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We propose an approximate method to obtain the speed of wavefronts. It is
built up from a known variational principle. For a range of systems of biologi-
cal and physical interest, comparison to previously-known solutions and to
numerical simulations shows the powerfulness of our approximate technique.
For time-delayed equations, we also propose an alternative approximate solu-
tion, based on the renormalization group approach, and we compare both
approximations.

KEY WORDS: Wavefronts; speed selection; variational principles; time-delayed
diffusion.

1. INTRODUCTION

Reaction-diffusion wavefronts are ubiquitous in nature. One usually mea-
sures their asymptotic propagation speed and compares this experimental
value to that predicted theoretically. This comparison between theory and
experiment is performed not only in many physical contexts such as com-
bustion fronts (1) but also in biological applications such as epidemics
spread (2) and population invasions. (3) In Section 2, we present a detailed
explanation of an approximate approach which we propose for this front
speed problem. In Section 3, we compare the results of our method to some
known solutions for the speed of fronts. Finally, Section 4 is devoted to
wavefronts without analytically known speed, for which we compare our
approximate analytical method to numerical simulations. For time-delayed



diffusion, in Section 4 we also introduce another, alternative approximate
solution, and we compare both of our approximations to the results of the
numerical simulations.

2. FRONT SPEED PROBLEM

Consider a typical reaction-diffusion equation of the form

“tr=“xxr+f(r) (1)

where r(x, t) is a time-dependent field (particle number density, charge
density, temperature, etc.), usually defined such that r=0 and r=1 cor-
respond to an unstable and stable roots of the nonlinear function f(r),
respectively. By using the appropriate temporal and spatial variables (t and
x respectively), Eq. (1) is used very often to describe the evolution of mass,
energy or electric charge, which diffuses through the system under consid-
eration (first term in the right-hand side) and is also produced due to a
source process such as a chemical reaction or the reproduction of a living
species (second term in the right-hand side). Let us define z — x−ct, where
c > 0 is the speed of solutions r(x, t) that depend on x and t through z
only, and such that they connect the two steady states with limzQ −. r=1
and limzQ. r=0. Then, from Eq. (1) we obtain a differential equation
without partial derivatives,

rzz+crz+f(r)=0 (2)

the solution of which is known to satisfy the Benguria–Depassier principle,
namely (4)

c=max
g

52 >
1
0 `fgh dr

>10 g dr
6 (3)

where g(z) > 0 satisfies the inequality h — −dg/dr > 0, and moreover (4)

f
g
p
=hp (4)

with p — −rz. As it stands, Eq. (3) is not enough in general to determine c
with precision, because we do not know the function g(z) such that the
maximum is attained in the right hand side of Eq. (3). Therefore, we look
for an approximate way to determine such a function g(z) as follows. Since
limzQ −. r=1 and limzQ. r=0, we may assume that p > 0 for all values
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of z, and that r is a slowly varying function of z for high enough values of
|z|, i.e.,

rzz ° rz (5)

thus Eq. (2) yields

crz+f(r) 4 0

and, from the definition of p(z),

p — −rz 4 f/c (6)

This is not an exact result, so that we may introduce a such that

p — f(r)/a (7)

On the other hand, from Eq. (4), g=hp2/f and since h — −dg/dr, we
may integrate and obtain

g(r)=exp 5−F f
p2
dr6 (8)

For a given source function f(r) in the reaction-diffusion equation
(1), our method proceeds as follows. First, we obtain g(r) from Eq. (8). In
principle p is given by Eq. (7) with the exact source function f(r) but in
practice, we will use an approximate f(r) in Eq. (7), such that it vanishes
at r=0, 1 and that the integral (8) can be performed analytically. After
one has obtained an approximate g(z) from Eq. (8), it will become possible
to derive an approximate value for c by using Eqs. (3) and (4),

c=max
a

52 >
1
0 (fg/p) dr
>10 g dr
6 (9)

where the maximization is no longer over all arbitrary functions g (because
an expression for g is now known from Eq. (8)), but over the parameter a,
on which g depends through p (see Eq. (7)). Of course, a is such that the
integrals in Eq. (9) exist.
We illustrate this procedure below. Before doing so, it is worth to note

the following remarks.

(i) a multiplicative constant could have been included in Eq. (8), but
according to Eq. (9) it would not affect the prediction for the wavefront
speed c.
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(ii) the exact function p — −rz vanishes at rQ 1 and rQ 0. We will
always find p by choosing an approximate source function f in (7) such
that it vanishes at r=0, 1: then, the leading contributions to the integral in
the numerator of Eq. (9) come from r 4 1 and r 4 0, which are precisely
the ranges where our approximation (6) holds.

3. COMPARISON TO EXACT SOLUTIONS FOR THE SPEED

For illustration purposes, in this section we briefly compare our ana-
lytical approach with some solutions for the speed which have appeared in
the literature.

3.1. Cubic Model

The cubic model

f=
r(1−r)(r+b)

b
(10)

has been used in genetics (5) and analyzed by Ben-Jacob. (6) In this case, after
taking into account the remarks in the previous section, we see that we may
use

p=f/a 4 r(1−r)/a (11)

and we obtain from Eq. (8) that

g=r−a
2
(1−r)a

2/b+a2 (12)

Making use of Eqs. (10)–(12), we find

F
1

0
g dr=

C(1−a2) C(a2+a
2

b+1)

C(2+a
2

b )

and

F
1

0

fg
p
dr=

a

b
5C(2−a

2) C(a2+a
2

b+1)

C(3+a
2

b )
+b F

1

0
g dr6
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where C is the gamma function, and the integrals have been solved with the
use of formula (3.191) in ref. 7. These integrals exist if a < 1. (7) From this,
Eq. (9) and the well-known relationship C(x+1)=xC(x), we obtain

c 4 2(2b+1) max
0 < a < 1

a(2b+a2)−1

which yields

c 4 (2b)1/2+(2b)−1/2 (13)

The maximum is attained for a=`2b < 1, so this result holds for
0 < b < 1/2. Previous work derived Eq. (13) on the basis of an exact solu-
tion r(z) to the reaction-diffusion equation (1). However, such exact pro-
files r(z) do not determine all possible solutions and often do not give the
most relevant one, since in general they do not travel with the speed truly
selected by fronts (see ref. 10, p. 289, where this is explicitly shown for
Fisher fronts). This is why Ben-Jacob and coauthors argued that Eq. (13) is
a special value of the wavefront speed c. (6) In contrast, in our derivation
above we have not needed a specific function r(z), so that our method
shows that Eq. (13) is the speed of fronts evolving according to Eqs. (1)
and (10).

3.2. Bistable Systems

The so-called bistable systems are characterized by two stable states
and an unstable one. The reaction term is given by

f=r(1−r)(r−a)

which has been applied to the study of nerve conduction. (8) In this case,
there is an exact solution for Eq. (1) which has been derived in ref. 9.
However, as mentioned above exact solutions do not include all possible
solutions and thus do not allow to find the true speed selected by the front
in general. (10) Let us derive the speed by means of our approximate method.
Then, we do not need an exact solution for Eq. (1). We have

p=f/a 4 r(1−r)/a

and (8) yields g=raa
2
(1−r) (1−a) a

2
, which used into Eq. (9) leads us, after

integration, to

c 4 2(1−2a)max
a > 0
a(2+a2)−1=

1

`2
−a`2
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which coincides with the result in ref. 9. In the formalism presented in
Section 2, we have assumed that a positive wavefront speed, c > 0.This will
hold provided that a < 1/2.

3.3. Higher Power-Law Growth

The reaction term

f=rq+1(1−rq)

has a known analytical known solution with speed c=1/`1+q. (10) Taking

p=f/a 4 r(1−rq)/a

and using the new variable u — rq, we can solve the integrals in Eq. (8) and
obtain g=(1−rq)a

2/q, which used into Eq. (9) yields

c 4max
a > 0
2a/(1+q+a2)=1/`1+q

where the maximum is reached for a=`1+q, and the speed above coin-
cides with that from the exact solution found in ref. 10.

3.4. The Ginzburg–Landau (G-L) Equation

G-L equations are very useful in the analysis of superconducting
fronts. (11) The G-L equation

fzz+cfz+(1−f2)(a+f)=0

has been widely used in the literature and recently in ref. 12. In this equa-
tion the wavefront propagates into a metastable state and satisfies the
boundary conditions f(zQ ±.)=±1. Calling r=(1−f)/2 one finds

rzz+crz+2r(1−r)(2r−(1+a))=0

where r(zQ ±.)=0, 1. In this case

p=f/a 4 r(1−r)/a

and one obtains from Eq. (8) g=r2a
2(1+a)(1−r)2a

2(1−a) and Eq. (9) yields

c 4max
a
[−4aa/(1+2a2)]=a`2
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which agrees with the result given in ref. 12. The integrals in Eq. (9) exist
for a2 > a2− 12 ,

(7) and the maximum is attained for a=−1/`2. Combining
both conditions, we find that the result obtained for the front speed c holds
if a2 < 1/2.

3.5. Schlogl’s Second Model

This is a model for chemical reactions (13) and is given by

fzz+cfz+(1−f)(f−f+)(f−f−)=0

where f±=1±`1− c and 1 [ f [ f+. Calling r=(f−1)/(1−f+) one
gets

rzz+crz+(1− c) r(1−r)(1+r)=0

In this case,

p=f/a 4 r(1−r)/a

and one obtains from Eq. (8) g=r−a
2(1− c)(1−r)2a

2(1− c). After solving the
integrals in Eq. (9), we find

c 4 6(1− c) max
a
[a/{2+a2(1− c)}]

=3`(1− c)/2

which is the exact result in ref. 13.

4. COMPARISON TO NUMERICAL SIMULATIONS

In the previous section, we have shown that our method makes it pos-
sible to derive some analytical results for the front speed in a variety of
systems. In contrast to the usual methods, we have not used any exact
solution for the front profile r(z). We stress that this is important, because
in general exact solutions do not have the true speed selected by the
front. (10) We illustrate in this section how our method works on systems
which have no known exact solutions, and we will also compare with the
results for the front speed obtained from numerical integrations of the
reaction-diffusion equation (1).
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4.1. Forest Fires

In the case of chemical reactions of the form

nB+GQ (n+1) B (14)

the source function for the population number density of species B (rB — r
in Eq. (1)) is

f(r)=rn(1−r) (15)

where we have considered that the total number density is a constant,
which has been normalized (rB+rG=1). The source term in (15) has been
applied to the analysis of the spread of forest fires (14, 15) (then, B in Eq. (14)
represents burning trees which set fire to green trees G). Since we are
looking for solutions such that rQ 1 for zQ −. and rQ 0 for zQ., for
large enough values of |z| we see that r(z) is a slowly varying function of z
and

p 4 f/a=rn(1−r)/a 4 r(1−r)/a

This approximate trial function allows us to apply the Benguria–
Depassier principle (3) as

c 4max
a ¥D

12a >
1
0 r

n−1g dr
>10 g dr
2 (16)

where D is the set of positive values of a such that the integrals in (16) exist
and g is given, from Eq. (8), by

g=exp 1 −a2 F r
n−2

1−r
dr2

From this and Eq. (16) it is easy to find out c numerically for any
value of the order parameter n in the kinetic mechanism (14). Previously,
only the well-known cases n=1 and n=2 had been solved exactly, (10)

whereas for n > 2 only lower and upper bounds had been derived. The
expressions for the lower and upper bounds are (16)

cL=max
a ¥ (0, 1)

2a`1−a C(n/2+a−1/2) C(3/2)

C(n/2+a+1)
(17)
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Fig. 1. Predictions for the speed of wavefront solutions to Eq. (1) for f(r)=rn(1−r). The
dashed-dotted and dashed curves are lower and upper bounds, respectively, Eqs. (17)–(18),
both of them predicted previously from the Benguria–Depassier approach. (16) The full curve is
the prediction (16) derived in the text, and the black circles are the results of numerical simu-
lations.

and

cU=2 1
n−1
n+1
2
n−1
2

(18)

In Fig. 1 we see that our new result (16) clearly improves these
bounds, and gives very accurate values for the speed. Finally, we may note
from Fig. 1 that c decreases for increasing values of n. This was to be
expected intuitively since a higher value of n may be understood from the
reaction scheme (14) as a higher number of burning trees required to set
fire to a nearby green tree, which should reduce the propagation speed c of
the fire.

4.2. Chemical Kinetics

Let us now study the model for chemical kinetics

nA+mBQ (n+m) A (19)
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The source function is in this case

f(r)=rn(1−r)m (20)

which generalizes the case of forest fires, considered above, and has been
applied to the spread of microorganisms. (17) For the sake of simplicity we
study the case n=2, that is, f=r2(1−r)m. Thus we have

p=f/a 4 r(1−r)/a (21)

From Eqs. (8) and (9) we find

g=exp 5 a
2

m−1
(1−r)m−16

and

c 4max
a
2 5a >

1
0 r(1−r)

−1 g dr
>10 g dr

6 (22)

As mentioned above, in previous papers the Benguria–Depassier principle
had been used to derive lower and upper bounds for the speed. By follow-
ing exactly the same procedure as in ref. 15, those bounds can be easily
derived for the source function considered now (f=r2(1−r)m),

cL=max
a

52a`1−a C(a+1/2) C(m/2+1)
C(m/2+a+3/2)

6

cU=2[ sup
r ¥ (0, 1)

{r(1−r)m−1[2−(m+2) r]}]1/2

We use these bounds in order to illustrate, in Fig. 2, the differences
between the results from the procedure in the present paper (which yields
a specific, albeit approximate value for the speed, namely the full line in
Fig. 2) and the approach in ref. 15 (which allows only to derive the lower
and upper bounds [cL and cU above] for the speed, i.e., the broken curves
in Fig. 2). From Fig. 2 we see that our new result (22) clearly improves the
upper and lower bounds, and that good agreement with the results of
numerical simulations is attained. The value of c decreases for increasing
values of m, as was to be expected because more B molecules are needed in
the chemical reaction (19), so that the reaction speed (20) diminishes for
increasing values of m (recall that 0 < r < 1, and that the same reason
explains the effect of parameter n appearing in Eq. (15)).We may also note
that our approximate result (full line in Fig. 2) is less precise the higher the
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Fig. 2. Comparison between upper and lower bounds, numerical simulations and the pre-
diction from our approximate method for chemical kinetics with f(r)=r2(1−r)m.

value of m is. This could have been expected since for the case considered
(n=2), the approximation (21) is less precise the larger the value of m is.

4.3. Time-Delayed Reaction-Diffusion

In many biological and physical applications, such as population
invasions (3) and flame propagation, (1) the following time-delayed reaction-
diffusion equation arises (14, 15, 18)

a “ttr+“tr=“xxr+f(r)+af −(r) “tr (23)

where a < 1 is the dimensionless delay time. Let us here consider for defi-
niteness, e.g., the case

f=r2(1−r) (24)

This source function is chosen for illustrative purposes, and it is easy to
perform the analysis below for other forms of the source function. It has
been already analyzed by means of variational methods in ref. 15, where
lower and upper bounds for the front speed have been obtained. On the
other hand, an approximated method, analogous to that developed in
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Section 2 in the present paper, has been recently constructed (21) for the time-
delayed case [Eq. (23)] instead of the classical case [Eq. (1)]. It is very
easy to see that the approach in ref. 21 yields for the case corresponding to
Eq. (24)

c=s/`1+as2 (25)

where

s=max
b

32`b >10 gr[1−a(2r−3r2)] dr
>10 g[1−a(2r−3r2)] dr

4 (26)

and

g=(1−r)b(1+a)
2
exp 59

4
a2br4−a2br3+

a2+6a
2
br2+a(a+2) br6 (27)

The validity of the methods in refs. 15 and 21 for different values of
the delay parameter a has not been analyzed. This will be done below, but
let us first use the Renormalization Group (RG) technique so that we can
thereafter compare the advantages and drawbacks of the different methods.
The RG technique has been never applied previously to time-delayed
equations. In order to do so, we will treat the reduced delay a as a small-
ness parameter, so that it introduces a small perturbation to the usual,
nondelayed equation (1). Thus, in the present paper we are treating the
hyperbolic reaction-diffusion equation (23) as a perturbation of the para-
bolic equation (1). This is indeed reasonable, because Eq. (23) is a first-
order approximation to the full time-delayed equation (18, 3) and, on the
other hand, the RG technique is nothing but a first-order approach to the
problem “tr=N(r), with N(r) an arbitrary differential operator, which
yields (19, 20)

c 4 c0+dc (28)

where (19, 20)

dc=−
F
+.

−.
dz w(z)

dr0
dz
dN{r0}

F
+.

−.
dz w(z)1dr0

dz
22

(29)
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with w(z) an appropriate weight function (as explained below), and c0 the
speed of the unperturbed front r0(z), which in our case satisfies from
Eqs. (23) and (24) for a=0,

“tr0=“xxr0+r
2
0(1−r0)

It is easily seen that this equation has a solution with the profile

r0(z)=
1

1+ez/`2

where z=x−c0t and c0=1/`2. The perturbation operator is easily
found,

dN{r0} —N{r0}−Na=0{r0}

=a[f −(r0) “tr0−“ttr0]

=a 5−c0(2−3r0) r0
dr0
dz
−c20

d2r0
dz2
6

Then, by choosing the weight function w(r)=ez/`2 we ensure the conver-
gence of the integrals, and Eqs. (28)–(29) yield after integration

cRG 4
1

`2
−
`2

40
a+O(a2) (30)

In Fig. 3 we compare the results of numerical simulations of Eq. (23)
to those from the approximate method (Eq. (25)), from the RG approach
(Eq. (30)), and also with the lower and upper bounds known from a varia-
tional principle. (15) The agreement of the approximate method with the
numerical simulations is clear again. The speed decreases for increasing
delay time, as was to be expected intuitively. It is not surprising that the
RG approach becomes less reliable at higher delays, whereas the approxi-
mate method does not, since the RG approach is a first-order approxima-
tion valid only for small enough delays [see Eq. (30)]. However, since in
most applications a < 1, (22) the RG technique is rather accurate even for
relatively high delays (see Fig. 3), which makes it appealing because it gives
a simple result [Eq. (30)] that is much more easy and practical to handle
than that of our approximate method [Eqs. (25)–(27)]. Moreover, as men-
tioned above, the derivations of Eq. (23) show that it is in fact valid for low
values of a only. (18, 3) It means that a very precise determination of the
speed, such as that given by Eqs. (25)–(27), will not hold for high values
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Fig. 3. Time-delayed diffusion. Dots are from numerical simulations. The full line is the
approximate prediction (25), whereas the dashed one is our new RG prediction (30). It is seen
that both methods remain accurate for rather high delays. The dotted line is the upper bound.
The lower bound (not shown) yields c > 0.46.

of a because the corresponding differential equation (23) breaks down
itself. This again lead us to argue that our new result (30) is more interest-
ing in practice than the alternative result (25). However, this conclusion
holds only for time-delayed equations. For nondelayed reaction-diffusion,
the RG approach cannot be applied in most cases, because of the abscence
of an smallness parameter in general. Then, the approximate method pre-
sented in Section 2 is very useful (see Figs. 1 and 2).

5. CONCLUSIONS

We have dealt with the problem of the determination of the speed of
wavefront solutions to reaction-diffusion equations. We have applied an
approximate method, presented in Section 2, to a variety of source terms of
practical interest. In Section 3, we have shown that our approach makes it
possible to derive some analytical results that were previously known from
other methods. The examples in Section 3 are also very useful from a more
practical perspective, since they help to get used to the way in which cal-
culations and approximations are carried out within our method, before
one tries to apply it to more complicated cases (such as those in Section 3).
However, it is also important that Section 3 shows very clearly how our
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technique makes an exact solution r(z) unnecessary. In Section 4 we have
tackled several problems for which analytical results are not known, so our
method has been checked by means of numerical simulations. In Sec-
tion 4.1, we have considered a source function which has been used in
forest fire research, showing that our method is more accurate than pre-
vious ones, which had made it possible to find only upper and lower
bounds for the speed (Fig. 1). In Section 4.2, we have considered a chemi-
cal kinetics model, which has been used in microbiology, and for which our
method again improves previously-known bounds (Fig. 2). Finally, in
Section 4.3 the renormalization group (RG) approach has been applied for
the first time to the case of time-delayed equations, and its results have
been compared to those of the time-delayed analog to our approximate
method (Fig. 3). Obviously, the RG approach has not been applied to the
examples in Sections 4.1 and 4.2 because in general no smallness parameter
(analog to the delay a in Section 4.3) appears in those cases. It is very
interesting, though, that for time-delayed equations our new alternative
approach (based on the RG technique) is likely to become more useful in
practice than the approximate variational approach, in spite of being less
accurate for high values of the delay time.
Our work can also be useful, by proceeding analogously, to determine

the speed of reaction-diffusion fronts for other source terms and reaction-
diffusion equations of physical or biological importance.
Variational principles have been succesfully applied to the front speed

problem for some time. Chen’s trial functions made the Hadeler–Rothe
principle practically usable (see Section 6 in the second paper cited under
ref. 20). The Benguria–Depassier (BD) principle (4) was another major
advance in this line of research. Our procedure is based on the BD theory;
however, it goes further by making an additional approximation which
allows to determine the trial function g explicitly; in contrast, in previous
work one had to choose several functions g until acceptable (and often less
accurate) bounds on the speed were derived.
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