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A Comparison Between Information-Theoretic and
Phenomenological Descriptions of Nonequilibrium
Radiation
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We present two approaches to the description of nonequilibrium radiation. The
first approach is based on information statistical theory, whereas the second one
is based on the hypothesis of radiative local thermodynamic equilibrium
(RLTE). Both methods are applied to describe the radiation inside an infinite
medium where a uniform temperature gradient has been established. The absorp-
tion coefficient is allowed to be frequency dependent. It is found that both
approaches cannot be consistent beyond the first-order approximation. We argue
that this shows the limitations of existing models of radiative transfer based on
information theory.

KEY WORDS: Radiative transfer; information theory; local thermodynamic
equilibrium.

I. INTRODUCTION

Equilibrium thermodynamics(1) is consistent with the results of equilibrium
statistical physics(2) and also with those from kinetic theories(3) in the
special case of equilibrium. Similarly, the analysis of near-equilibrium matter
systems is well-established at present because consistent results follow from
the near-equilibrium extensions of the three methods we have mentioned
(namely, local-equilibrium irreversible thermodynamics, (4, 5) nonequilibrium
information statistical theory(6, 7) and Chapman�Enskog kinetic-theoretical
approaches(3)). Such results have been checked to be in agreement with
experimental measurements for a variety of situations, including conductive
and convective heat transfer, diffusion, viscous flow, electrical conduction,
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etc.(3, 8) However, for the case of radiative transfer the situation is very
different. A well-established nonequilibrium radiation distribution function
that has been tested in the laboratory does not seem to be available at pre-
sent. It is therefore important to analyze this topic by means of different
approaches in order to evaluate the validity of the hypothesis and sim-
plifications used in each case. Furthermore, the distribution must be valid
in conditions attainable in real material systems so that the experimental
verification could be envisaged.

The main purpose of the present paper is to present two different ways
to determine the distribution function of nonequilibrium radiation and to
compare their results. Both methods will be applied to solve the simplest
non-equilibrium situation one can imagine, namely an infinite medium with
a uniform temperature gradient and at a steady state. In Section II, we
make uses of information statistical theory. In Section III, we apply a phe-
nomenological approach based on the hypothesis of radiative local thermo-
dynamical equilibrium (RLTE). No specific hypothesis will be made upon
the nature of the material subsystem. Its interaction with the radiation sub-
system will be characterized by its absorption coefficient. An arbitrary
dependence of the absorption coefficient on the photon energy will be
allowed. The intensity of radiation will be calculated up to second order
in a perturbative expansion on powers of the temperature gradient. The
results given by both approaches are compared in Section IV. Finally,
Section V is devoted to some concluding remarks.

II. INFORMATION STATISTICAL THEORY

Information statistical theory was derived by Jaynes, (9) who was
motivated by the desire to free statistical physics from its often apparent,
misleading dependence on specific mechanical models. A compelling check
of the applicability of information theory to nonequilibrium states is that
it provides a derivation for the near-equilibrium, first-order distribution
function of matter under heat conduction and�or convection, (6, 7) and the
result thus derived is the same as that obtained from the Grad kinetic
theory, (10, 11) which in turn coincides (for sufficiently slow phenomena) with
that derived by means of the Chapman�Enskog approach.(3)

In order to apply information theory, we begin by considering the
entropy density of photons with momentum in a differential dpr (centered
at pr), divided by ( p2

r dpr). This can be written as (2)

S� pr
=

2k
h3 |

4?
d0[(1+ fr) ln(1+ fr)& fr ln fr] (1)
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where d0 is a differential of solid angle (i.e., d 3pr= p2
r dpr d0= p2

r dpr_
sin % d% d.), fr( p� r) is the momentum distribution function of radiation, k is
the Boltzmann constant and h is the Planck constant. Equation (1) is valid
both in equilibrium and in nonequilibrium states.(2) The energy density and
energy flux, both of them divided by ( p2

r dpr), of the same photons as those
considered above, are

U� pr
=

2
h3 |

4?
d0 prcfr (2)

F9 pr
=

2
h3 |

4?
d0 prcc� fr (3)

respectively. Here c� is the photon velocity and c=|c� | is the speed of light
in vacuo. We apply information statistical theory(9) by maximizing the
entropy density (1) under the constraints of fixed values of U� pr

and F9 pr
. As

it is always done in information theory, we follow the standard procedure
from the textbooks on Calculus(12) by defining the function

8( fr , ;pr
, #pr

)=S� pr
&;pr \2k

h3 |
4?

d0 prcfr&kU� pr +
&#� pr

} \&
2k
h3 |

4?
d0 prcc� fr+kF9 pr+

with ;pr
and #� pr

Lagrange multipliers, and requiring that �8��fr=0. This
yields the radiation distribution

fr IST=
1

exp[;pr
prc&#� pr

} pr cc� ]&1
(4)

where the subindex IST denotes that this result has been obtained by
means of information statistical theory (note that we have obtained a
negative sign in front of #� pr

by writting the constraint (3) in 8( fr , ;pr
, #pr

)
appropriately-this will make comparison to previous work simpler). A dis-
tribution function of the form (4) was first derived by Minerbo.(13) Other
authors(14) did not consider the spectral quantities (1)�(3) but the corre-
sponding ones integrated over pr , which allowed them to introduce pr��
independent multipliers ; and #� . In ref. 15 it was shown that this also
allows to identify ; and #� in terms of measurable quantities, but assuming
a very specific system, namely one such that: (i) the absorption of radiation
by matter is frequency-independent (grey approximation); and (ii) the mat-
ter part is a classical ideal gas. In this section, we shall extend the statistical
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derivation in ref. 15 to an arbitrary matter content of the system: (i) the
grey approximation will be dropped; and (ii) a classical ideal gas for the
matter part will be no longer assumed. A general approach, such as the one
presented below, is appealing not only conceptually but also because it is
realistic in the sense that for most materials the dependence of the optical
absorption on the radiation frequency is important. Moreover, very few
materials behave as an ideal gas.

In order to identify the Lagrange multipliers ;pr
and #� pr

, we begin by
finding out the differential of the radiation entropy density. Equations
(1)�(4) yield

dS� pr
=

2k
h3 |

4?
d0

d
dfr

((1+ fr) ln(1+ fr)& fr ln fr) dfr

=k;pr
dU� pr

&k#� pr
} dF9 pr

(5)

We can write the spectral entropy and energy densities as

S� pr
=\Spr (6)

U� pr
=\Upr

where \ is the matter density. Spr
and Upr

are the spectral entropy and
energy of radiation, respectively, both of them per unit mass of matter in
the system. The differential of the spectral specific entropy is

dSpr
=k;pr

dUpr
&

k
\

#� pr
} dF9 pr

+(\Spr
&k\;pr

Upr
) d" (7)

where "=1�\ is the specific volume. We denote the spectral temperature of
radiation by Tpr

. From its thermodynamical definition, namely(7)

1
Tpr

#
�Spr

�Upr

(8)

and the extended Gibbs equation (7) we identify the Lagrange multiplier
;pr

as

;pr
=

1
kTpr

(9)

According to these results, the temperature of radiation is a spectral func-
tion, i.e., it depends on the photon momentum. This was pointed out by
Planck(16) and Landau and Lifshitz.(2)
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We still have to relate the other multiplier that appears in the radia-
tion distribution (4), namely #� pr

, to thermodynamical quantities. In order
to do so, we consider the radiative transfer equation(17, 18)

1
c

�I&

�t
+0� } {9 I&=&_&I&+=& (10)

where 0� #c� �c. Here _& and =& are, respectively, the absorption coefficient
and the emissivity and will in general depend on the radiation frequency &.
The emissivity is taken independent on the intensity, i.e., we discard any
kind of stimulated emission. This is valid unless the intensity is very high.
The transfer equation (10) is used in all treatises on radiative transfer, (17, 18)

and it simply states that the change in the intensity I& in the 0� direction
(between two space-time points separated by a time interval dt and by a
position vector 0� c dt) is due to the absorption and emission processes. The
meaning of this equation can also be understood as follows. The intensity
(per unit solid angle) of radiation is related to the photon distribution
function through19

I&=
2h&3

c2 fr (11)

so that multiplication of the transfer equation (10) by c�(hp2
r ) and use of

Eqs. (2) and (3) yields

�U� pr

�t
+{9 } F9 pr

=&_&cU� pr
+=pr

(12)

where =pr
#c=& �hp2

r . We see that the radiative transfer Eq. (10) yields
Eq. (12), which after integration over an arbitrary volume states that the
rate of change of the energy of radiation is due to the flux of photons enter-
ing (and leaving) the volume considered as well as to the absorption and
emission of radiation within it.

Since our main aim in the present paper is to compare the results of
information theory with those following from a near-equilibrium phenome-
nological approach (Section III), we restrict our attention to near-equi-
librium states. Because the equilibrium (or Planckian) distribution corre-
sponds to Eq. (4) with #� pr

=0, we assume (analogously to the wellknown
procedure in the information-theoretical approach to heat conduction in
ideal matter gases) (7) that near-equilibrium states correspond to small
values of #� pr

, an ansatz to be checked a posteriori. By performing a
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MacLaurin expansion of the distribution (4) up to second order in #� pr
we

obtain

fr IST=
1

exp['pr
]&1 \1+

exp['pr
]

exp['pr
]&1

prcc� } #� pr

+
exp['pr

](exp['pr
]+1)

2(exp['pr
]&1)2 p2

r c2(c� } #� pr
)2+ (13)

where 'pr
#prc�kTpr

and use has been made of Eq. (9). From Eq. (11), we
can rewrite Eq. (13) as

I& IST=
2h&3

c2

1
exp['pr

]&1 \1+h&
exp['pr

]

exp['pr
]&1

(c� } #� pr
)

+
h2&2

2

exp['pr
](exp['pr

]+1)

(exp['pr
]&1)2 (c� } #� pr

)2+ (14)

and we may write 'pr
=h&�kTpr

since the energy of a photon is prc=h&.
If the system is in a steady state, multiplication of the radiative transfer

equation (10) by c� �c and integration over all solid angles yields

|
4?

d0 \c�
c

} {9 I&+ c�
c

=&_& |
4?

d0 I&
c�
c

(15)

where d0 is a differential of solid angle (in polar coordinates, d0=sin % d% d.).
In order to obtain simple expressions, let us assume that the temperature
gradient is uniform. There are several ways of finding out #� pr

. The simplest
one is the following. In previous work it was found that this multiplier can
be written as #� =&{9 T�_ckT 2 for grey materials with absorption coefficient
_ (see Eqs. (12), (20) and (38) in ref. 15). This was derived under the ad
hoc assumption that a common temperature T could be shared by matter
and radiation. Since we are looking for the generalization of this result to
nongrey materials (i.e., to materials with a frequency-dependent absorption
coefficient _&) interacting with radiation with spectral temperature Tpr

, it
seems reasonable to expect that its simplest generalization to the case here
considered, namely

#� pr
=&

{9 Tpr

_&ckT 2
pr

(16)
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is the proper result. Indeed, in the Appendix we show that this expression
is the solution to Eq. (15) implied by the information-theoretical intensity
(14), up to second-order in the temperature gradient.

We make use of Eq. (16) into the intensity (14),

I& IST=I& Planck(1+,(1)+,(2)) (17)

where

I& Planck=
2h&3

c2

1
exp['pr

]&1
(18)

is the Planck intensity with temperature Tpr
, and the first- and second-

order nonequilibrium corrections are, according to information statistical
theory,

, (1)
IST=&

'pr

_&Tpr

exp['pr
]

exp['pr
]&1

(0� } {9 Tpr
) (19)

, (2)
IST=

'2
pr

2_2
& T 2

pr

exp['pr
](exp['pr

]+1)

(exp['pr
]&1)2 (0� } {9 Tpr

)2 (20)

The nonequilibrium intensity (17) corresponds��according to the
approach followed in this section��to thermal radiation emitted by near-
equilibrium matter systems. This means that radiation due to other emis-
sion processes (e.g., fluorescence) is not considered. We would like to stress
that, in contrast to what was done in refs. 15 and 25, we have not applied
the grey approximation, which is rather restrictive since the absorption
coefficient is strongly dependent on frequency for most materials.(18, 19)

III. RADIATIVE LOCAL-THERMODYNAMIC EQUILIBRIUM

The radiative local thermodynamic equilibrium (RLTE) approach
yields a natural extension of the Planckian distribution. It is based on the
phenomenological assumption that the state of the material subsystem can
be described at any point by a local temperature and that, as far as the
stimulated emission can be neglected, the emissivity of the material is the
same as it would be at equilibrium. This is the usual approach that can be
found in the classic text by Chandrasekhar.(20) The equation of radiative
transfer (10) gives at equilibrium

=&=_&I& Planck(Tm) (21)

where Tm is the local matter temperature.
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This value of the emissivity can be now substituted in Eq. (10). As in
the previous section, we consider steady states. Integration along an
arbitrary direction 0� gives the intensity of photons moving per unit solid
angle centered at this direction,

I&(0, 0� )=I&(&s, 0� ) exp[&_&s]+|
0

&s
_&I& Planck(Tm(s$)) exp[&_& |s$|] ds$

(22)

This solution is readily interpreted as follows (see Fig. 1). The inten-
sity at point s=0 results from the intensity at an arbitrary distance s,
reduced by the factor exp(&_&s) that accounts for the absorption, plus the
radiation due to the emission of all the subvolumes contained along the 0�
direction (the corresponding intensities appear inside the integral, and are
also affected by absorption). So, within the RLTE approach the intensity
can be calculated easily if the temperature distribution is known. Now, in
order to compare to the results of the previous section, a uniform gradient
will be assumed

Tm(z)=Tm+
dTm

dz
z

Fig. 1. The radiation emited by any subvolume located along the 0� direction will reach the
reference point s=0 (observer) after being attenuated due to absorption. The effect is accounted
for by the factor exp[&_& s] appearing in Eq. (22).
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For an infinite medium, the intensity will be

I& RLTE#I&(0, 0� )=_& |
0

&�
I& Planck(Tm(z)) exp[_&z�cos %]

dz
cos %

(23)

where % is the angle between the z and 0� directions (see Fig. 1). Expansion
of the exponential up to second order in z and integration gives the intensity

I& RLTE=I& Planck(1+, (1)
RLTE+, (2)

RLTE) (24)

where

I& Planck=
2h&3

c2

1
exp['m]&1

(25)

is the Planckian intensity at temperature Tm , 'm#h&�kTm and the non-
equilibrium corrections are

, (1)
RLTE=&

'm

_&Tm

exp['m]
exp['m]&1

(0� } {9 Tm) (26)

, (2)
RLTE=

'2
m

_2
& T 2

m

_exp['m]
_[(exp['m]+1)+(2�'m)(&exp['m]+1)]&

(exp['m]&1)2 (0� } {9 Tm)2

(27)

where we have applied that 0� } {9 Tm=(dTm �dz) cos % (see Fig. 1). The first
order RLTE correction can be found in treatises specialized in radiation
hydrodynamics (Pomraning(17) and Mihalas and Mihalas(21)), where the
derivation is much more complex than ours. Furthermore, the derivation
given by Pomraning makes use of additional assumptions that apparently
restrict the validity of the solution. However, our derivation makes clear
that the solution is exact and, additionally, although we have not gone
beyond the second order, higher order terms can be easily calculated from
Eq. (23).

IV. COMPARISON BETWEEN THE STATISTICAL AND
PHENOMENOLOGICAL DESCRIPTIONS

In Section II, we have presented a derivation of the thermal radiation
emitted in a system under a temperature gradient. That derivation is
based on Information Statistical Theory (IST). The result is given by
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Eqs. (17)�(20), and it depends on the radiation spectral temperature Tpr
. In

Section III, we have followed a different approach, which is not statistical
but based on the phenomenological assumption of RLTE. The correspond-
ing result is given by Eqs. (24)�(27), and it depends on the matter tempera-
ture Tm . In none of both derivations have we assumed a specific matter
content for the system. We can now compare the results of both
approaches. In order to do so, we should find a relationship between the
radiation and matter temperatures. Due to the fact that a departure from
equilibrium will imply, in general, an exchange of heat between the radia-
tion and matter subsystems, it is reasonable to consider that Tpr

&Tm

should increase with the temperature gradient. A higher temperature
gradient corresponds to a state further away from equilibrium. So, we try
the relationship

Tpr
=Tm+apr

(Tm)(0� } {9 Tm)+bpr
(Tm)(0� } {9 Tm)2 (28)

where apr
(Tm) and bpr

(Tm) are unknown functions of pr and Tm . If the
intensities I& RLTE and I& IST constituted equivalent descriptions of the radia-
tion field, then substituting Eq. (28) into I& IST (Eqs. (17)�(20)) and equating
the second-order result to I& RLTE (Eqs. (24)�(27)) would allow to determine
apr

(Tm) and bpr
(Tm) and, consequently, the relationship between Tpr

and Tm .
The IST and RLTE intensities coincide up to first order only if apr

(Tm)=0.
This means that first-order agreement between IST and RLTE implies that
the radiation temperature equals the mater temperature and is independent
of the photon momentum up to the first order in {9 Tm ,

Tpr
=Tm+bpr

(Tm)(0� } {9 Tm)2 (29)

Concerning the second order, both approaches give the same functional
dependence if bpr

(Tm)=&1�Tm _2
& . However, in this case, , (2)

IST and , (2)
RLTE

differ by a factor of 2. In fact, it is not possible to find out bpr
(Tm) such that

it gives accordance between IST and RLTE at the second order. So, the
question arises about the correctness of the result given by the IST
approach. A simple argument will be given below to demonstrate that this
second-order result is contradictory with the optical behaviour of ionic
impurities in solids.

Imagine a transparent solid matrix where a ionic impurity has been
dissolved up to a concentration low enough so that the impurities do not
interact. This means that their wavefunction is independent of concentra-
tion N. In this case, the optical absorption coefficient can be written as (22)

_&=NS& (30)
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where S& is the optical cross-section of one single impurity ion. S& accounts
for the interaction between the radiation and a single ion and, conse-
quently, governs the absorption and emission processes at the atomic scale.
Now, the intensity at any point results from the radiation emitted and
absorbed by all the impurities and must obey the radiative transfer equa-
tion (Eq. (10)). Once the intensity is known, this equation can serve to
calculate the emissivity. So, introducing I& IST into Eq. (10) in the steady
state and making use of Eqs. (29) and (30) one obtains

=& IST

N
=S&I& Planck+S&I& Planck(, (2)

IST&, (2)
RLTE) (31)

which corresponds to the emissivity per impurity ion in the IST approach.
As expected, up to first order, the emissivity coincides with that of RLTE
(Eq. (21)). However, since both , (2)

IST and , (2)
RLTE contain the factor 1�_2

& (see
Eqs. (20) and (27)), from Eqs. (29) and (30) it follows that the second term
in Eq. (31) is proportional to

\0� } {9 Tm

NS& +
2

S& (32)

thus the second-order result derived from the IST approach implies that
the emissivity per ion would depend on the ion concentration N. The inter-
action between each ion and the radiation would no longer be independent
of the neighbouring ions. This conclusion is in contradiction with the usual
behaviour of ion impurities that leads to Eq. (30). So, it seems unavoidable
to conclude that the second-order intensity obtained by means of the IST
approach is incorrect.

We have shown a limitation of the information-statistical model
presented in Section II. This limitation may be due to the well-known
problem that information theory is a probabilistic method and does not
specify what constraints should be used for a given physical system. In fact,
the approach in Section II makes use of the spectral energy (2) and flux (3)
of radiation as constraints, but no constraint on how matter radiates in
nonequilibrium is imposed. From this perspective the information-theoreti-
cal approach presented is very different from the local-equilibrium one
(Section III), which relies on an specific assumption on how matter
radiates in nonequilibrium (see Eq. (21)). Since information theory finds
the most probable description under a state of partial knowledge, in the
case of radiative transfer it seems plausible that this partial knowledge
should include some statement on how matter radiates in nonequilibrium.
This could also provide a specific relationship between the radiation (spectral)

951Comparison of Description of Nonequilibrium Radiation



and matter temperatures. We thus see that information theory of radiative
transfer is certainly more complicated than that of purely matter systems.
Any further work on information theory of heat radiation should, in our
opinion, be able to cope with the fundamental limitation presented in the
previous paragraph.

The main point of the present paper has been to show the limitations
of simple models based on information theory when applied to heat radia-
tion. Comparison to the results from radiative local equilibrium has
allowed us to identify such limitations. Before closing this paper, we would
like to compare our results to other work. Some authors have analyzed the
inclusion of a constraint on the photon number flux in the maximization
of the entropy density, (23, 24) but it is simple to see that the corresponding
results(25) again lead to the conclusion that the emissivity per ion would
depend on the concentration N, which as explained above is not accept-
able. On the other hand, Struchtrup has presented a very complete theory
including many additional moments in the entropy maximization, (26, 27)

which he uses together with the RLTE hypothesis (21). Although his
method yields interesting results for a variety of situations, (26, 27) it may be
pointed out that the RLTE assumption on its own yields an expression for
the nonequilibrium intensity (Section III), thus it is not clear that this
assumption should be used together with the principle of maximum
entropy. Another approach to nonequilibrium radiation is based on the
proposal that the equilibrium expression \ur=aT 4 be assumed to hold for
arbitrarily far-from-equilibrium systems.(28) This is a possible way to intro-
duce the temperature in nonequilibrium radiative systems, but we would
like to stress that Boltzmann's derivation of the Stefan law is based on a
different definition, namely T &1#�s��u, which: (i) leads to the result
\ur=aT 4 (and to Stefan's law) only in the case of equilibrium;(29, 30) and
(ii) is the same definition of temperature as the one we have applied in our
statistical approach (see the text above Eq. (9)).

Finally we stress that the assumption that matter radiates locally in
thermal equilibrium (RLTE assumption) is acceptable near equilibrium
but, since it is based on the local extension of an equilibrium result
(Planckian emission), we cannot a priori assure that it will hold for systems
arbitrarily far away from equilibrium. Indeed, in the case of matter systems
there are many phenomena (e.g., ultrasound propagation, shock waves,
light scattering...) showing that the local state of strongly nonequilibrium
systems is determined not only by the local temperature but also by higher
spatial derivatives of the temperature (this is indeed the basis of extended
irreversible thermodynamics).(7, 31) In contrast, RLTE assumes that the
local state of the system is determined only by the local value of the matter
temperature (see Section III).
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If statistical physics of nonequilibrium radiation could be developed in
order to avoid the shortcoming pointed out in the present paper, one
would eventually be able to show whether RLTE can be trusted or not in
arbitrary nonequilibrium systems. This could be of importance in systems
where nonequilibrium radiation plays an important role, such as astro-
physics, (18) sonoluminescence, (32) industrial furnaces, (33) shock waves(34)

and plasma physics.(35)

V. CONCLUDING REMARKS

In this paper we have presented two approaches to the description of
nonequilibrium radiation. The first model is based on Information Statistical
Theory, IST (Section II). It relies on constraints concerning the local con-
ditions. The contribution of the rest of the system to the local radiation is
accounted for by means of local quantities (namely, the spectral energy
density and flux). The second approach relies on the assumption of
Radiative Local Thermodynamic Equilibrium, RLTE (Section III). It
corresponds to an integral analysis that takes into account the whole
system in the calculation of the intensity at a given point. Although both
approaches are completely independent, they are consistent up to the first
order. We have shown that the second-order term given by the IST model
is inconsistent with the well-established radiative behavior of impurities in
solids (Section IV).

APPENDIX A: IDENTIFICATION OF THE LAGRANGE
MULTIPLIER #� pr

In this appendix we show that Eq. (16) is the solution to Eq. (15) up
to secondorder in the temperature gradient. As mentioned in the text, we
assume for simplicity a uniform temperature gradient. For the sake of
mathematical simplicity, let us also consider a situation in which all quan-
tities depend only on the z-coordinate. Then, use of Eq. (16) into (14)
yields, after neglecting third- and higher-order terms in the temperature
gradient,

dI&

dz
=

2h2&4

kc2T 2
pr
_

dTpr

dz

exp['pr
]

(exp['pr
]&1)2+

h&cz

_&ckT 2
pr
\

dTpr

dz +
2 d

d'pr
\

exp['pr
]

exp['pr
]&1+

+
2cz

_&cTpr
\

dTpr

dz +
2 exp['pr

]

(exp['pr
]&1)2& (A1)
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We use this expression to compute the left-hand side of Eq. (15). After
noting that the integrals containing the two last terms in (A1) vanish, and
computing the single remaining integral, we find

|
4?

d0 \cz

c
dI&

dz +
c�
c
=\0, 0,

8?h2&4

3kc2T 2
pr

dTpr

dz

exp['pr
]

(exp['pr
]&1)2+ (A2)

On the other hand, use of the information-theoretical intensity (14) and of
Eq. (16) into the right-hand side of Eq. (15) shows at once that the
integrals arising from the first and third terms in Eq. (14) vanish and

&_& |
4?

d0 I&
c�
c

=
2h2&4

kc2T 2
pr

dTpr

dz
exp['pr

]

(exp['pr
]&1)2 |

4?
d0

cz

c
c�
c

which is easily seen to be the same as the left-hand side of Eq. (15), as
given by (A2). This shows that Eq. (16) is the solution to Eq. (15), which
was to be expected from the arguments given above Eq. (16). The reason
why the formalism in previous papers (e.g., ref. 15) could be applied only
to grey materials is that there the entropy maximization was performed for
the spectrally-integrated entropy and under spectrally-integrated con-
straints of the energy and flux, so that the Lagrange multipliers ;pr

and #� pr

(denoted as ; and #� in those papers) did not depend on the photon
momentum (or frequency), which is inconsistent with, e.g., Eq. (16), except
in the rather restrictive case of grey matter (i.e., _&#_ independent of
frequency).
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