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Abstract

An in-depth study of the thermodynamics of nonequilibrium radiation is presented. The charac-
terization of its nonequilibrium macroscopic state is performed in the framework of Informational
Statistical Thermodynamics. This is done in terms of a nonequilibrium Dirac–Landau–Wigner
single particle density matrix, or, alternatively, in terms of the conjugated intensive nonequilib-
rium thermodynamic variables. When a local description is not required, the global one can be
done by giving the nonequilibrium populations in the di6erent modes. Also, alternatively, we
can introduce a nonequilibrium temperature (quasi-temperature) per mode. This is compared to a
couple of contracted descriptions. The evolution of the resulting nonequilibrium thermodynamic
state and the eventual experimental determination are given in the follow-up article. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

The thermodynamics of radiation in equilibrium has been well established with the
classical works developed in the late nineteenth century and the beginning of the twen-
tieth. The distribution of photons of the black body radiation in equilibrium with matter
at a given temperature is given by the well-known Planck distribution function. The
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situation is not so clear-cut in the case of radiation out of equilibrium, mainly in
conditions far away from equilibrium. Some attempts to deal with this situation have
been proposed. For example in a classical-like (or Onsagerian) irreversible thermo-
dynamics (for example [1,2]), implying a local equilibrium hypothesis, one deEnes
a local Planck distribution characterized by a space- and time-dependent nonequilib-
rium temperature [3]. Attempts to go beyond this limitation by entering the domain of
irreversible thermodynamics [4] are due to several authors [5–21]. Nonequilibrium con-
cepts in solar energy radiation and maximal nonequilibrium thermodynamic eGciencies
for the conversion of black-body radiation have been derived by Landsberg [22,23].
More recently, the possibility has been investigated that the present black-body cosmic
radiation might (even under the assumption of thermal equilibrium) follow slightly
modiEed thermodynamic properties due to long-range gravitational inIuence. In this
case, the inIuence under consideration could be related to a small long-range mem-
ory of times when matter and light were still strongly coupled, or it could be due to
more complex phenomena. Tsallis et al. [24] have dealt with this question in terms
of what can be considered as a statistics appropriate for describing the macrostate of
systems governed by some kind of fractal dynamics [25,26]. Maybe something similar
could be applied to black-body radiation in small “containers” with rugged surfaces
(e.g., quantum wells in semiconductors). Here we address another particular, but rel-
evant, situation which is black-body radiation (in a “normal container” and no fractal
dynamics present) arbitrarily away from equilibrium conditions.
All of these treatments and others have addressed the delicate fact that nonequi-

librium thermodynamics is a controversial matter, with several schools of thought
presently attempting to derive acceptable basic foundations and proper operational
methods for it [27–34]. Lazlo Tisza has classiEed the several levels of description
of thermodynamics [35], and together with Lebowitz [36] have praised the approach
based on statistical mechanics as the most promising one. To this level belongs the
so-called Informational Statistical Thermodynamics (IST for short), which was initiated
by Hobson [37] after the seminal articles by Jaynes on the foundations of statistical
mechanics on information theory [38,39]. IST has been lately systematized and further
developed on the basis of the nonequilibrium statistical operator method (NESOM)
[40–45]. The latter is founded on Jaynes’ principle of maximization of informational
entropy and then is referred to as MaxEnt-NESOM [46–48] and can be considered as
being encompassed in Jaynes’ Predictive Statistical Mechanics [49].
MaxEnt-NESOM provides the basis for the construction of a response function the-

ory for the description and analysis of experiments on systems arbitrarily away from
equilibrium, and of a nonlinear quantum kinetic theory which describes the irreversible
evolution in time of the nonequilibrium macroscopic state of the system. We resort here
to MaxEnt-NESOM-based IST and kinetic theory for the development of an in-depth
study of the thermodynamics of nonequilibrium radiation. In this paper we present and
discuss the general theory, and in the follow-up article we deal with the evolution of the
nonequilibrium thermodynamic state of radiation in matter, and a particular experiment
devised for establishing the validation of the theory is presented.
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2. Thermodynamic state of nonequilibrium radiation

Let us consider a general experiment in which a material sample is in contact with
a thermal reservoir at temperature T0. Initially the di6erent charged particles in the
sample are in equilibrium with the black-body radiation they produce, but they are
driven out of equilibrium by the action of an external source (a speciEc case shall
be described in the follow-up article). The Hamiltonian Ĥ of the system is composed
of the Hamiltonians of the free subsystems of the sample and of the radiation, plus
the energy operators corresponding to the interactions between themselves and with
the pumping source and the reservoir. Next, according to MaxEnt-NESOM we need to
choose the basic dynamical operators deemed necessary for the characterization of the
state of interest.
In arbitrary nonequilibrium conditions the system of photons can be completely char-

acterized by the set of all possible observables of the system. This is equivalent to
providing the single-particle and two-particle dynamical operators [50,51]. However,
since pairs of photons do not interact, we need to consider only the Dirac–Landau–
Wigner one-particle dynamical operator. In second quantization and in the space of
quantum states characterized by the wavevector k̃ (we omit the polarization index for
simplicity) we have the quantities{

a†
k̃
ak̃ ≡ N̂ k̃ ; a†

k̃+1
2 Q̃

a
k̃− 1

2 Q̃
≡ N̂ k̃Q̃

}
; (1)

where ak̃

(
a†
k̃

)
are the usual annihilation (creation) operators in plane-wave states of

momentum k̃. In Eq. (1) the Erst set of operators are the so-called population opera-
tors and the other set, where Q̃ �=0, are nondiagonal contributions which describe the
change in space (with wavevector Q̃) of the dynamical observables. Moreover, since
the photons are bosons, coherent states are possible and we would need to include also
the amplitudes ak̃ and a†

k̃
in the basic set. But, since we are not going to consider co-

herent states here, as would be the case of laser action, the amplitudes are disregarded.
Furthermore, we shall consider experiments where the detection apparatus does not
have space resolution, but collects global information. Hence, we can also disregard
the quantities N̂ k̃Q̃; they can be relevant in a study of a thermo-hydrodynamics of the
radiation Eeld, which shall be the subject of a future article. The MaxEnt-NESOM
statistical operator is, in Zubarev’s approach [52], given by


�(t)= exp
{
−Ŝ(t; 0) +

∫ t

−∞
dt′e�(t

′−t) d
dt′

Ŝ(t′; t′ − t)
}

; (2)

where

Ŝ(t; 0)=�(t)1̂ +
∑
k̃

Fk̃(t)N̂ k̃ + �̂(t; 0) (3)

is the so-called informational statistical entropy operator [53], and

Ŝ(t′; t′ − t)= exp
{
− 1

i˝ (t
′ − t)Ĥ

}
Ŝ(t′; 0)exp

{
1
i˝ (t

′ − t)Ĥ
}

: (4)
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In Eq. (3) we have introduced the Lagrange multipliers (intensive nonequilibrium vari-
ables) Fk̃(t); and �(t); a kind of logarithm of a nonequilibrium partition function,
ensures the normalization of the statistical operator. This refers to the radiation, and in
�̂ we have collected the contribution from all of the other subsystems in the sample,
whose detail is not necessary to be given here. We recall that � is a positive inEnites-
imal that goes to zero after the trace operation in the calculation of averages has been
performed.
The space of states in IST is the one deEned by the average values over the nonequi-

librium ensemble of the dynamical operators, that is, for the system of photons it is
given by the populations

Nk̃(t)=Tr{N̂ k̃
�(t)}=Tr{N̂ k̃ Q
(t; 0)} ; (5)

where

Q
(t; 0)= exp{−Ŝ(t; 0)} (6)

and, we recall, the average value with the statistical operator coincides with the one
calculated with the auxiliary operator of Eq. (6) only for the case of the basic variables
but not for any other observable [46–48,52].
A direct calculation for this case of a system of bosons results in

Nk̃(t)= [exp{Fk̃(t)} − 1]−1 (7)

and therefore

Fk̃(t)= ln
[
1 +

1
Nk̃(t)

]
(8)

what shows us the equivalence of a thermodynamical description in terms of either
the basic macrovariables (the populations of Eq. (7) here) or the Lagrange multipliers
in MaxEnt-NESOM (the intensive nonequilibrium thermodynamic variables of Eq. (8)
here).
Thus, the thermodynamic state of the nonequilibrium radiation is fully characterized

by either one of the sets

{Nk̃(t)} or {Fk̃(t)} : (9)

One consists evidently in giving the populations in all of the normal quantum states
k̃ (including of course the polarization). The other is to provide the set of Lagrange
multipliers, which have of course to be determined if we are going to use Eq. (7). In
the follow-up article we tackle the question of how to determine such a state, together
with its evolution.
We are now in conditions to provide alternative deEnitions of the intensive nonequi-

librium thermodynamic variables that characterize the macrostate of the radiation. One
is due to Landsberg [13–21] who introduces the concept of quasi-chemical potential
per mode �k̃(t), what follows after writing

Fk̃(t)=
˝�k̃ − �k̃(t)

kBT0
; (10)
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where �k̃ is the frequency dispersion relation of the photons in the radiation Eeld and
kB is the Boltzmann constant.
Another alternative is to introduce a kind of nonequilibrium temperature, which is

referred to as quasitemperature per mode T ∗
k̃
(t), through the expression

Fk̃(t)=
˝�k̃

kBT ∗
k̃
(t)

: (11)

This is what is also done in semiconductor physics in the case of a similar system
of boson-like quasiparticles, namely the optical phonons [54], and then these qua-
sitemperatures per mode can be “measured” in experiments of Raman scattering [55].
Their evolution in time can be followed in ultrafast (pico- and femto-second scales)
time-resolved optical experiments. We notice that once the pumping source is switched
o6 and the system attains the Enal equilibrium with the reservoir, the quasi-chemical
potential in Eq. (10) goes to zero, or the quasitemperature in Eq. (11) goes to T0, and
in both cases the population of Eq. (7) tends to the Planck distribution in equilibrium,
as it should. The main thermodynamic properties of nonequilibrium radiation are then
given by

E(t)=
∑
k̃

˝�k̃Nk̃(t) (12)

for the energy, and

QSph(t)=Tr{Ŝph(t; 0)
�(t)}=�(t) +
∑
k̃

Fk̃(t)Nk̃(t) (13)

for the informational statistical entropy (the index ph stands for photons in the radiation
Eeld, that is the average of the operator of Eq. (3) except for �̂, which is the operator
of the rest of the sample and the reservoirs). Using Eq. (8) and that

�(t)=Tr

exp

−∑
k̃

Fk̃(t)N̂ k̃

=
∑
k̃

ln[1 + Nk̃(t)] ; (14)

we arrive to the expression

QSph(t)=
∑
k̃

{[1 + Nk̃(t)]ln[1 + Nk̃(t)]− Nk̃(t) lnNk̃(t)} : (15)

This expression has the same form as the one in equilibrium, but the nonequilibrium
populations enter in the place of the equilibrium ones. A Gibbs-like relation follows
from Eq. (13), namely

d QSph(t)=
∑
k̃

Fk̃(t)dNk̃(t) ; (16)

where we have taken into account that

d ln QZ(t) ≡ d�(t)=−
∑
k̃

Nk̃(t) dFk̃(t) ; (17)



A.R. Vasconcellos et al. / Physica A 300 (2001) 386–402 391

where QZ(t) is a nonequilibrium partition function and �(t) plays the role of a kind of
nonequilibrium thermodynamic potential. The di6erential coeGcients of these quantities
are then

@�(t)
@Fk̃(t)

=− Nk̃(t) ; (18)

@ QSph(t)
@Nk̃(t)

=Fk̃(t) ≡
˝�k̃

kBT ∗
k̃
(t)

: (19)

Evidently, Eq. (19) can be rewritten as

kB
@ QSph(t)
@Ek̃(t)

=
1

T ∗
k̃
(t)

; (20)

where Ek̃(t)=˝�k̃Nk̃(t) is the energy in mode k̃, and this Eq. (20) reinforces the fact
that T ∗

k̃
(t) can be considered as a temperature-like variable of mode k̃. Moreover, Eq.

(19) plays the role of an equation of state (in fact a set of them corresponding to
the di6erent values of k̃), giving the relation between the intensive thermodynamic
variables (the Lagrange multipliers in MaxEnt-NESOM) and the basic macrovariables;
this relation is in the present case explicitly given in Eq. (8).
Similar to the case of lattice vibrations [56], we can introduce a speciEc heat per

mode

Ck̃(t)=
@E(t)
@T ∗

k̃
(t)

=T ∗
k̃
(t)

@ QSph(t)
@T ∗

k̃
(t)

= kB

[
˝�k̃

kBT ∗
k̃
(t)

]2

Nk̃(t)[1 + Nk̃(t)] ; (21)

which in the limit of ˝�k̃=kBT
∗
k̃
(t)�1 goes over the classical expression

Ck̃(t) � kB (22)

that is, the same value kB for each mode, while at high frequencies has the exponential
form

Ck̃(t) � kB[Fk̃(t)]
2exp{−Fk̃(t)} : (23)

Finally, without entering into details, we mention that the thermodynamics of nonequi-
librium radiation satisEes the general properties that [40–45]:
(1) In the thermodynamic limit the informational-statistical entropy acquires a

Boltzmann-like expression, namely

QSph(t) → lnW ({Nk̃(t)}) ; (24)

where W is the number of quantum states compatible at any time t with the imposed
constraints in the variational process in MaxEnt-NESOM, in the present case the set
of populations in Eq. (5).
(2) Given the informational-statistical entropy production,

Q�(t)=
d
dt

QS(t)=Tr
{

1
i˝ [Ŝ(t; 0); H ]

}
=
∑
k̃

Fk̃(t)
d
dt

Nk̃(t) +
d
dt

Q�(t) ; (25)
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it can be separated into two parts, Q�(t)= Q�i(t)+ Q�e(t); consisting of the internal entropy
production (due to internal interactions in the system, i.e., the sample) and an external
one (interactions of the system with sources and reservoirs). For steady states in the
linear regime (Onsagerian domain) around equilibrium, a principle of minimum entropy
production is satisEed. This ensures the stability of such steady states, which is a
consequence of the fact that Onsager symmetry relations are satisEed. Outside the
linear regime (nonlinear domain of thermodynamics), this is not so in general and the
steady state can be unstable against the formation of synergetic ordering in the form
of Prigogine’s dissipative structures.
(3) Another quantity of relevance in nonlinear nonequilibrium thermodynamics is

the change in time of the informational-statistical entropy,
d
dt

Q�(t)=
dF

dt
Q�(t) +

dQ

dt
Q�(t) ; (26)

which can be separated in a part, dF ; due to the change in time of the intensive
nonequilibrium thermodynamic variables (the Fk̃(t) in the present case), and another,
dQ; due to the change in time of the macrovariables (the Nk̃(t) here). A thermo-
dynamic criterion of evolution holds, namely that along the trajectories followed by
the macrovariables in the thermodynamic space of states (which are governed by the
equations of evolution described in the follow-up article) it is veriEed that

dF

dt
Q�(t)6 0 : (27)

(4) Furthermore, a thermodynamic (in)stability criterion applies, namely that steady
states become unstable (against the formation of synergetic ordering) if the quantity

1
2
d
dt

!2 QS(t)= Q�(t)− Q�(t)ss ; (28)

called excess-entropy production, becomes negative. This quantity consists of the dif-
ference between the entropy production in a state slightly departed from the steady
state and that in the latter one.
Concerning the nonequilibrium radiation, if we take it as the system of interest and

then the other subsystems in the sample together with the sources and reservoirs as
external ones, there is no internal production of entropy (the photons do not interact
between themselves). The criterion of evolution, Eq. (27), is satisEed (cf. follow-up
article), and with the interactions corresponding to the degrees of freedom of the sample
being linear in the photon Eeld amplitude, their steady states are always stable.
(5) The quantity �(t), which plays the role of the logarithm of a nonequilibrium

partition function, i.e., �(t)= ln QZ(t); is given by [cf. Eq. (14)]

e�(t) =Tr

exp

−∑
k̃

Fk̃(t)N̂ k̃

=
∏
k̃

[1− exp{−Fk̃(t)}]−1 = QZ(t) (29)

and then

�(t)= ln QZ(t)=−
∑
k̃

ln[1− exp{−Fk̃(t)}] (30)
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having the property that

!�(t)
!Fk̃(t)

=
! ln QZ(t)
!Fk̃(t)

=− Nk̃(t) : (31)

Moreover, the time-dependent radiation pressure (second rank) tensor is given by the
Iux of the momentum of the photons, that is

P[2](t)=
1
V

∑
k̃

[
˝k̃c k̃

k

]
Nk̃(t) ; (32)

where [ · · · ] indicates tensorial product of vectors and V the volume. It can be
rewritten as

P[2](t) =
1
V

∑
k̃

˝�k̃

[
k̃
k

k̃
k

]
Nk̃(t)

=
1
3
E(t)
V

1[2] + P[2](v)(t) (33)

being separated into a diagonal part (1[2] is the unit rank-two tensor) and a nondiagonal
one (the viscous shear pressure). The scalar pressure is

p(t)=
1
3
Tr{P[2](t)}= 1

3
E(t)
V

(34)

recovering in any conditions and at any time the usual relation between pressure and
energy density.
We proceed now to present another possible description of the thermodynamic state

of the nonequilibrium radiation, and to discuss contracted forms of it (i.e., approximate
descriptions).

3. Nonequilibrium grand-canonical-like description

In Section 2 we noticed that a complete description of the nonequilibrium radiation
can be done in terms of single-particle dynamical operators [cf. Eq. (1)]. An alternative
one can be constructed in terms of independent linear combinations of them, namely
the generalized nonequilibrium grand-canonical ensemble [57–59]. For that purpose,
the densities of energy and of particles are introduced, as well as their Iuxes of all
order. As in Eq. (1), we can separate the global parts and the local inhomogeneities,
we disregard the latter (as done in Section 2), and then we introduce

Ĥph =
∑
k̃

˝�k̃N̂ k̃ ; (35)

ˆ̃I h =
∑
k̃

˝�k̃ũ(̃k)N̂ k̃ ; (36)

ˆ̃I n =
∑
k̃

ũ(̃k)N̂ k̃ ; (37)
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Î [r]h =
∑
k̃

˝�k̃u
[r](̃k)N̂ k̃ ; (38)

Î [r]n =
∑
k̃

u[r](̃k)N̂ k̃ ; (39)

where

ũ(̃k)=∇k̃�k̃ = ck̃=k ; (40)

is a generating velocity (and the velocity of the photons in state k̃),

u[r](̃k)= [̃u(̃k) : : : (r-times) : : : ũ(̃k)] ; (41)

with the square brackets indicating tensorial product of vectors, and r=2; 3; : : : indicates
the order of the Iux and also its tensorial rank. Index h refers to Iuxes of energy and
n to Iuxes of particles; the number operator is not included since we are dealing with
photons.
Eqs. (35)–(39) deEne the now basic set of dynamical operators in MaxEnt-NESOM,

whose average values over the nonequilibrium ensemble deEne the basic macrovariables
which are

{E(t); Ĩh(t); Ĩn(t); {I [r]h (t)}; {I [r]n (t)}} ; (42)

and the corresponding Lagrange multipliers are indicated as

{*(t); F̃h(t); F̃n(t); {F [r]
h (t)}; {F [r]

n (t)}} : (43)

We notice that now the nonequilibrium statistical operator [cf. Eq. (2)] can be expressed
in terms of an informational-statistical entropy operator which is the one of Eq. (3)
once we rewrite the Lagrange multipliers as

Fk̃(t) = *(t)˝�k̃ + F̃h(t) · ˝�k̃ũ(̃k) + F̃n(t) · ũ(̃k)

+
∑
n¿2

[F [r]
h (t)⊗ ˝�k̃u

[r](̃k) + F [r]
n (t)⊗ u[r](̃k)] ; (44)

where dots stand as usual for scalar products, and ⊗ stands for fully-contracted tensorial
product. We can then see the complete equivalence of both descriptions.
We recall that

E(t)=Tr{Ĥph
�(t)}=Tr{Ĥph Q
(t; 0)}=
∑
k̃

˝�k̃
QN k̃(t) (45)

and similarly for all the other macrovariables (the Iuxes), in all of them the quantity
QN k̃(t) appearing, given by Eq. (7) but with Fk̃(t) given by Eq. (44).
We proceed now to introduce contracted descriptions.

3.1. First contracted description

We begin by considering the most contracted description possible, consisting into
retaining in the basic set only the energy of the nonequilibrium radiation. This implies
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to disregard all of the Iuxes or, better to say, to put all of the Lagrange parame-
ters associated to the Iuxes equal to zero. Of course this should be determined by
the experimental conditions, as for example in the case considered in the follow-up
article. The sets of basic variables are then simply composed of the dynamical one,
the macrovariable and the Lagrange multiplier, that is

{Ĥph}; {E(t)}; {*I (t)} (46)

with

E(t)=
∑
k̃

˝�k̃
QN
I
k̃(t) ; (47)

where

QN
I
k̃(t)= (exp[*I (t)˝�k̃ ]− 1)−1 : (48)

Writing �k̃ = c|̃k|, with c the speed of photons, going over to the continuum in the
usual way, namely

∑
k̃ → 2V=(2+)3

∫
d3k, where the factor 2 accounts for the fact that

photons have two independent polarizations, after integration we have for the energy
density that

E(t)
V

=
+2

15˝3c3*4
I (t)

= a[T ∗
I (t)]

4 ; (49)

where we have deEned the quasitemperature through kBT ∗
I (t)= *−1

I (t),

a=
+2k4B
15˝3c3 (50)

is the blackbody constant and V is the volume of the system. In the absence of
perturbations, when the system attains Enal equilibrium T ∗

I goes over the temperature
in equilibrium with the reservoirs, and the usual T 4-law of equilibrium thermodynamics
is recovered.
The logarithm of the partition function, i.e., �(t), is given by

�I (t)= ln QZI (t)=
∑
k̃

ln[1− e−*I˝�k̃ ]−1 =
+2V

45˝3c3*3
I (t)

: (51)

We can deEne a nonequilibrium grand-canonical thermodynamic potential as

,I (t)=− *−1
I (t)ln QZ(t) ; (52)

and from it we can get the radiation pressure in this representation, namely

p(t)=− @,I (t)
@V

=
+2

45˝3c3*4
I (t)

=
1
3
E(t)
V

; (53)

given in terms of the Lagrange parameter in this description, but equal to one-third of
the energy density which is a basic variable.
Furthermore, it can be noticed that the number of nonequilibrated photons at

time t is

QN (t)=
∑
k̃

QN k̃(t)=
∫

d!N (!)=
�(3)

+2[˝c*I (t)]3
V ; (54)
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where � is the Riemann zeta function and we have deEned

N (!)=
V
+2

!2

c3
[exp{*I (t)!} − 1]−1 : (55)

Hence, the energy per photon is

e(t)=
E(t)
QN (t)

=
+4

30�(3)
kBT ∗

I (t) � 2:7kBT ∗
I (t) : (56)

3.2. Second contracted description

Let us consider an experiment where the Iux of energy can be relevant (see, e.g.,
Refs. [5–12]), and the Iux of particles need also be considered (as a result of Onsager
cross-linking of Iuxes: the equivalent of the e6ect of thermo-striction in matter or of
thermo-electricity for charged particles). The basic sets of variables are

{Ĥph;
ˆ̃I h;

ˆ̃I n} ; (57)

i.e., the dynamical ones;

{E(t); Ĩh(t); Ĩn(t)} ; (58)

i.e., the macrovariables; and

{*II (t); F̃hII (t); F̃nII (t)} ; (59)

which are the Lagrange multipliers, with

E(t)=
∑
k̃

˝�k̃
QN
II
k̃ (t) ; (60)

Ĩh(t)=
∑
k̃

˝�k̃∇k̃�k̃
QN
II
k̃ (t) ; (61)

Ĩn(t)=
∑
k̃

∇k̃�k̃
QN
II
k̃ (t) ; (62)

which is the particle number Iux, and

QN
II
k̃ (t)= (exp[*II (t)˝�k̃ + F̃hII (t) · ˝�k̃∇k̃�k̃ + F̃nII (t) · ∇k̃�k̃ ]− 1)−1 ; (63)

with �k̃ = c|̃k| and ∇k̃�k̃ = ck̃=|̃k|. Considering that in the exponent in this equation
the terms containing F̃hII and F̃nII are much smaller than the Erst one (near-equilibrium
state), a second-order Taylor expansion in them yields, after some algebra, that

E(t)= �II (t) + a1(t)|F̃hII (t)|2 + a2(t)|F̃nII (t)|2 + a3(t)F̃hII (t) · F̃nII (t) ; (64)

Ĩh(t)= b1(t)F̃hII (t) + b2(t)F̃nII (t) ; (65)

Ĩn(t)= c1(t)F̃hII (t) + c2(t)F̃nII (t) (66)

with coeGcients a′s, b′s and c′s given in Appendix A, the dependence on time of these
coeGcients being due to the presence in them of *II (t), that is, the reciprocal of the
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quasitemperature in this description, namely *−1
II (t)= kBT ∗

II (t). Moreover, the Erst term
on the right-hand side of Eq. (64) is given by

�II (t)=
∑
k̃

˝�k̃
QN
0
k̃(t)= a[T ∗

II (t)]
4 ; (67)

where

QN
0
k̃(t)= (exp[*II (t)˝�k̃ ]− 1)−1 ; (68)

and a given by Eq. (50).
We can see that Eq. (64) is composed of a term, �II , with a [T ∗

II ]
4-form law, however,

in terms of the quasitemperature that this description deEnes (it is worth stressing that in
any description the basic variables (here E; Ĩh; Ĩn) are the same since they are physical
properties of the system, but the intensive nonequilibrium thermodynamic variables are
dependent on the description). But E contains other terms which are dependent on the
other Lagrange multipliers: it can be noticed that if we redeEne them in the form

F̃hII (t)= *II (t)̃vh(t)=c2 ; (69)

F̃nII (t)= ṽn(t)=c2 (70)

i.e., introducing the drift velocities for energy, ṽh(t), and for particle motion, ṽn(t), we
have

E(t)= a[T ∗
II (t)]

4 + ã1(t)v2h(t) + ã2(t)v2n(t) + ã3(t)̃vh(t) · ṽn(t) (71)

with ã1 = a1*2
II (t)=c

4; ã2 = a2=c4 and ã3 = a3*II (t)=c4, and we can interpret the energy
of the nonequilibrium radiation as composed of a purely thermal-motion contribution
plus what we can call a kinetic-motion contribution.
Furthermore, using Eqs. (65) and (66) we End that

Ĩh(t)= b̃1(t)̃vh(t) + b̃2(t)̃vn(t) ; (72)

Ĩn(t)= c̃1(t)̃vh(t) + c̃2(t)̃vn(t) (73)

i.e., the Iux of energy and of particle number expressed in terms of the drift velocities,
and b̃1 = b1*II (t)=c2; b̃2 = b2=c2; c̃1 = c1*II (t)=c2, c̃2 = c2=c2.
Finally, we notice that the Iux of informational-statistical entropy is in this case

Ĩs(t) ≡
Ĩ IIq (t)

T ∗
II (t)

= *II (t)̃Ih(t)= *II (t)[b̃1(t)̃vh(t) + b̃2(t)̃vn(t)] ; (74)

which deEnes a Iux of heat Ĩ IIq (t), due only to the Iux of energy; that of particles (the
photon number Iux) does not contribute in this case of radiation because no particle
number is present in the basic set (di6erently to the case of matter, where it would be
present in Eq. (74) accompanied by a quasi-chemical potential).
As Enal words in this section we stress that a complete description is that in

Section 2, which deEnes a quasitemperature for each mode, and then T ∗
k̃
(t) for all k̃ in

reciprocal space fully characterizes the nonequilibrium macroscopic state of the
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radiation. As shown at the beginning of Section 3 an alternative complete description is
provided by introducing the generalized nonequilibrium grand-canonical ensemble. On
the basis of the latter, contracted (approximate) descriptions can be used, with the most
contracted one (Section 3.1) consisting in retaining only the energy as basic variable
and then we have an approximate description in terms of a single quasitemperature
T ∗
I (t). The contracted description which includes the energy and the Iuxes of energy

and particles (Section 3.2) leads to an approximate description in terms of a qua-
sitemperature T ∗

II (t) [di6erent from that of the previous description, i.e., T ∗
I (t) �=T ∗

II (t)]
and two drift velocities ṽh(t) and ṽn(t). When Iuxes are included, the energy presents
besides a term with a fourth-power law in the quasitemperature in the given descrip-
tion, additional terms which can be considered as kinetic-like contributions due to the
motion characterized by the Iuxes.
Moreover, another important point is that whereas the quantities Nk̃ of Eq. (7) and in

Eq. (45) are the correct populations, the quantities NI
k̃
of Eq. (48) and NII

k̃
of Eq. (63)

are not, they are only approximate expressions depending on the truncated description
we are using.

4. Concluding remarks

We have performed a study of the thermodynamics of nonequilibrium radiation,
done in the framework of informational-statistical thermodynamics. This, as noticed,
implies describing irreversible thermodynamics on the basis of statistical mechanics for
nonequilibrium systems. In particular we have resorted for the latter to the approach
founded on Jaynes’ Predictive Statistical Mechanics.
In the most general approach (in Section 2) a mesoscopic statistical nonequilibrium

thermodynamics has been introduced in the sense that the space of states is char-
acterized by the populations of photons in all of their possible quantum-mechanical
states. As noticed, an alternative—and also complete—description can be made in
terms of the Lagrange multipliers (that the variational method introduces) associated
to the populations—they are said to be thermodynamically conjugated. They can be
interpreted as the reciprocal of a nonequilibrium-temperature-like variable (dubbed qu-
asitemperature) for each mode. This quasitemperature per mode evolves in time (until
a steady state is achieved under the action of a constant pumping source, or returns
to equilibrium after switching o6 the external source), and, as shown in the follow-up
article, can be determined via experimental measurements (and its evolution followed
in experiments of ultrafast optical spectroscopy).
Di6erent nonequilibrium thermodynamic properties have been discussed at the end

of Section 2 and so we do not go over them in these concluding remarks.
In Section 3 we have Erst reformulated the mesoscopic nonequilibrium thermodynam-

ics of radiation of Section 2, along an interesting line in informational-statistical ther-
modynamics based on the construction of a generalized nonequilibrium grand-canonical
ensemble. In that way a kind of thermo-hydrodynamics is introduced, describing the
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system in terms of energy, particle number (not the case for the present system of
photons), and their Iuxes of all order (the vectorial ones or currents of energy and
particles and the tensorial ones as the Iux of the Iux or second-order Iux, and so
on). Using this approach one can introduce truncations in the description of the system
(that is, reducing the number of Iuxes that are considered) [60].
In Section 3.1, we have considered the most contracted description possible, namely

introducing only the energy of radiation. The conjugated Lagrange multiplier can be in-
terpreted as the reciprocal of a time-dependent quasitemperature, and a time-dependent
fourth-power law of the Stefan–Boltzmann type applies to such a quasitemperature.
The radiation pressure can be evaluated and it follows the rule of being one third of
the time-evolving energy density.
In a slightly extended description, in Section 3.2, we have introduced besides the

energy of radiation, the vectorial Iuxes (currents) of energy and particles. The cor-
responding Lagrange multipliers can be, in this case, associated with, respectively, a
quasitemperature and drift velocities of energy and particles. We have seen that then,
when the currents are relevant and cannot be excluded of the set of basic variables, the
energy has two types of contributions [cf. Eq. (71)], namely a part with the form of a
fourth-power of the quasitemperature, plus another part which is a bilinear form in the
drift velocities: we have called them purely thermal contribution and kinetic-motion
contribution, respectively.
We notice that in this description it would be possible to deEne a pseudotemperature

of the nonequilibrated radiation by imposing on the energy, as given in this truncated
description by Eq. (71), a fourth-power law in terms of this pseudotemperature, say
Trad(t), meaning then that the latter is given in terms of the Lagrange multipliers by
the expression

a[Trad(t)]4 = a[T ∗
II (t)]

4
[
1 +

1
a
k4B*

4
II (t)(ã1(t)v

2
h(t) + ã2(t)v2n(t)

+ ã3(t)̃vh(t) · ṽn(t))
]

: (75)

We can see that in the case of the truncation of Section 3.1, this pseudotemperature
of the radiation coincides with the quasitemperature T ∗

I (t).
Moreover, the Iuxes [currents of Eqs. (72) and (73)] are linear combinations of

the drift velocities, as expected, and so is the Iux (current) of informational-statistical
entropy [cf. Eq. (74)]. Finally, in this truncated description, the radiation pressure,
which is derived from the second-order Iux of energy, satisEes the law of being one
third of the density of energy. Hence, such radiation pressure has two contributions,
namely, one arising from the thermal motion and another one which depends on the
kinetic motion and is a bilinear expression in the drift velocities.
In summary, the nonequilibrium thermodynamic state of radiation in bulk is com-

pletely described by the determination of the populations in each mode or, alternatively,
by the quasitemperature in each mode. However, depending on the characteristics of
the situation (usually determined by the experimental protocol) it is possible to use
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truncated thermo-hydrodynamic descriptions in terms of the densities of energy and par-
ticles and, eventually, a reduced set of their Iuxes (Erst Iuxes or currents, second-order
Iuxes, etc.)
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Appendix A. The coe#cients in Eqs. (64)− (66)

As said in the main text, after some algebra we End the expressions up to second
order in the variables F’s- of Eqs. (64)–(66), where the coeGcients are

a1(t)=V
2+2

9˝3c [kBT
∗
II (t)]

6 ; (A.1)

a2(t)=V
1

6˝3c [kBT
∗
II (t)]

4 ; (A.2)

a3(t)=V
8�(3)
+2˝3c [kBT

∗
II (t)]

5 ; (A.3)

b1(t)=− V
4+2

45˝3c [kBT
∗
II (t)]

5 ; (A.4)

b2(t)=− V
2�(3)
+2˝3c [kBT

∗
II (t)]

4 ; (A.5)

c1(t)= b2(t) ; (A.6)

c2(t)=− V
1

9˝3c [kBT
∗
II (t)]

3 ; (A.7)

where � is the Riemann zeta function.
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