described above.

Appendix C. Matrix elements, empirical data and numerical simulations for postglacial tree recolonizations

The following considerations have been applied to the matrices in the structured population model for tree recoloniza-

tions in Section 3. The demographic matrix
−→
−→
A describes reproduction and aging of the population as follows. The elements

of
−→
−→
A take into account that (i) each adult tree produces yearly a surviving number of seeds R0 and (ii) individuals become

one year older by switching its stage from j to j + 1 at each time increment t 99K t + 1. Thus,
−→
−→
A is written as [19]

Aij =

R0 if i = 1, j ≥ T
1 if i = j + 1
0 otherwise,

(24)

where R0 is the mean fecundity (i.e., number of seeds that survive into an adult tree) per parent tree and year.

The elements Φij of the dispersal matrix
−→
−→
Φ describe the rate of every possible conversion of pi(x + △x, y + △y, t) into

pj(x, y, t + 1). Since
−→
−→
Φ must restrict dispersal to new individuals (trees do not move but only disperse seeds), the elements

of
−→
−→
Φ are [19]

Φij =


φ(∆x, ∆y) if i = 1, j ≥ T
δ2D(∆) otherwise, (25)

where δ2D(∆) is the two-dimensional Dirac delta centered at ∆ = 0. The dispersal kernel φ(△x, △y) is the probability per
unit area that a seed falling from a parent tree located at (x + △x, y + △y) reaches the ground at (x, y) [19].

For the computations in Fig. 3a and b in the present paper, we have considered the same isotropic kernel as in Ref. [19],
i.e. that new seeds of the yellow poplar either grow in the same location as the parent tree (with probability pe = 0.99798
[22]) or they are dispersed to a distance r = ∆ (with probability 1 − pe). Moreover, the annual seed production f of the
yellow poplar is of the order of 104 seeds dispersed/tree yr [30,25]. According to field observations in sites close to those
where the dispersal kernel was measured, the yellow poplar postdispersal seed-to-adult survival is in the range 0.00–0.06%
[30,35]. In the present work we have considered the mean value of this survival rate, i.e., s = 0.03%. Thus, we estimate the
net reproductive rate, R0 = fs, to be in the range of 3–30 seeds/tree yr for the yellow poplar.

To the best of our knowledge, there is no available data on the long-distance dispersal kernel of the black alder. However,
long-distance dispersals are usually driven by extreme climatological conditions (and they are independent of the usual
dispersal agency of the seed) [31]. Thus, we expect the persistence pe of the black alder to be of the same order of magnitude
than the one for the yellow poplar. We have used pe = 0.99798 [22] in the isochrone map for the black alder in Fig. 3c. The
observed annual seed production f of this species is of the order of 104 seeds dispersed/tree yr [26]. For the case of the black
alder, we consider the survival probability s = 0.03% (i.e., the same considered for the seeds of the yellow poplar), since we
are not aware of any specific observed range for the black alder. This yields an estimated net reproductive rate, R0 = fs, in
the range of 3–30 seeds/tree yr for the black alder. Since our approximate speed c =

√
2D/T assumes high values of the

reproduction rate (see the discussion above), in Fig. 3c we have considered the highest value in this range, i.e., R0 = 30
seeds/tree yr.

Results frommolecular dynamics simulations have been presented as empty symbols in Fig. 3a, b. Our computer program
considers a 2D grid where an age-structured population density is computed. Initially p(x, y, 0) = 1 at (x, y) = (0, 0) and
p(x, y, 0) = 0 elsewhere. At each time step, we compute the new number density of trees p(x, y, t + 1) at all nodes. The
main features of this model (immature individuals cannot reproduce, etc.) are properly taken into account (we refer the
interested reader to Ref. [19] for further details about these molecular dynamics simulations).
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