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Abstract

Information statistical theory is used to obtain the second-order terms (similar to those analyzed in the Burneit
approximation to the solution of the Boltzmann equation) in the expansion of the nonequilibrium velocity distribution
function. These terms are used for the evaluation of the effect of the heat flux on the rate of bimolecular chemical reactions.
This effect is shown to be important for reactions characterized by high values of the activation energy. However, very large
values of the heat flux would be necessary. The results are compared with those obtained earlier from the square terms
calculated from the linearized Boltzmann equation and with recent results due to Nettleton. © 1997 Published by Elsevier
Science B.V.

1. Introduction effects. Namely, within collision theory, the rate of
chemical reaction (2) can be described as:
As discussed by Prigogine and Xhrouet [1], in the

early stages of a bimolecular chemical reaction:

uch=fd5’ dé, fdogle, - o (16, - ). (3)
A+A =B+B, (1)

both the concentration of products and the reverse
reaction can be neglected. Therefore, for the early
stages of the reaction (1), the chemical reaction:

A+A - B+B (2)

can be analyzed. Prigogine and Xhrouet [1] were the
first to show that it is enough to take into account
Eq. (2) in order to analyze the role of nonequilibrium
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where ¢ and ¢, are the velocities of the molecules,
I, — ¢} their relative speed, {2 the solid angle, f and
f, are the velocity distribution functions (in general
nonequilibrium ones) and o * (|}, — c)) is the differ-
ential cross-section of the chemical reaction. Only in
the absence of nonequilibrium effects f can be writ-
ten down in the form of the Maxwell-Boltzmann
velocity distribution function:

: (4)

m )3/2 ch

) —_— -
4 ”(thT PV kLT

0301-0104 /97 /$17.00 © 1997 Published by Elsevier Science B.V. All rights reserved.

PII SO0301-0104(97)00189-4



60 J. Fort, A.S. Cukrowski / Chemical Physics 222 (1997) 59-69

with n the number density of the molecules, m their
mass, ky the Boltzmann constant and 7 the tempera-
ture.

Present [2—4] introduced the following expression
for the chemical reaction cross-section:

0, e<e’
oy (e, - ) = %(l—e_), exe”’ ()
€

where d is the diameter of the reacting spheres, €
represents the center-of-mass frame kinetic energy of
two colliding spheres with relative velocity ¢; — ¢ =
c

rel?

I — 2
ezzm!c,—a , (6)

and €” is the threshold energy, i.e. such an energy
for two spheres that collide with a relative speed c ;.
which is characteristic of the considered reaction.
The cross-section (5) is very convenient because it
permits to get relatively simple and reasonable ex-
pressions. For example, after introduction of Egs. (4)
and (5) into Eq. (3). ie. f=f©, f, =f" and o * |,
— ) =gy (I¢, — &, the expression for the equilib-
rium rate of chemical reaction is:

whkyT\'? €’
vl = 4n’d? exp| — T
m B

; (7)

where the pre-exponential term corresponds to the
collision frequency of the moving spheres and the
exponential term shows the role of the threshold
energy €. As it can be shown [5], the Arrhenius
activation energy €, [6] is connected to € * through
the simple relationship:
kT
€, =€+ 5 (3)

Therefore, €, depends on the temperature and the
linear Arrhenius relation of In¢{)’ on 1/7 is not
fulfilled for the model of Present unless k37T/2 <
€.

It is very convenient to introduce a quantity m
describing the role of nonequilibrium effects in the

following form:
U )
n=1-r=1-—7. (9)
Uech
The quantity n has been used since long ago [4] to
analyze the nonequilibrium effects associated with

the proceeding of the chemical reaction, which leads
to the deformation of the Maxwell-Boltzmann distri-
butions £ and f{°). The ratio r is here iniroduced
to describe the relative change of v,.

The problems dealing with different nonequilib-
rium effects connected with chemical reactions have
been analyzed in [7-16] and many other papers.

Several years ago, Cukrowski and Popielawski
[17} analyzed the effect of transport processes, such
as heat and viscous flows, on ¢, and therefore on r.
It is worthwhile to mention that in Ref. [17] a minus
sign in the definition (3) of v, and therefore in the
right-hand side of Eq. (7), was introduced. This does
not change the relative effect, given by Eq. (9).

Cukrowski and Popiclawski [17] neglected the
effect of the chemical reaction on the velocity distri-
bution function. It was possible to do so because the
time scales of the processes could be chosen to be
different. This condition is fulfilled for a slow chem-
ical reaction (characterized by a large threshold en-
ergy) and a large heat flux (or a large temperature
gradient). However, the temperature gradient cannot
be too large in order to analyze a system in the
hydrodynamic region (not in the Knudsen region, in
which the mean free path would be too large) [18,19].
The authors of [17] also assumed that the =ffect of
the heat flux and /or the pressure tensor can be taken
into account by making use of the linear approxima-
tion. They therefore wrote down the distribution
function as f= fO[1 + ¢»'V], where the perwurbation
¢ can be found out by means of the Chapman—
Enskog or Grad kinetic theory methods, and is due to
the presence of a nonvanishing heat flux and/or
pressure tensor in the system. Under these assump-
tions, they came to the conclusion that the presence
of a heat flux and/or pressure tensor can modify the
rate of chemical reaction. In the present paper we
denote their r by " because, as we have recalled,
they assumed the linearization f=f@[1 + ¢"']. As
it was stated in [17], the procedure followed in that
paper should be regarded as a first approach to the
problem and may not yield quantitatively reliable
results. This is so because the use of an expansion of
the form f=fO[1 + ¢+ ¢@ + - -] instead of
the linear approximation f=f@[1 + ¢"], into (3),
will yield second-order corrections to Eq. (7) arising
from ¢p(V but also from ¢ and from ¢{>.
Therefore, the role of the last two of these terms
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(which were completely neglected in [17]) can be
important, although their calculation in the frame-
work of, e.g., the Burnett or Grad kinetic theory
methods may be very complicated. In fact, several
years ago the authors of [17] decided to take these
additional terms into account, but after a discussion
with Rudyak [20] during a symposium [21], the first
author of Ref. [17] could see that a kinetic-theoretical
approach to this problem would be too complicated.
We think that the information theory approach to
nonequilibrium statistical mechanics, which is based
on the maximum entropy principle [22—-24] and plays
an important role in some developments of extended
irreversible thermodynamics [25-28], is another rea-
sonable possibility for the evaluation of ¢®, and
therefore to evaluate an additional term in r [see Eq.
(9)], which we denote +®. We would like to stress
that the motivation of the present paper is to find out
this correction to the results in [17], that this is a
problem of chemical kinetics, and that the use of
information theory in the present paper is justified
only as one tentative possibility to cope with it.

Nettleton and Torrisi [29] discussed the possibility
of using extended irreversible thermodynamics for
the analysis of the coupling of heat flow to a uni-
molecular reaction (see also [30]). Recently, Nettle-
ton [31,32] has made use of information statistical
theory and extended thermodynamics (see also Refs.
[33], [34] and [27]) to analyze the nonequilibrium
flow-dependent corrections to the chemical rate con-
stant in gases.

The aim of this paper is to make use of informa-
tion theory in order to evaluate the additional terms
(mentioned above) and to calculate the ratio r'®
connected with these additional terms, to compare
@ with r (obtained from the linearized theory, as
mentioned above), as well as to compare the total
rD 4+ 1 with #, in order to see the role of the
influence of the heat flux on the rate of chemical
reaction.

The paper is organized as follows. In Section 2
we begin with a brief explanation on information
theory. We then recall some information-theoretical
results that are due to other authors, and that allow to
write down an expression for the velocity distribu-
tion function that includes nonequilibrium terms up
to second order in the heat flux. In Section 3 we use
this distribution function for the derivation of the

analytical expressions for the nonequilibrium effects
of the heat flux on the rate of chemical reaction. In
Section 4 we present numerical evaluations of these
nonequilibrium effects. In Section 5 we discuss the
meaning of our new results, they are compared with
those obtained from the linearized Boltzmann equa-
tion [17] and with those recently derived by Nettle-
ton [31], and we also give some concluding remarks.

2. Information theory

As already mentioned in the introduction, infor-
mation theory is here not analyzed but only used as a
helpful tool in the description of the velocity distri-
bution function. We are aware that the applicability
of information theory to nonequilibrium statistical
mechanics i1s not unanimously accepted. However,
since we have decided to use this theory, we will
briefly characterize it below.

In the case of thermodynamic equilibrium, the
most probable velocity distribution function for a
classical non-relativistic monatomic ideal gas is the
Maxwell-Boltzmann distribution. A detailed statisti-
cal approach for this case has been discussed by
many authors, see specially Ref. [35]. Such a proba-
bilistic procedure was extended to nonequilibrium
systems by many authors, specially by Jaynes [23].
Jaynes noted that, both in equilibrium and outside
equilibrium, the mathematical theory of communica-
tion allows to interpret the entropy density as a
measure of that information on the microstate of the
system that is not contained in the distribution func-
tion. By maximizing the entropy density, this author
obtained the maximum of such an information. In
this way it is possible to get the most probable
nonequilibrium velocity distribution for a given
macrostate. The procedure consists in maximizing
the entropy density under the set of constraints that
fix the macrostate (which may include, e.g., the
existence of a given heat flux) [22]. It is worth to
comment that, at first sight, this method might seem
inconsistent since, according to the second law, it is
in equilibrium that the entropy of an isolated system
reaches its maximum. However, if we maximize the
entropy density under a set of macroscopic con-
straints, including, e.g., the constrain of a given,
prescribed, non-vanishing heat flux, we are in fact
comparing different nonequilibrium distribution
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functions that correspond to a given, prescribed
nonequilibrium macrostate (and not to several equi-
librium and nonequilibrium states) and choosing the
most probable one, so that there is no inconsistency
with the second law. This widely-used approach (see
[22-28] and references therein) has been recently
applied by Dominguez and Jou [36], who have pro-
posed an explicit expression for the distribution func-
tion of an ideal gas at rest under a heat flux. By
maximizing the entropy density, ie. ps=
—kg (dSf In f, under the constraints of prescribed
particle number density, n = [dc'f, vanishing
barycentric velocity, 0 = [dcmcf, and prescribed in-
ternal energy density and heat flux., pu =
Jdct(me?)f and ¢ = [dc3(mc?)cf, respectively, one
finally finds, up to second order in g (see equation
(30) in Ref. [36)]):

_ ! 1 2 ! 2 >\ =
f—zexp —ﬁimc 1—(5mc —EE Y-

1
+_
2

%mcz—i)_(??)z], (10)

where the Lagrange multipliers 8 and ¥ respectively
are given by

, (11)

nk i; T3 q-. (12)
where T is the thermodynamic temperature, i.e. T~
=03s/0u (in Ref. [36], the distribution function is
written in terms of the kinetic temperature T, which
satisfies that 2nk,T = pu; in the present paper we
use the notation in Refs. [26,27,29-34], whereas in
some studies, see e.g. [36,25], the symbol 6 is used
in the place of 7, and T is used instead of Ty). Eq.
(12) is valid up to second order in g.

The partition function Z appearing in Eq. (10) can
be found out from the constraint of prescribed parti-
cle number density, i.e. from the normalization of
the distribution function:

n=fd3f, (13)

which yields, up to second order in ¢,

1 (2mkT\*? mo
B

n m

We may note, from Egs. (10)-(12) and (14), that in
the special case of thermodynamic equilibrium (i.e.,
q=0), 1/Z corresponds to the pre-exponential fac-
tor in the Maxwell-Boltzmann velocity distribution
function (4).

Making use of Egs. (11), (12) and (14). we may
write the distribution function (10), up to second
order in g, as:

fzf“”[l + M+ ¢<2)] , (15)

where f® is the Maxwell-Boltzmann distribution
function (4) and the nonequilibrium corrections are

d)(l): n m—c“_s (7.(?’ (16)
SnkiT? \ kpT
&P =G+ ;5(2)’ (17)
with
I} (18)
5n’kiT
20 m* mc? s : N 19
P SoniiT | T (4:¢) . (19)

Egs. (15)-(19) generalize the Chapman-Enskog
result used in Ref. [17] and play a fundamental role
for our further derivations presented in the next
section. We would like to emphasize that it is usually
very difficult to obtain the additional term ¢ in
Eg. (15). This problem, which is well known in the
framework of the kinetic theory of gases (see, e.g.,
chapter XV in Ref. [37]), also arises when making
use of information theory: a distribution function
different from Egs. (15)-(19) has been recently pro-
posed [38}. Here we will not go on into a discussion
on both information-theoretical proposals but will
concentrate on the consequences of the use of the
distribution function (15)-(19) in the problem pre-
sented in the introduction. We would like to stress,
however, that it would be very interesting to tackle
the same problem making use of the distribution
function in [38] instead of that in [36]. A detailed
comparison of the consequences (which are not only
conceptual but also predictive) of both distribution
functions in several problems is, in our opinion, an
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important topic and it deserves further consideration
in the future.

3. Calculation of the reaction rate

After taking into account Eq. (15) we can write
Eq. (3) as:
N (NS (2
Uy = Ugpy + L’ch) + Léh) : (20)
where ¢{) refers to terms of order i in g, ie. i=0

for ¢°, i =1 for ¢' and i =2 for ¢?,

o = [dEfdé, [dQfOFOE — o (17 - 7).

(21)

v = [defaé, [a@ fOrO (¢ + ¢0)

—clo (¢, - ), (22)
and
of) = vGY + ug” + i, (23)
with
v§9 = [acfac, [dfOrOeOdig

—da (I, - ), (24)
o3 = [a2faz, [a0 130+ 321

—da (I, - d), (25)
L3O = fdafdafdnff-mffm[i@‘ + $<ﬁ>]|a

—do (I8, - ). (26)

It is worthwhile to observe that in previous stud-
jies [17,39], which where based on the linearized
Boltzmann equation, the term ¢® was not consid-
ered. Therefore, it was not possible to take the last
two terms in Eq. (23) into account, although it is
necessary to do so because they are of the same
order as the first term. These two last terms in Eq.
(23) play a fundamental role in the present paper.

In order to perform the integrations in Egs. (21),
(22), (24)-(26) we change from the velocities ¢ and
¢, into the usual variables ¢, =¢, —¢ and C,
= 2(c, + o).

As far as Eq. (22) is concerned, it is clear from
Eq. (16) that ¢V and ¢! are odd functions of ¢
and ¢, respectively. Thus after integrations we get
o =0.

The calculation of v can be carried out in the
same way as that leading to Eq. (7). However, the
calculations are rather tedious, so that we will give
some partial results. After making use of Present’s
cross-section (5) and performing the integrations in
Egs. (24)—(26) we finally arrive at:

4d’m | wkyT 172 €”
(2a) — - a-a [
Ueh ~ = q - qexp

T5k3T3\ m kT
e 1P 9[e T
x| - + =
kT | 2| kT
9] €” 3 )
—=|—1=-=. 7
4| ky 8 (27)
. 8d*m (wkyT\'? e
T TS m AR T
(28)
oo Adim (kaT 172
] < = H.‘)X — —
ST 75T\ m 19PN T T
e’ 1B[e T
X — — —
kyT 2 | kT
85[ e 341
||+ —]. (29)
4 | kyT 8 »

It is worthwhile to observe that in Ref. [17] an
error appeared and the coefficients 9/2, —9/4 and
—3/8 in Eq. (27) in the present paper were written
in a wrong way. However, the results in [17] were
discussed for large values of € /kgzT and for this
reason the term [e * /kgTT* was the dominating one.
This lead practically to good estimations and conclu-
sions. Therefore, we will not here include new fig-
ures for the estimation of the ratio r"’ =
(v2) /(v)), which is easy to calculate from Egs.
(27) and (7), because the old ones are practically
good for comparisons to be performed.

Insertion of Egs. (27)—(29) into Eq. (23) yields
the final result for the first non-vanishing correction
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to the reaction rate due to the presence of the heat
flux:

@ 4 d°m (wkgT\V? €
- L T el =
D T IS T m AN T T

x(u

Eq. (30) is the fundamental equation we have been
looking for. We use this equation for numerical
estimations in the next section.

2
+ 19

*

€

*

€

kT

49
+_.
4

(30)

B

4. Numerical estimations

The relative non-equilibrium correction (30) for
the case considered, with respect to the equilibrium
reaction rate (7), is:

(1) (2) Uéﬁ) n g € 2
r +r = =——7g7q 11| ——
O s TN T
€ 49
+19—|+—1, (31)
kT | 4
with

o WG
e o
Uch

We now perform some estimations of the influ-
ence (31) of the heat flux on the reaction rate. As in
Ref. [17]; we substitute the following values of the
relevant parameters: m = 1072% kg, T=300K, n=
2.687 X 10% molecules /m? (so that the pressure is
1 atm) and € * /kzT = 10. For a heat flux of g = 10°
W /m? the correction is only of the order of 1077,
Thus such an estimation leads to a very small value
of this effect. However, for the same parameters as
above and a flux of ¢ = 10" W /m? the correction is
already of 0.34 or 34%. For €*/kzT= 100 and
g =10° W /m? the correction is of 29%. We think
that it may be illustrative to perform estimations also
in terms of the temperature gradient, since it is
usually easier to measure experimentally than the
heat flux. In order to perform these estimations, let
us first consider the first-order velocity distribution
function within information theory:

r=rO0 + e}, (32)

with f and ¢ given by Eqs. (4) and (16). This
distribution function is exactly the expression ob-
tained in Grad’s 13-moment method (see, e.g.,
[25,40]) for a fluid at rest with vanishing viscous
pressure tensor. Insertion of this distribution function
into the steady-state Boltzmann equation yields, as it
is well known [25,40], the Fourier law of heat con-
duction:

gd=—AVT, (33)
where A is the thermal conductivity coefficient. For
the model of hard spheres, according to Refs. [40] or
[37] we have:
75 k k
_ Dk JeT (34)
64 d° ¥V wm
In the problem considered in the present paper, we
have seen that it is necessary to make use of the
second-order distribution function (15) instead of the
first-order one (32). The above procedure {40] can be
generalized. We mean that instead of Eq. (32), Eq.
(15) can be used. Egs. (15)—(19) and (4) [instead of
Egs. (32), (4) and (16)] should be inserted into the
steady-state Boltzmann equation in this case. Then
additional terms would be obtained in the Fourier
law (33). It is straightforward to see that some of
these new terms depend on the spatial derivatives of
the components of the heat flux. Since we are inter-
ested in estimating the order of magnitude of the
effect, we will neglect such terms by assuming a
uniform heat flux, i.e. 8¢;/0x, = 0 for all values of i
and k. Then Eq. (33) is generalized into an expres-
sion which has the form:
oT X

q; /\ax[ +0(q%), (35)
where O(g?) stands for a (presumably small} correc-
tion to Fourier’s law depending on the square and
higher powers of the components of g. This correc-
tion can be found out explicitly, but we will not
derive it here because it is irrelevant for our problem.
We can see this by noting that the dependence of the
nonequilibrium correction (31) on the heat flux is of
the form ¢- ¢ =X, g7. On the other hand. according
to Eq. (35) we have that ¢, and AMdT/dx,) are of the
same order of magnitude. and we can thus write:

aT \*
67'5=):(A—) +0(q%). (36)

: ax,;
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where the O(g”) correction arises form the non-lin-
ear correction to the Fourier law in Eq. (35). It
would be inconsistent to include such a correction,
because Eq. (31) itself has been calculated including
only terms up to second order. Therefore, Eg. (31)
may be written as:

L@
C
PO S

vQ 15T ke
) I 7

+19] — | + —|. 3
kT | 4 (37)

We finally introduce two equations into Eq. (37):

100 T T T T T T T

90 A

80 |- b

60 - -

50 |- b

vd."y "p/.(o) (%)

40 - E

30+ -

10 .

0 L 1 1 ) L [
10 20 30 40 50 60 70 80 90

E/ky T
Fig. 1. Variation of the ratio v$/¢® (in percent), calculated
from Eq. (39), as a function of €” /kyT, for a dimensionless
temperature gradient of value (Z/T)¥T]=0.011. For T =300
K, n=2.687X10* molecules/m* and =100 m, this value
corresponds to a temperature gradient of 3.9 X 10® K /m.

I e 1
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10~2 A tahil P BN TY | _ L

107 10°® 102 107
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Fig. 2. Variation of the ratio v/ 1% (in percent) as a function

of the dimensionless temperature gradient (/ /TIVT| (for
€ /kyT =10, 40 and 100) calculated from Eq. (39),

Eq. (34) and the following equation for the mean
free path / [37],

1
= 38
V2 wnd® (38)

This yields the following expression:

l

-

{1} 2) Uc(i) 75w I ﬁT i 11 e’ |
+ TR e o e ——
T T 2ms \ T kT
0 A 39
+ +—1.
kT | 4 (39)

In order to make some estimations, let us assume the
values 7'=300 K, n=2.687 X 10* molecules /m’
(as before) and d=10"'° m, Then Eq. (39) yields,
for € /k,T= 10, an effect of 0.1% for WWT)=10%
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K/m and of 11.7% for [VT|=10" K/m. For
€’ /kyT =100, the effect is of 10% already for
IV T| = 10° K/m. In Figs. 1 and 2 we plot the effect
(39) as a function of the dimensionless temperature
gradient (T/1)" "V T| and of €* /kyT.

5. Discussion and concluding remarks

As mentioned in the introduction, many previous
papers have made use of Present’s cross-section (5)
in order to study different nonequilibrium effects on
the rate of chemical reaction. Most of the effects
(both on the reaction rate and on transport coeffi-
cients) have been predicted to be negligible, unless
fast reactions are considered [i.e., unless €~ /kyT is
small, see Eq. (7)]: most of the predicted effects are
negligible for € * /kgT > 5 [41-43,11). Such results
are easy to understand even intuitively, since only
fast enough reactions deform the distribution func-
tion appreciably. It should be emphasized that we
have analyzed here slow reactions. Slow reactions
cause negligible effects of deformation on the veloc-
ity distribution function. Such a deformation exists in
our case, but it is an effect due to the large tempera-
ture gradient only. We have shown that, for a given
value of the temperature gradient, the effect is higher
the slower the chemical reaction is (see Fig. 1).

We have shown that in the evaluation of the
nonequilibrium effect of the heat flux on the rate
constant of a bimolecular chemical reaction addi-
tional terms r® (in Ref. [17] only terms r'" were
analyzed) can play an important role. Namely, after
the expansion of the velocity distribution functions f
and f, in forms f=f[1 + ¢V + ¢ + ---] and
fi=rO1+ ¢+ ¢ + -- -] [see Eqgs. (15)-(19)]
we have derived results for r® obtained from the
terms ¢® and ¢! [see Egs. (25) and (26)] in
addition to the results for r"’ obtained from the
‘square terms’ ¢("'p{") analyzed in Ref. [17] [see Eq.
(24)]. This provides the method proposed in [17]
with a sound basis, in the sense that all contributions
up to second order have now been explicitly taken
into account.

It has been possible to obtain results for ¢* and
¢'? within the information theory approach, i.e.
within a statistical method based on the principle of
maximum entropy which is also the basic tool in

possible statistical-mechanical derivations of the fun-
damental equations used in extended irreversible
thermodynamics [25-28]. It should be emphasized
that the results for ¢'* and ¢{* have been obtained
within the same formalism as that recently used by
Dominguez and Jou to discuss the meaning of ther-
modynamic pressure in nonequilibrium systems [36].
The results obtained in such a way are more general
than those obtained from the linearized Boltzmann
equation. If we wanted to carry out a comparison
with kinetic theory, the distribution function used
here could only be compared with results obtained,
e.g., from the Burnett approximation in the Chap-
man—Enskog method of solution of the Boltzmann
equation. However, the expressions for ¢‘® obtained
within the Burnett approximation have complicated
forms and are difficult to derive. They are fairly
complicated even for the Maxwellian molecules [44].
An interesting possibility would be to make use of
the modified moment method [45]. On the other
hand, for the effect of chemical reaction on the
viscosity coefficient some small differences between
the results based on the Burnett approximation and
on the moment method have been observed [46,39,9].
It is worthwhile to observe that also in the analysis
of the effects of chemical reaction on diffusion in the
Lorentz gas, results obtained from the Résibois per-
turbation method [47-49] of solution of ths Boltz-
mann-Lorentz equation and those obtained from the
moment method are different [43,50,51].

It is very interesting that the results for r® are of
the same order of magnitude as those for ), but
they have an opposite sign (compare Figs. 1 and 2 in
this paper with figs. 3 an 4 in Ref. [17]). This means
that, contrary to the decrease of the rate of chemical
reaction (due to the heat flux), which was expected
in Ref. [17], we have here predicted the increase of
this rate, by means of an analysis that includes those
terms that, in spite of being important, were omitted
in [17]. When analyzing the total effect r = r" 4 r)
for Present’s model and for threshold energies
€ " /kyT smaller than 100, a value of the effect for r
of the order of 10% could be obtained at atmospheric
pressure for values of the heat flux smaller than 107
W ,/m? or for a temperature gradients smaller than
107 K /m (see the estimations performed under Eqs.
(31) and (39), as weli as Figs. 1 and 2). Previously to
our work, Nettleton [31] has already carried out
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estimations of the same effect by following a differ-
ent method. Making use of information theory (which
has also been used here), the integrability conditions
of the Helmbholtz free energy and the assumption that
the mean free path depends only on the molecular
configuration, Nettleton [31] has been able to make
estimations without assuming a specific cross-sec-
tion. For the reaction D, + HCl = DH + DCI, he
obtained an effect of 1% for a heat flux of the order
of 10* W/m? (corresponding to a temperature gra-
dient of the order of 10° K/m), a pressure of 0.01
atm and 7= 600 K (such values of the pressure and
temperature correspond to a lower value of »n than
the one considered in the previous estimations in the
present paper). In order to compare his results with
those presented here, let us assume these same val-
ues for the heat flux, pressure and temperature, and
also m = 1072° kg (which is the order of magnitude
for the molecular masses in the above reaction [31]).
Whereas Nettleton’s results were derived without
making use Present’s cross-section (5), in order to
make use of our results we need a value for € “. For
the well-analyzed pyrolisis reaction HI + HI — H,
+ I, (which is the same reaction as the one already
used for estimations in [17] and [52]), we have
€ /kgT=7372 for T=600 K. Similar values for
the activation energy have been measured for many
reactions. Then Eq. (31) yields an effect of 2%. This
result is very similar to the value of 1% estimated by
Nettleton: it is very encouraging that the estimations
in [31] and in the present paper agree concerning the
order of magnitude of the minimum heat flux (or
temperature gradient) for the effect to be appreciable.
Naturally, we share the opinion of Nettleton that the
effects predicted are too small to be measured in
readily attainable laboratory conditions and that such
effects could be studied by means of computer simu-
lations. It may also be mentioned that in the case of
strong shock waves even temperature gradients of
the order of 10® K /m appear [53-56]. However, the
theoretical results here derived cannot be directly
compared with experimental data obtained from
shock-wave [54] or ultrasound [57] chemistry since
velocity gradients are certainly very large in such
situations. Thus in future work we plan to tackle the
mathematically more complicated problem of the
joint effect of the heat flux and the pressure tensor
on the rate of chemical reaction. An analysis, similar

to the one in [31], but concerning the effect of the
pressure tensor, has already been presented [32]. It is
also important to stress that the distribution function
proposed in [38] could be used instead of the
Dominguez—Jou distribution (15)-(19), and it would
be very interesting to see to what extent the order of
magnitude of the results is affected. We think that it
is possible, in principle, that such further studies may
ultimately lead to the experimental checking of theo-
retical predictions of the effect of dissipative fluxes
on the rate of chemical reactions. But in view of the
fact that this seems to require very strong nonequi-
librium situations, it would be also worth to make
use of computer simulations: they have already been
very useful in the analysis of chemical nonequilib-
rium effects (see, e.g.. [10], [12], [58], [14] and
references therein).

It is of interest to comment briefly the dependence
of the effect analyzed here on the density. In princi-
ple, the effect is higher for low densities [see Eq.
(31) or Eq. (37)]. However, as it has been stressed
before [31], low densities imply that higher-order
terms in the distribution function become important
[59] and they also make it more difficult to measure
v!) itself [see Eq. (7)), unless a fast reaction were
assumed, which would in turn increase the impor-
tance of the deformation in the distribution function
due to the proceeding of the chemical reaction (2).

Finally, we would like to place the results in this
paper into a thermodynamical, rather general per-
spective. After the seminal papers [60], which were
the starting point of Extended Irreversible Thermo-
dynamics, a patient search was undertaken for ob-
servable second-order effects that could provide tests
for this theory. Both on the basis of extended ther-
modynamics and information theory [61], it was
concluded that very high values of the heat flux
would be necessary (more recent results support such
a conclusion [38,59]: no observable at all effects are
predicted for heat fluxes up to 10° W/m’). This
lead to the search for effects in which chemical
reactions, in addition to heat or other fluxes, appear.
In such cases the predicted effects are higher than in
the absence of chemical reactions [30,29]. The pre-
sent paper can thus be seen as part of the search for
second-order effects, which are characteristic, from a
thermodynamical point of view, of the extended
theory. Because rather high values of the fluxes are
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necessary even when dealing with chemical reactions
([29-32] and the present paper), and because of the
problems that arise at low densities (see the previous
paragraph), it has been recommended that it may be
more convenient to consider such effects in liquids
rather than in gases [31,32].

Just to summarize, using non-linear terms in the
solution of the Boltzmann equation we have derived
formulae which show that the rate of bimolecular
chemical reaction in a gas phase can be fairly in-
creased if the temperature gradient and correspond-
ing heat flux are large.
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