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Dispersal probability distributions and the wave-front speed problem
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The speed and width of front solutions to reaction-dispersal models are analyzed both analytically and
numerically. We perform our analysis for Laplace and Gaussian distribution kernels, both for delayed and
nondelayed models. The results are discussed in terms of the characteristic parameters of the models.
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I. INTRODUCTION

Reaction-diffusion models have been widely used to
scribe a large number of physical, chemical, and biolog
problems when dispersal is coupled to reaction@1#. The pro-
totype is Fisher’s equation] tr5]xxr1 f (r) wherer.0, f is
a nonlinear function ofr and typically f (0)5 f (1)50. As
shown rigorously by Aronson and Weinberger@2#, for a suf-
ficiently localized initial condition the solution to this equ
tion evolves into a wave front which connects the homo
neous steady statesr51 ~stable! to r50 ~unstable! traveling
with the minimal possible speed. Another important a
proach is able to model more general dispersal proce
than diffusive ones, as well as long-range effects. In t
framework, one resorts to integrodifferential or integrodiffe
ence equations. Let us denote such approaches unde
name reaction-dispersal models@3#. Their differences with
respect to the reaction-diffusion approach will be made c
below. Mathematically, the later makes use of differential,
opposed to integrodifferential or integrodifference, evoluti
equations. Reaction-dispersal models are based on cons
ing a kernel probability distribution, which quantifies th
probability of dispersing as a function of distance. For mo
els that describe the spread of invading organisms often
assumes that the kernel is Gaussian, but in practice it sh
be estimated from observed data@4#.

It is important to stress that many reaction-dispersion s
tems do not exhibit wave-front solutions. Accordingly, he
we shall here consider a specific class of systems for wh
this behavior does arise, namely, those in which the sys
has two equilibrium states, one of them being stable and
other one unstable. Moreover, the dispersion will be
scribed by means of a kernel, in contrast to the more us
diffusive approach in which it is described as a Laplacian
the particle number density in the particle number evolut
equation~this classical limit will be retrieved as a speci
case!. Also, the initial condition we shall use is such that
particles are initially confined to a finite region, since it
known from the diffusive~i.e., classical! limit that for non-
compact initial conditions the solution may in general
different from a wave front@2#.

In this paper, we study the wave-front speed problem
reaction-dispersal systems that have been applied to eco
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cal problems @3,5,6#, bilogical invasions @7#, human-
mediated dispersal@8#, and in general, to spatial spread ph
nomena with long-range interaction@1#. Our main
motivation is that analytical formulas for the speed and wid
of fronts have not been previously derived for such cases
spite of their practical importance. We make use of margi
stability analysis for fronts traveling into an unstable sta
@9#, a method developed originally for reaction-diffusio
equations. This analysis is extended here to react
dispersal equations, and compared to numerical solution
determine the speed and also the width of emerging fro
Our models are based in a dispersal probability distribut
given by Gaussian~normal! or Laplace~leptokurtic! kernels.
Our interest is to observe the effect of the underlying rand
walk ~through the specific kernel! and of the characteristic
waiting timet between successive jumps on the front velo
ity. Finally we also study, again both analytically and n
merically, the effect of these parameters on the width of
front.

II. REACTION-DISPERSAL MODELS

Let r(x,t) be the density of particles inx at time t. We
assume that all the particles wait a timet between two suc-
cessive jumps. After a timet the density of particles is given
by two contributions: on one hand, the density of partic
which jump tox at the timet1t, and on the other hand, th
particle created from a nonlinear source termF(r)5r f (r)
wherer is the characteristic rate of reproduction. Then o
writes the following integrodifference equation:

Model A:

r~x,t1t!5E
2`

`

r~x1D,t !w~D!dD1tr f ~r!, ~1!

where the kernelw(D) means the probability distribution
function of jumps length, so thatw (D) yields the probability
that a particle makes a jump of lengthD (D may be positive
or negative!. Consider isotropic kernels@i.e., w(D)
5w(2D)#. The moments of the kernel are given by

^Dn&[E
2`

`

Dnw~D!dD, ~2!
©2002 The American Physical Society09-1
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where^Dn&50 for oddn. On the other hand, the normaliza
tion condition readŝD0&51. The integral in Eq.~1! must be
done over the set of possible lengths of jumpD. Model A has
been already studied in order to find out the possible spe
of wave fronts by applying Hamilton-Jacobi theory for
specific kernel@10# in which all particles jump the sam
distance. That kernel, which is different from those cons
ered by us below, is very interesting conceptually but
very realistic from a practical point of view@11,12#.

The continuous version for Model A~i.e., Fedotov’s
Model B @10#! is nothing but the first-order expansion of th
left-hand side of Eq.~1! for t!t. In this way, one gets the
following nondelayed integrodifferential equation:

Model B:

] tr~x,t !5lF E
2`

`

r~x1D,t !w~D!dz2r~x,t !G1r f ~r!,

~3!

wherel51/t. Both Models A and B shall be considered
this paper.

A. Limiting cases

By expanding the termsr(x,t1t) andr(x1D,t) in Eq.
~1! in Taylor series fort!t andD!x one has, in general

(
n51

`
tn

n!
] t

nr~x,t !5 (
n51

`
^D2n&
~2n!!

]x
2nr~x,t !1tr f ~r!. ~4!

Up to the first order int and up to second order inD, this
yields the following equation:

] tr5D]xxr1r f ~r!, ~5!

which is the well-known Fisher–Kolmogorov-Petrovsk
Piskunov equation, andD[^D2&/(2t) is the diffusion coef-
ficient, given in terms of the second moment of the distrib
tion functionw(D).

One the other hand, up to the second order int and up to
second order inD, the following equation is obtained:

t

2
] ttr1] tr5D]xxr1r f ~r!. ~6!

This equation has been recently studied to take into acc
memory effects in the transport process@13#.

III. FRONT SPEED PROBLEM

To study the front speed problem, we will make use of
marginal stability analysis to find the speed of wave fronts
terms of a dispersal relationv5v(k) where, in principle,v
andk may be complex numbers. Once the dispersal rela
is obtained, the asymptotic speedy* is given by y*
5v* /k* where v* 5v(k* ), k* 5 ik i* , kr* 50, v* 5 iv i* ,
andv r* 50. The subscriptsi andr indicate the imaginary and
real parts, respectively. The value ofki* must be computed
from the conditionv i* /ki* 5dv i* /dki* @14#. This condition,
04110
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however, is equivalent to demand that the speed must ha
minimum at ki* , that is dv* /dki* 50 as may be easily
checked.

The growth termf (r) we use in this paper is such tha
f (0)5 f (1)50 wherer51 andr50 are the homogeneou
steady states, stable and unstable, respectively, andf 8(0)
.0. A specific case which will be used for numerical sim
lations is the logistic growthf (r)5r(12r).

A. Speed of fronts in Model A

We show now how to derive the speed of wave fron
traveling into the unstable stater50, for systems evolving
according to Eq.~1! by linearizing f (r) around the unstable
stater50, that is,f (r). f 8(0)r. Then

r~x,t1t!5E
2`

`

r~x1D,t !w~D!dD1br, ~7!

where

b[r t f 8~0!.

We propose a plane traveling wave solution with the fo
r(x,t);exp@i(kx2vt)# which introduced into Eq.~7! yields
the dispersion relation

e2 ivt5w̃~k!1b, ~8!

where

w̃~k![E
2`

`

eikDw~D!dD5A2pF @w~k!#, ~9!

and F @w(k)# is the Fourier transform of the kernel. Th
dispersal relation is given, from Eq.~8!, by

v5
21

i t
ln@w̃~k!1b#,

and the asymptotic speed is

y* 5
v~k5 ik i* !

ik i*
5min

ki*
H 1

tki*
ln@ŵ~ki* !1b#J , ~10!

where ŵ(ki* )[w̃( ik i* ). In order to find out the minimum
speed we must find the value ofki* such that the relation
dv* /dki* 50 is fulfilled. Taking into account Eq.~10!, ki*
must be found from

@ŵ~ki* !1b# ln@ŵ~ki* !1b#5ki*
dŵ~ki* !

dki*
, ~11!

which lead us to a transcendent equation forki* . However,
we can find approximate analytical solutions. Let us now
consider two specific random walks described by typi
probability distribution functions of jumps. The delta kern
used in Ref.@10# assumes that all particles jump the sam
length. However, both in physical and in biological pr
9-2
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DISPERSAL PROBABILITY DISTRIBUTIONS AND THE . . . PHYSICAL REVIEW E 65 041109
cesses, this is known to be a rather extreme approximatio
the observed dispersal distance distributions@4,11,12#.
Therefore, we apply the above analysis to dispersal ker
that have been often used in the literature, although t
corresponding front speeds have not been previously
tained.

The most usual kernel is the so-called normal or Gaus
one, namely,

w~D!5
1

aAp
e2D2/a2

.

For this kernel,w̃(k)5exp(2k2a2/4), ŵ(ki* )5exp(ki*
2a2/4)

and^Dn&5anG(n11/2)/Ap for evenn and 0 for oddn. The
kurtosis of the kernel,

B25
^D4&

~^D2&!2

is a measure of the disparity of spatial scales for the dispe
process. Leptokurtic kernels haveB2.3, and the Gaussian
kernel hasB253, as may be easily checked.

We assume that the minimum is attained forki* a,1, so
that we expand Eq.~11! up to second order inki* a and we
find

ki* .
2

a F ~11b!ln~11b!

11b ln~11b! G1/2

.

Finally, the minimum speed is, from Eq.~10!, given by

y* .
a

2t F 11b ln~11b!

~11b!ln~11b!G
1/2

3 ln@~11b!(11b)/[11b ln(11b)]1b#. ~12!

The second kernel we use is the Laplace kernel@11,15#

w~D!5
1

2a
e2uDu/a.

For this kernel,w̃(k)51/(11k2a2), ŵ(ki* )51/(12ki*
2a2)

and^Dn&5ann! for evenn and 0 for oddn. The kurtosis of
this kernel isB256.3, i.e., it is leptokurtic. These kinds o
kernels have been found more realistic for ecological pr
lems than the Gaussian ones@11#. In this case, the minimum
value for the speed of the front must be computed within
interval ki* P(0,1/a) to guarantee the positive and fini

value for ŵ(ki* ), so that in this case we also considerki* a
,1. Expanding Eq.~11! up to second order inki* a and we
get

ki* .
1

a F ~11b!ln~11b!

11~112b!ln~11b!G
1/2

,

and the speed at this point is found to be
04110
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y* .
a

t F11~112b!ln~11b!

~11b!ln~11b! G1/2

3 lnF11b1~11b!2ln~11b!

11b ln~11b! G . ~13!

The analytical solutions obtained for both kernels have b
compared to the numerical solutions to the transcende
Eq. ~11!, and also to the speed of fronts observed in num
cal simulations of Eq.~1!. We have performed the numerica
simulations by using a logisitc growth term@ f (r)5r(1
2r)# and a ‘‘double-step’’ function for the initial profile
namely,

r~x,t50!5H 0 if x,2x0

1 if 2x0,x,x0

0 if x.x0

, ~14!

and applying the fast-Fourier-transform~FFT! method,
which allows us to derive precise results in a much sho
computer time@16#.

In Figs. 1 and 2 we plot the speeds observed in the
merical simulations for Model A~symbols!, as well as the
analytical predictions~solid lines!, for Laplacian~Fig. 1! and
Gaussian~Fig. 2! dispersal. We have checked that the p
dictions of the transcendental Eq.~11! are the same as thos
of the explicit analytical Eqs.~12! and ~13! @full curves in
Figs. 1 and 2#. We observe that in Figs. 1 and 2, Eqs.~12!
and~13! are very good approximations since they agree w
the simulations, and we note that the speed increases with
characteristic dispersal distancea, as was to be expecte
intuitively. In both figures one observes that the speed
lower for higher values of the waiting timet, also as ex-
pected. From Eqs.~12! and ~13! we obtain that the spee
varies linearly witha. However, in Figs. 1 and 2, as well a

FIG. 1. Comparison between numerical~symbols! and analyti-
cal @solid lines obtained from Eq.~13!# solutions for the speed o
fronts in Model A for Laplacian dispersion. We have usedr 51/2
and a logistic reaction termf (r)5r(12r). The speed of the front
for t51 is lower than fort50.5.
9-3
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in Fig. 3 for Model B, we usea2 ~and ^D2&, which is pro-
portional toa2) rather thana as independent variable, be
causea, in contrast to the mean-square jump distance^D2&,
does not have a single physical interpretation for both k
nels. Note that for the Laplacian kernel^D2&52a2, whereas
for the Gaussian onêD2&5a2/2. Comparing Figs. 1 and 2
we also see that the Laplace kernel gives a higher fr
speed. This could have been expected intuitively because
Gaussian kernel decays faster with distance, so that fe
particles disperse to high distances. We can expect the
general, that the speed of fronts increases with the kurtos
the kernel and therefore leptokurtic kernels yield high
speed of front than platikurtic (B2,3) kernels. Although a
general proof is not available, we have noted that this

FIG. 2. Comparison between numerical~symbols! and analyti-
cal @solid lines obtained from Eq.~12!# solutions for the speed o
fronts in Model A for Gaussian dispersion. We have takenr 51/2
and a logistic reaction termf (r)5r(12r).

FIG. 3. Comparison between numerical~symbols! and analyti-
cal @solid curve,y* .2A^D2&/2Agl from Eq. ~21!# solutions for
the speed of fronts in Model B. The speed of the fronts for Lapl
ian and Gaussian kernels is the same sincer /l!1. We have used
r 51/10,l510, and a logistic reaction source functionf (r)5r(1
2r).
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consistent with physical intuition and our analytical and n
merical results.

B. Speed of fronts in model B

We also linearize Eq.~3! around the unstable stater50,
so that

] tr~x,t !5lF E
2`

`

r~x1D,t !w~D!dz2r~x,t !G1gr,

~15!

where g5r f 8(0). Assuming a plane traveling wave, w
have the dispersal relation

2 iv5l@w̃~k!21#1g, ~16!

where w̃(k) is given by Eq.~9!. The asymptotic speed i
given then by

y* 5
v~k5 ik i* !

ik i*
5min

ki*
H l@ŵ~ki* !21#1g

ki*
J . ~17!

We must find now the value ofki* such that the relation
dv* /dki* 50 is fulfilled. Taking into account Eq.~17!, ki*
must be found from

ŵ~ki* !1
g

l
215ki*

dŵ~ki* !

dki*
. ~18!

For the Gaussian kernel, we assume that the minimum
attained forki* a,1. If one expands Eq.~18! up to second
order inki* a one gets

ki* a.2Ag/l,

and from Eq.~17! one obtains

y* .
a

2
Al

g
~leg/l2l1g!. ~19!

For the Laplace kernel, one proceeds along the same
and the value forki* which minimizes the speed is given b

ki* a.A g/l

112g/l
,

and the speed is given by

y* .a
2l1g

l1g
Agl12g2. ~20!

Let us now assume thatg5r f 8(0)!l. The physical
meaning of this approximation is the following: sincel21

andr 21 are the timescales of the dispersal and reactive p
cesses, respectively, for a logistic growth withf 8(0)51 the
limit r !l holds when dispersal process is much faster~or

-

9-4
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equivalently, the delay timet is low enough! than the growth
process. In this case, it is interesting to note that both E
~19! and ~20! yield

y* .2A^D2&/2Agl52ADr , ~21!

where the diffusion coefficient is given byD5^D2&/(2t)
and l5t21. Note that this additional approximationr t!1
does not hold for cases such as those in Figs. 1 and 2. Th
fore, in Fig. 3 we check the agreement between both Mod
A and B for r t50.01!1. Both the simulation and the theo
retical results yield the same speeds, as expected, bec
Model B reduces to Model A ifl51/t and t!1/r holds.
The physical reason for this agreement is that the effec
the delay time is small enough so that Fisher’s approach@Eq.
~5!, which neglects the role of the term int appearing in Eq.
~6!# holds approximately. However, we stress that if the
proximationr t!1 breaks down, then Models A and B yie
different results. This may be seen in Figs. 4 and 5~e.g.,
r t50.2 in Fig. 4!, where the predictions of both models a
seen to be very different, as checked by the numerical si
lations. It shows that Model B, which is only a first-ord
approximation to Model A, is not available to capture t
detailed dynamics of the front. Therefore, when dealing w
specific applications, in order to distinguish clearly the co
sequences of the dispersion probability kernel on the fr
speed, Model A should be preferred to Model B, unless th
is some experimental information relative to the microsco
random-walk rest time probability distribution function~see
Refs.@10,17,18#!.

Figure 4 presents some simulated fronts according to b
models. It is seen that Model B, which is only an appro
mation to Model A, yields a faster front~Fig. 4, inset!. It is
also seen that Model B yields a wider front~main Fig. 4!.
This is also shown in Fig. 5, for several values of the de
time t, and is discussed in more detail in Sec. IV below.

FIG. 4. Front profiles forr 50.1 and the Laplacian kernel with
a25700. In Model Bl51/t, with t52 the value used in Model A
as explained in the main text. Note that Model B yields a fas
front, which also has a wider reaction zone.
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IV. WIDTH OF WAVE FRONT

The knowledge of the width of a front is interesting
virus phage fronts, where the front profile may be observ
directly in order to validate models@19#, as well as in the
context of fire fronts, where the width of the combustio
zone is a relevant prediction@20#. From Fig. 4 we observe
that there exists an inflection pointx* such that]xr reaches
a maximum value atx5x* and (]x

2nr)x5x* 50 for n
51,2,3, . . . . In thelimit t!t one has from Eqs.~1! and~4!

r~x* ,t1t!.r~x* ,t !1t] trux5x*

5r t f ~r!ux5x* 1r~x* ,t !,

so that

t] trux5x* .r t f ~r!ux5x* . ~22!

We change into a frame moving with the front by definin
the coordinatez[x2v* t. For x5x* one hasz* [x2v* t
and from Eq.~22! we get 2v* ]zruz5z* .r f (r)ux5x* . The
width of the frontL is given by

L2152]zruz5z* .
r

v*
f ~r!uz5z* . ~23!

In Fig. 5 we compare this prediction to the results
numerical simulations for a logistic reactive proce

@ f (r)uz5z* 5 f ( 1
2 )5 1

4 #. The front width is estimated from the
simulated profiles by fitting a straight line to the centr
range (r.1/2) of profiles such as those in Fig. 4 and,
mentioned above, the front width is estimated as the inve
of the slope of the fitted line. From Fig. 5, we see that th
is good agreement with the theoretical prediction given
Eq. ~23!. Note that from Eq.~23!, the front speed is propor
tional to the front width in both models. A higher value of th
delay time corresponds to a narrower, slower front, as wa

r

FIG. 5. Front width versus delay time. The rhombs are the
sults from the numerical simulations, and the curves are the th
retical predictions. In Model B,l51/t so that Model B is a first-
order approximation to the full dynamics described by Model
The front speed is proportional to the front widthL @see Eq.~23!#.
9-5
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be expected. Figure 5 shows that, the higher the value ot,
the more error results from using Model B as an approxim
tion to Model A, also as expected. This error is higher th
20% in Fig. 5 and is the same for the front speed and
front width, because they are proportional to each other@see
Eq. ~23!, which makes it possible to determine the spe
from any value of the front width in Fig. 5#. Therefore, when
using Model B as an approximation to Model A, one shou
previously see if the error, computed in the way explained
this paper and illustrated by Fig. 5, is negligible or not f
the parameter values used.

V. CONCLUSIONS

We have studied the speed of fronts for integrodifferen
~Model A! and integrodifferential~Model B! equations that
model reaction-dispersal processes. These models have
applied to a wide range of ecological invasions@3,6,11#. In
the present paper, the dispersal process has been model
Laplace and Gaussian kernels, and all of the particles wa
time t below making the next jump. When dispersal a
reaction work together, traveling wave fronts can appear.
asymptotic speed of the fronts, which was previously u
a

l.

tz

d.
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known, has been derived from the marginal stability analy
usually employed for reaction-diffusion processes@9#. Ap-
proximate analytical expressions for the speed have b
found and compared with numerical simulations, exhibiti
rather good agreement. We have shown how the speed
minishes with increasing values of the waiting timet, and
increases with the characteristic length of jumpa. The
Laplace kernel yields a higher front speed than the Gaus
one, which exhibits that leptokurtic kernels should be e
pected intuitively to yield higher front speeds than platikur
ones. When the waiting timet is small (t@t), Model A may
be approximated by Model B. Fort!r 21, one recovers
Fisher’s result from both models. However, in gener
Model B yields a faster, as well as wider, front than Mod
A—again in agreement with our theoretical formulas.
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