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Abstract

A quantitative model of the US colonization in the 19th century is presented. We explore the idea that landscape heterogeneities

should have strongly affected this process, as the need for water made the colonizers follow the routes of main rivers and set up their

towns near them. So, we study transport processes on fractal networks modeling river basins, a case which may have a great ecological

relevance for the study of hydrochory, and in general for species which spread along corridors. The analytical reaction–diffusion model

presented here allows to predict the propagation rate of fronts spreading through Peano-like basins, and comparison with the Optimal

Channels Network model is also reported. Finally, the propagation rates observed are compared with the results from our model,

concluding that migration through fractal media, in spite of being a mathematical idealization of the problem, mimics the dynamics of

real systems reasonably well.

r 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Modeling human-range expansions may contribute to
understanding and predicting how populations behave
when settling into new territories (Ammermann and
Cavalli-Sforza, 1984; Fort and Méndez, 1999). One of the
best-known range modern expansions is the colonization
across the US in the 19th century. By 1790, the North-
American population of European origin was concentrated
in the Atlantic region, but along the following decades the
internal migrations led to a displacement of the established
population westwards. According to the data and atlases
revised, the average expansion rate for this transition
between 1790 and 1910 was approximately 13.570.8 km/yr
(Flanders, 1988).

An essential characteristic of the US transition west-
wards was the fact that settlers did not occupy all of the
territory, as homogeneous models (Fort and Méndez,
1999) assume, but followed the course of the greatest rivers
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and lakes (Faragher, 1979; Flanders, 1988) and settled near
them to make use of their resources. Therefore, landscape
heterogeneities should have played an essential role in the
process of migration.
This situation is similar to the case of dispersion of

biological species along the margins of rivers and streams
(Johansson and Nilsson, 1993; Campbell et al., 2002),
showing the ecological interest of our study for transport
processes limited spatially by river lines (Speirs and
Gurney, 2001), as well as other natural or artificial
corridors.
2. Model

In the last few years great efforts have been made in
order to describe the intricate geometry of river networks
(Rodrı́guez-Iturbe and Rinaldo, 1997). This field has
received great attention especially since the importance of
the fractal properties of these networks were revealed
(Mandelbroot, 1983; Marani et al., 1991), attracting the
interest of researchers from different areas. However, few
researches have been performed on the transport properties
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of these structures, in spite of the applications that this field
offers, as spread of biological species using rivers as
corridors (Johansson and Nilsson, 1993) or longitudinal
dispersion of particles through the channels (Rutherford,
1994).

Here we propose the study of transport processes
through fractals modeling river networks and, specifically,
we focus on the analysis of reaction–diffusion (RD)
processes, our main objective being to determine analyti-
cally the speed of RD fronts spreading through these
networks. However, we must first note that mathematical
modelization of real media as a fractal involves some non-
trivial assumptions. The most obvious is that ideal fractals
imply self-similarity at all scales, unlike fractals in nature
where self-similarity is necessarily restricted by lower and
upper bounds. Another important point is that one expects
transport in fractals (at least in the asymptotic regime) to
be independent of the starting point chosen, that is, the
property of translational invariance holds, an idea which is
also difficult to justify for structures in nature. We shall
discuss below whether these limitations may affect the
results and the conclusions of our work.

The model proposed to date which seems to describe the
evolution and formation of the river basins better and
agrees with most of the observations is the Optimal

Channels Network (OCN) model, based on some optimiza-
tion principles which minimize the energy expenditure by
the network (Rodrı́guez-Iturbe et al., 1992; Rinaldo et al.,
1993). The evolution rules described by this model lead to
fractal structures as that shown in Fig. 1 (left). Never-
theless, these structures are very irregular and so their
analytical study is nearly impossible. Then, analytical
approaches require to work with a simpler structure; a
good choice is the Peano basin (Fig. 1, right), a space-
filling loopless fractal which has already been used before
for the modelization of river basins (Marani 1991;
Flammini and Colaiori, 1996) and whose similarities and
differences with OCN’s structures have been studied in
Colaiori et al. (1997). In this work we will study the
transport properties of the Peano basin and our results will
Fig. 1. River basins modeled by the (a) OCN’s model and (b) the Peano basin f

the order of each branch.
be finally compared with those numerically obtained from
the OCN model.
First we present the theoretical framework that we will

use for describing these dynamical processes, which is
based on the well-known Continuous-Time Random Walk
(CTRW) (Hughes, 1995). According to this, in an RD
process the evolution of the particle density r(x, t) follows
the expression

rðx; tÞ ¼
Z 1
0

dt0jðt0Þ
Z
R

dx0Fðx0Þrðx� x0; t� t0Þ

þ

Z t

0

dt0fðt0Þf ½rðx; t� t0Þ� ð1Þ

where the first term accounts for the diffusion of particles
and the second one describes production and annihilation
processes. The reader can find in Méndez et al. (2004) as to
how this equation can be derived straight from the master
equation in the CTRW framework.
In Eq. (1), j(t) is defined as the waiting-time distribu-

tion, fðtÞ ¼
R1

t
jðtÞdt is the probability of a walker to

remain at least for a time t at a site before jumping, F(x)
is the jump distance distribution, and f(x, t) is the
function growth for production and annihilation processes;
here, we choose f(r) ¼ ar(1�r), a logistic growth function
(where a is the growth rate parameter), as usual for many
biological and ecological applications (Murray, 1993).
Recently (Méndez et al., 2004b), it has been shown that

introducing an appropriate rescaling, Eq. (1) can be written
as a Hamilton–Jacobi-type equation in the form

1

ĵðsÞ
¼ F̂ðpÞ þ

a

s

1

ĵðsÞ
� 1

� �
(2)

where ĵðsÞ and F̂ðpÞ are the Laplace and bilateral trans-
forms of j(t) and F(x), i.e.,

jðHÞ ¼
Z 1
0

e�HtjðtÞ dt; F̂ðpÞ ¼
Z 1
-1

epxFðxÞ dx.

(3)
ractal. For the Peano structure, the numbers below the branches point out
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Likewise, using the Lagrangian formalism and the Hamil-
ton equations the expression for the speed of fronts (in case
wavefront solutions are allowed by the system) can be
found to be

u ¼ min
s

s

p�ðsÞ
, (4)

where p*(s) is the solution of Eq. (2), so that, this
Hamilton–Jacobi method allows us to find the wavefront
speed for an RD process for any distributions j(t) and
F(x) describing the diffusion pattern by individuals.

Now, let us consider a random-walk through a Peano
basin (with all the individuals standing at the site A at
t ¼ 0) for the myopic ant case, that is, a walker at a certain
site o of the structure can jump, after a residence-time t, to
each one of its zo first neighbors with a probability 1/zo.
Previous studies have already analyzed random-walks on
tree-like structures as the Peano basin (Mathan and
Havlin, 1990), obtaining some averaged properties. There,
the movement of the walkers through the backbone (i.e.,
the direction AB in Fig. 1) was studied and each secondary
branch emerging from a site of the backbone was assumed
to introduce a waiting-time distribution of jumps from this
site to the adjacent sites in the backbone. Here, as we are
concerned with the study of propagation of fronts, we will
choose AB as the direction of advance for the fronts and
we will also use this idea of waiting-time distributions
introduced by the branches.

The branches order in the Peano basin is indicated in
Fig. 1 (numbers below the branches). It can be seen that
when a walker reaches the backbone site corresponding to
a first-order branch, it can jump to another site of the
backbone with probability 2 � 1

4
¼ 1

2
or get into the

secondary branch with probability 1
2
. Then, the waiting

time is t with a probability 1
2
; analogously, the waiting time

is 3t with probability 1
4
and so on. In general, we have that,

for the first-order branches

jðtÞ ¼
X1
i¼1

pidðt� ð2i � 1ÞtÞ; (5)

where d(t) is the Dirac delta function, so only times t , 3t ,
5ty are allowed. Now we define jN(t) as the waiting-time
distribution for a branch of order N. From the arguments
above, we have that for the first-order branches in the
Laplace space

ĵ1 ¼
1

2
ĵ0

X1
i¼0

1

2
ĵ2
0

� �i

¼
ĵ0

2� ĵ2
0

; (6)

where ĵ0ðsÞ ¼ expð�tsÞ is the distribution when no
secondary branches are present (equivalent to a classical
random-walk in one dimension).

Analogously, the distribution for the branches with
N41 can be found analytically following some rules
partially discussed before by Van den Broeck (1989) for
one dimensional random-walks:
(a) when the particle goes into a further structure (it is,

when it moves away from the backbone), the probability of
the walk to take a time (or number of steps) t is a
convolution of factors; then, it becomes a product in
the Laplace space. Finally, the total probability distribu-
tion arises from the sum over all the possible times t (from
0 to N).
(b) when the particle reaches a crossing and it must

choose between two possible ways, the total probability is
the sum of both probabilities.
For instance, for N ¼ 2 we find

ĵ2 ¼
1

2
ĵ0

X1
i¼0

1

2

ĵ2
0

4

X1
j¼0

ĵ2
0

2
þ

ĵ2
0

4

 !j !i

¼
4ĵ0 � 3ĵ2

0

8� 7ĵ2
0

; (7)

where the sums in i and j follow from the arguments in rule
(a). Eq. (7) is in perfect agreement with the values found
when random-walk simulations are performed in the Peano,
and we also verified by means of simulations the expressions
found for higher N from the above rules (not shown).
So, the waiting-time distribution for any different branch

can be found as a function ĵN ¼ f ðĵN�1; ĵN�2; . . . ; ĵ0Þ or,
equivalently, ĵN ¼ f �ðĵ0Þ.
The jump distance distribution F̂ðpÞ is much easier to

find; for an isotropic random-walk across the backbone it
is just

FðxÞ ¼
1

2
ðdðxþ DxÞ þ dðx� DxÞÞ ) F̂ðpÞ

¼ cosh ðpDxÞ, ð8Þ

defining Dx as the distance between first neighbors in the
lattice. Now, we can introduce the distributions
F̂ðpÞ; ĵ1ðsÞ; ĵ2ðsÞ . . . into (2–4) and find the resulting
wavefront speed v numerically. Likewise, some analytical
results can also be found if the asymptotic regime ðt�
t and Dx� xÞ is considered, as usual. Expanding the
expressions for F̂ðpÞ and ĵiðsÞup to first order we obtain

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a

Dx2

tb

s
, (9)

with b ¼ Si(pii). This expression is a generalization of the
well-known Fisher’s speed (Murray, 1993) (the classical
case is recovered when no secondary branches are
considered, so then b ¼ 1).
Fig. 2 summarizes the results obtained from the

Hamilton–Jacobi formalism (lines) in Eqs. (2–4) and
compares it to random-walk simulations on the Peano
basin up to order N ¼ 10 (empty points) and OCNs (full
points). In our simulations, all the walkers were initially on
the left-hand side of the lattice and so the front advanced to
the right. A logistic growth g(x, t) ¼ ar(1�r) was
introduced at every site at every time step to simulate the
reaction process. For the OCNs, we averaged over ten
different 200� 200 networks generated.
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Fig. 2. Plot of the results for the front speed vs the parameter a. The

points are obtained from simulations of the stochastic process on the

OCNs (full points) and the Peano basin (empty points). The lines

correspond to theoretical values from Fisher (solid) and from Eqs. (2–4)

for N ¼ 1 (dotted), N ¼ 2 (dashed) and N ¼ 5 (dotted–dashed).
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From the plot of the speed u as a function of a (which is
independent of the diffusion process), we observe that
simulations on the Peano lattice and the OCN network
lead to very similar results. Although these structures show
some topological differences (Colaiori et al., 1997), we
think that these similarities in their dynamics are due to the
fact that the speed of fronts in fractals is mainly determined
by the fractal parameter dmin (which scales the distance
between points within the structure with the more usual
Euclidean distance between them) and the existence of
loops in the structure, as we have stated in recent works
(Méndez et al., 2004a; Campos, 2005).

Both the Peano basin and the OCNs are loopless
structures with dmin ¼ 1, so this could explain the results
obtained.

We also show that as a higher N is considered in our
equations, a better agreement is found with simulations
(the complexity of the expression ĵN for high N prevents us
from performing the analysis up to very high orders;
however, we have verified that the values for u converge
very fast and so N ¼ 5, the highest order shown, is a good
approximation to the exact result). Only for high values of
a do we observe some differences between the theory and
simulations; it is probably due to the discretization effects
involved in our simulations, a problem that we have
addressed recently (Campos et al., 2004). However, from
Fig. 2 we can state that our model seems to give an
appropriate approximation to the problem of propagation
across river networks.

The comparison performed also allows us to address the
problems about the modelization of real landscapes by
means of fractals. In our model, it is clear that self-
similarity at all scales cannot be atained, as we need to
introduce ‘‘by hand’’ a lower bound in distances which is
given by the jump length of the particles Dx. Moreover, in
our analysis (both analytical and numerical) we never reach
the case N-N, equivalent to considering ideal (non-
realistic) fractals. Actually, we have seen that the value of v
converges fast as N grows, so we can conclude that the
problem of self-similarity at all scales does not represent a
drawback in our work.
The problem of translational invariance mentioned

before for transport of fractals remains a limitation of
our model, where all the points of the structure are treated
as equivalent. Bearing in mind the possible applications on
the field of biological migrations, a more realistic model
should include possibly some explicit dependences in space
which could account for the minor details of the real
territory considered. Nevertheless, we notice that this
generalization would lead to a model much more difficult
to treat mathematically and the analytical methods used
here would not give a satisfactory solution (in that case).

3. Application to migration fronts

We now illustrate the usefulness of our results by
applying them to real migration fronts. For some human
(prehistoric) migrations, the wave-of-advance model was
proposed (Ammermann and Cavalli-Sforza, 1984; Fort
and Méndez, 1999), where population fronts spread into
new regions and population density saturates behind the
front. So, RD models have proved useful before for the
modelization of human migrations.
According to the data and atlases revised, the average

expansion rate for the transition of the North-American
colonizers between 1790 and 1910 was approximately
13.570.8 km/yr (Flanders, 1988).
The parameters in our model were estimated as follows:

the time between jumps t for biological migrations is found
to be equivalent to the time between successive generations;
for humans, the value t ¼ 25 yr is usually taken (Fort and
Méndez, 1999).
The growth parameter a was computed directly from

Lotka (1956), who fitted the population vs time plot for the
US in the 19th century to a logistic curve, obtaining
a ¼ 0.03170.001 yr�1.
Regarding the distribution of jump lengths, we know

that the settlers did not always cover the same distance, so
the distribution FðxÞ should include the possibility of
different jump lengths, in contrast with (8). It can be done
by fitting the observed data to a continuous distribution,
but another option is to determine the averaged distance
covered by settlers and use this value as Dx in (8). Here we
will explore both possibilities.
In our case, the jump distances covered by settlers were

estimated by individual records obtained from the ‘migra-
tions.org project’ database (available at www.migration-
s.org). We collected 400 individual records from the
database and measured the distance covered by colonizers
from their birthplace till the place they were 25 years after,
i.e., after a time t (only the distances in the E–W direction
were considered, in accordance with the onedimensional

http://www.migrations.org
http://www.migrations.org
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nature of our model). The jump length distribution thus
obtained is represented in Fig. 3.

However, it does not take into account that fraction f of
people who remained at their birthplace after 25 years
without migrating. Ferrie’s works (Ferrie, 1996) based on
the censuses of the 19th century allowed us to estimate
f ¼ 0.370.05. Taking all this into account, the best fit for
our data corresponded to an exponential decay distribution
of the form FðxÞ ¼ Ae�x=w (where A is a normalization
factor and w ¼ 640723 km�1) and the averaged distance
found was Dx ¼ 810793 km.

By introducing these distributions and parameters into
(2–4) one obtains the results for the speed pointed out in
Table 1. There we have included the results for different
values of N because the settlers, according to historical
reports, moved by mainly following the major river valleys,
so that, one could think that the small details in the
structure of the Peano (that is, tertiary, quaternary and
higher-order channels) are not decisive for the dynamics of
the migration process, and so a low order in N is desirable
here.

In any case, we can observe from Table 1 that the
geometrical constraints of the fractal networks involve
strong corrections over the speed of the fronts, which was
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Fig. 3. Plot of the distribution of distances covered by migrants in the

E–W direction during the 19th century, according to the 400 individual

records taken.

Table 1

Observed front speed and predictions obtained from theory and

simulations on fractal basins for the case of the US colonization.

Observed Speed 13.570.8 km/yr

Fisher’s prediction (N ¼ 0) 40.372.9 km/yr

Continuous F(x) (N ¼ 2) 19.473.2 km/yr

Continuous F(x) (N ¼ 5) 18.973.1 km/yr

Averaged Dx (N ¼ 2) 16.572.7 km/yr

Averaged Dx (N ¼ 5) 14.772.4 km/yr

Simulations on Peano 14.570.1 km/yr

Simulations on OCN’s 14.470.1 km/yr
our main objective here. Indeed, the classical prediction by
Fisher clearly overestimates the observed speed of the
migration front, while both the results found from
simulations (for the Peano and the OCN) and the
theoretical predictions agree reasonably with the observa-
tions. This leads us to the hypothesis that colonization of
the US during the 19th century should have been strongly
affected by the landscape constraints, giving as the result
that heterogeneities would have reduced the propagation
rate substantially. Here, we have assumed for simplicity
that these heterogeneities are given only by river streams,
but one may also think about the effects of mountains,
deserts, valleysy For this situation, maybe our ideas could
still be extended in order to consider the whole territory as
a fractal landscape where the settlers move. In case
topological studies could confirm this hypothesis, it would
support the interest and relevance of models based on
transport through fractals as that presented here.
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