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Comment on “Effects of the Surface Roughness on
Sliding Angles of Water Droplets on

Superhydrophobic Surfaces”

Introduction
In ref 1, Miwa et al. (for the rest of the text Miwa) propose

a new theory that would explain the equilibrium of liquid
drops on inclined rough surfaces such that their contact
angle is very high. Apparently, the air trapped at the
interface would play a crucial role because it reduces the
effective contact area between solid and liquid. This is
very reasonable. In fact, quantitative theories exist
relating the contact angle to the trapped air. However, as
stated in Miwa’s Introduction, no clear relationship has
been established between the equilibrium of drops and
the contact angle. They present one possible explanation,
which could be credible in view of their comparison to
experimental results (their Figure 9). However, we think
that their theory should be rendered clearer from the
conceptual point of view. Once clarified, we will be able
to discuss its validity.

The departure point of this comment is constituted by
the following considerations:

(a) Fifty years ago, several theories2-5 were proposed to
explain the empirical relationship between sliding (or
critical) angle, Rc, and drop size

where mg is the drop weight and r is the radius of the
wetted area (see also ref 6). Those theories tried to relate
the constant k to the surface tensions and the contact
angle. Although they did not establish any explicit
relationship between k and surface roughness, we think
that it would be suitable to formulate this relationship on
the basis of those previous theories. At least, the theory
by Miwa should be compared to that of Furmidge,2 because
the authors cite it explicitly (their eq 1) and use it to discuss
some of their experimental results (first paragraph of their
Discussion).

(b) Without hysteresis of the contact angle, θ, the
equilibrium of tilted drops would not be possible. In Figure
1a, the external forces acting on a drop and contributing
to its sliding behavior are sketched. The downward
component of weight (mg sin R) can be equilibrated only
if the back contact angle (θb) is smaller than the front one
(θf). This condition is expressed by Furmidge’s eq 2,

where w ) 2r, and γLV is the liquid-vapor surface tension.
When a drop is tilted, R in Figure 1 increases until the
drop begins to slide down (R ) Rc). When this happens,
one may assume that the back and front contact angles
are close to their minimum and maximum possible values
(θ- and θ+, respectively).7 Then,

Both of the former two equations are approximations,
because in reality the contact angle varies continuously
along the contact line. However, there is reasonable
agreement between Furmidge’s equation and experiment
(see Table 2 in ref 2). Thus, we conclude from eqs 1 and
2 that the “sliding constant” k is related to hysteresis (i.e.,
to the fact that θ- * θ+) for sure. Despite this evidence,
following Murase8 Miwa1 assume that k is “related to the
interaction energy between solid and liquid” (last sentence
in their Background) and that k is proportional to the
product of roughness, r, and the fraction of wetted area,
f (assumption 2 in their model). These hypotheses should
be deduced, if possible, from the value of the contact angle
hysteresis. Below, we present a model with this aim.

At the time when the paper by Miwa1 was published,
we were working on a paper in which we showed that for
small contact angles the equilibrium of drops can be
understood on the basis of a liquid film left behind when
drops slide down smooth hydrophilic surfaces.6 In this
comment, we will modify our theory in ref 6 slightly, so
as to adapt it to the case of rough surfaces. Although Miwa’s
smooth surface is slightly hydrophobic (θ ) 105.4), we
will show that the experimental results of Miwa can be
interpreted in terms of the formation of a water film that
partially wets the solid surface left behind. In fact, this
physical model leads naturally to the same results as
Miwa’s theory,1 and it states more clearly the physical
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sin Rc ) k2rπ
mg

(1)

mg sin R ≈ γLV(cos θb - cos θf)w

Figure 1. (a) Profile of a tilted drop; (b) when viewed from
above, some such drops slip down leaving a wetted area (shaded
surface) behind them.

mg sin Rc ≈ γLV(cos θ- - cos θ+)w (2)
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grounds on which the hypotheses in ref 1 are sustained.
The conclusion of our analysis will be that the validity of
Miwa’s theory1 is doubtful.

Equilibrium Condition in Terms of Work and
Energy

Furmidge’s equation (eq 2) can be expressed in terms
of work and energy if we consider that the drop slides
down a virtual displacement δx. When we multiply both
sides of eq 2 by δx, the result can be interpreted as follows.
The gravitational energy lost (left-hand side) is invested
in the work done by surface tension at the front and back
water lines. The question is now which has been the
physical result of this work. It will depend on the nature
of the process of water line displacement. If it is irrevers-
ible, then energy will be lost as heat. If it is reversible,
there must be some way to store the energy. In this second
case, a wetted surface will be left behind the sliding drop
(Figure 1b). This has been observed and explained in ref
6. Here, we need only note that in this second case,
Furmidge’s equation is in fact an equation of energy
balance. When the solid surface is progressively inclined,
the drop will slide down just at the angle R ) Rc such that
gravity can furnish the energy necessary to develop the
back wetted surface. As far as eq 2 remains approximately
valid, the energy used to create a unit area of this surface
will be

so the interpretation of constant k as related to the solid-
liquid energy of interaction seems possible.

Hysteresis of Contact Angle and Roughness
A reversible process is, in fact, an evolution through

equilibrium states. This means that both the advancing
and receding contact angles must be equilibrium contact
angles and obey Young’s equation:

where γLV is the liquid-gas surface tension, and the
superindex R is used to denote rough surfaces. As
explained in detail below, γSV(

R (γSL
R ) corresponds to the

surface energy per unit apparent area of the solid-gas
(solid-liquid) interface in front of the advancing (+) water
line and at the back of the receding line (-). So, within
the hypothesis of a reversible process, an explanation
should be found for the fact that γSV+

R * γSV-
R . The most

natural explanation is to consider that when the drop
slides down, it leaves behind a partially wetted solid
surface. The calculation of θ- and θ+ is very simple if we
assume that the structure of the solid surface is that
sketched in Figure 2:

(a) We define the roughness r such that the real
(microscopic) surface area of the solid surface is r times
its apparent (macroscopic) area, Ar ) rAa (with r g1 and
Ar ) Aw + Ad in Figure 2; the subindexes w and d stand
for wetted and dry, respectively).

(b) Roughness does not modify the surface energies per
unit of microscopic area (γSV, γSL); that is, their values are
identical to those of a flat surface.

(c) We define the wetted fraction as f ≡ Aw/Ar. Thus, Aw
) frAa and 0 e f e1.

(d) The liquid-vapor interface, resulting from the
trapped air, occupies a fraction (1 - f) of the apparent
surface area below the drop; that is, At/Aa ) (1 - f) ) (Ar
- Aw)/Ar ) Ad/Ar. Note that this yields At ) 0 if Ad ) 0 (no
trapped air), as it should, and At ) Aa if Ad ) Ar, also as
expected from Figure 2.

(e) Once the drop has slid down, the solid surface will
remain wetted at the same regions that were in contact
with water when the drop was above them. That is, a
fraction fr of the apparent surface will remain wetted
behind the drop.

With this model, we can easily calculate the surface
tensions of the rough surfaces (γij

R) as a function of the
corresponding values for an ideal flat surface (γij) by simply
adding the contributions to the surface energy at the
microscopic level. The surface energy of the interface below
the drop will be

that of the dry solid surface at the front of the drop is

and at the back of the drop we have, according to
assumption e above,

From these values, the advancing and receding contact
angles can be easily obtained by using eq 4. This yields

where θs is the horizontal contact angle for a smooth (i.e.,
flat) surface,

Equation 5 agrees with eq 12 in Miwa’s paper,1 and it
reduces to Wenzel’s law for f ) 1 and to Cassie’s law for
r ) 1, as it should (see eqs 3 and 5 in ref 1). We also find
that

At this point, we must note that formulas 5 and 6 are
exact under the hypotheses of our model, which include
the special shape of the surface depicted in Figure 2. The
agreement of eq 5 with Miwa’s result is due to the fact
that for such a surface shape Miwa’s definition of f (see
p 5757 in ref 1) is the same as ours. In fact, f has been
defined differently by other authors.9 For a surface of

(9) Fuji, H.; Nakae, H. Philos. Mag. A 1994, 72.

Figure 2. Drop over a partially wetted rough surface.
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arbitrary shape, it is not possible to derive eqs 5 and 6 as
exact. However, in such a general case, f and r can be
taken as phenomenological parameters.

Drop Critical Size and Comparison with
Experiment

Once θ- and θ+ are known, the sliding constant k in eq
1 can be calculated by introducing them in Furmidge’s
formula (eq 2). This procedure can be done for different
solid surfaces, characterized by their values of r and f.
Instead of that, it will be more useful for our purposes
here to calculate the critical drop size (V/w)c defined as
the maximum drop size that can stand in equilibrium on
a vertical surface (sin Rc ) 1). According to this definition,
eqs 1 and 2 yield

where V is the drop volume and F is its density. In Figure
3, this result is plotted for θs ) 105.4 (as measured in ref
1) and compared to the “experimental” values by Miwa.1
These points have been calculated from the experimental
sliding slopes of their Figures 4 and 5 by obtaining V from
w and their values of the contact angle through the
spherical-shape assumption, which is well-known to be
valid for sufficiently small drops. Also, the contact angles
in ref 1 have been approximated to θ+ in the horizontal
axis in Figure 1. This is a reasonable approximation
because when a drop is deposited slowly over an horizontal
surface, the contact angle will increase up to θ+ before its
radius increases (similarly, when a drop is observed to
evaporate through a microscope, its radius decreases at
sudden moments but not continuously. Indeed, the contact
angle decreases down to θ- before the radius begins to
decrease).

Although slight quantitative differences are observed
between our Figure 3 and Figure 9 of Miwa,1 the
conclusions concerning the dependence of drop stability
on the surface features are essentially the same. The

observed decrease in critical size when contact angle (θ+)
increases is easily interpreted if we substitute eqs 5 and
6 into eq 7,

For the whole set of rough surfaces in ref 1, the factor
(γLV/Fg)(1 - cos θs) is constant. So, the large variation of
(V/w)c is interpreted as due to the product fr. In fact, in
view of Figure 3, r would be essentially constant (r ≈ 1.8)
for the set of surfaces with θ+ < 155° (1 - cos θ+ < 1.9).
Within this set, drop stability would be controlled by f. On
the other hand, for surfaces with θ+ > 158° drop stability
would yield unrealistic values of r < 1.

In Figure 3, we have included an additional experi-
mental point (open square) corresponding to the flat
surface in ref 1. As mentioned above, its contact angle (θs
) 105.4°) has been used in eqs 5 and 6 for the calculation
of the theoretical curves. So, in contrast to its position in
Figure 3, one would expect r ) 1 and f ) 1 for this point.

Discussion
In a previous paper, we have shown that the sliding

angle of drops on hydrophilic surfaces (low contact angles)
is explained by the formation of a liquid film that
completely wets the solid surface left behind the drop.6
Formally, this theory leads to the same formula as
Furmidge’s (eq 2) with θ- ) 0. In this particular case, the
critical drop size depends only on the contact angle (dashed
line in Figure 3). After a thorough review of the published
experimental data, we observed as well that at high contact
angles drops became much less stable than predicted, even
on flat surfaces (see Figure 3 in ref 6). This means that
in such cases the liquid film behind the drop does not
form (at least as a continuous film). The current explana-
tion is then that hysteresis of the contact angle controls
the mechanical equilibrium of forces.10

(10) Joanny, J. F.; De Gennes, P. G. J. Chem. Phys. 1984, 81, 552.

Figure 3. Predicted maximum dimensionless size of nonslipping drops. Dashed line: prediction for smooth surfaces, assuming
also that the liquid-solid-vapor combination is such that slipping drops leave a continuous liquid film behind them (this line has
been derived theoretically and checked experimentally in ref 6). Full and dotted lines: predictions for rough surfaces, from eqs
5-7. A contact angle over smooth horizontal surfaces of θs ) 104.5 has been used (this is the value measured in ref 1). Filled squares:
experimental results for rough surfaces (Figure 4 in ref 1). Empty square: experimental result for Miwa’s smooth surface (Figure
5 in ref 1).
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Miwa et al. have obtained solid surfaces on which contact
angles are extremely high due to roughness. Although
they implicitly accept that equilibrium depends on the
contact angle hysteresis, they propose a theory to explain
it in terms of roughness and fraction of wetted surface.
In fact, they implicitly propose to predict hysteresis of the
contact angle from the surface structure. In this comment,
we have clarified conceptually their hypotheses and funded
them on more solid grounds. In particular, (i) we have
given a physical model of contact angle hysteresis that
derives the proportionality of critical drop size (or,
equivalently, their sliding constant k) to the product rf
and (ii) we have shown in which instances (i.e., reversible
displacement of water lines) contact angle hysteresis
can be related to the solid-liquid interaction energy.
Essentially, our model leads to the same results as those
by Miwa et al.1 The quantitative discrepancies between
our theoretical curves and theirs (compare Figure 3 here
to Figure 9 in ref 1) arise because r < 1 and f < 1 for their
smooth surface (the hollow square in Figure 3 here),
whereas Miwa et al. assume that r ) 1 and f ) 1 for that
surface (the value of k in their eqs 13 and 14 is taken as
that for their smooth surface). However, the discrepancies
between our theoretical curves and those in ref 1 are not
relevant from a conceptual perspective. So, we think that
the theory proposed by Miwa is now ready for discussion
concerning its validity.

The existence of contact angle hysteresis has been
historically a troubling problem for people working in the
subject of surface tension. Pioneering theories that tried
to explain why the receding contact angle always was
smaller were based on the modification of the solid surface
left behind (orientation of molecules11 or formation of a
wetted surface3,7). Essentially, the receding contact angle
was considered as the equilibrium one of this wetted solid

surface and, consequently, the water line movement was
a reversible process. Despite the simplicity of this expla-
nation, careful experiments were done with the aim of
detecting the wetted surface but the result was negative.3
Later on, Johnson et al.12 demonstrated both experimen-
tally and theoretically that contact angle hysteresis can
result from surface roughness. Their theory has been
recently completed and extended to the case of surface
chemical inhomogeneities.9 The relationship between
surface structure and contact angle hysteresis does not
follow any simple trend, and contrary to Miwa’s theory,
it cannot be deduced from the interaction energy of the
wetted solid surface below the drop. In this widely accepted
theory, the displacement of water line is an irreversible
process. Therefore, eq 4 does not hold.

At this point, we conclude that the lack of experimental
support on the formation of a wetted surface behind
slipping drops that would explain contact angle hysteresis
[eqs 5 and 6] leaves Miwa’s theory, as developed in more
detail in the present comment, with the burden of a missing
direct check. In our modest opinion, experimental tests
designed to this aim will deliver, as in ref 3, a negative
result: it is difficult to understand why water should wet
a hydrophobic solid surface (θs ) 105.4). This work has
been partially funded by the CICYT, Grant Nos. REN
2000-1621 CLI and BFM 2000-0351.
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