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Dispersal probability distributions and the wave-front speed problem
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The speed and width of front solutions to reaction-dispersal models are analyzed both analytically and
numerically. We perform our analysis for Laplace and Gaussian distribution kernels, both for delayed and
nondelayed models. The results are discussed in terms of the characteristic parameters of the models.
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I. INTRODUCTION cal problems [3,5,6), bilogical invasions[7], human-
mediated disperséB], and in general, to spatial spread phe-
Reaction-diffusion models have been widely used to denomena with long-range interactiofl]. Our main
scribe a large number of physical, chemical, and biologicamotivation is that analytical formulas for the speed and width
problems when dispersal is coupled to reacfibh The pro- of fronts have not been previously derived for such cases, in
totype is Fisher’s equatiofyp = dyp+ f(p) Wherep>0,fis  spite of their practical importance. We make use of marginal
a nonlinear function op and typicallyf(0)=f(1)=0. As  stability analysis for fronts traveling into an unstable state
shown rigorously by Aronson and Weinberdét, for a suf- [9], @ method developed originally for reaction-diffusion
ficiently localized initial condition the solution to this equa- equations. This analysis is extended here to reaction-
tion evolves into a wave front which connects the homogedispersal equations, and compared to numerical solutions, to
neous steady statps= 1 (stablé to p=0 (unstablg traveling ~ determine the speed and also the width of emerging fronts.
with the minimal possible speed. Another important ap-Our models are based in a dispersal probability distribution
proach is able to model more general dispersal processéiven by Gaussiatnorma) or Laplace(leptokurtig kernels.
than diffusive ones, as well as long-range effects. In thigOur interest is to observe the effect of the underlying random
framework, one resorts to integrodifferential or integrodiffer-walk (through the specific kernebnd of the characteristic
ence equations. Let us denote such approaches under th@iting time 7 between successive jumps on the front veloc-
name reaction-dispersal moddR]. Their differences with ity. Finally we also study, again both analytically and nu-
respect to the reaction-diffusion approach will be made cleafmerically, the effect of these parameters on the width of the
below. Mathematically, the later makes use of differential, agront.
opposed to integrodifferential or integrodifference, evolution
equations. Reaction-dispersal models are based on consider-
ing a kernel probability distribution, which quantifies the
probability of dispersing as a function of distance. For mod- Let p(x,t) be the density of particles ir at timet. We
els that describe the spread of invading organisms often ongssume that all the particles wait a timéetween two suc-
assumes that the kernel is Gaussian, but in practice it shoulsessive jumps. After a time the density of patrticles is given
be estimated from observed da. by two contributions: on one hand, the density of particles
It is important to stress that many reaction-dispersion syswhich jump tox at the timet+ 7, and on the other hand, the
tems do not exhibit wave-front solutions. Accordingly, hereparticle created from a nonlinear source teffifp) =rf(p)
we shall here consider a specific class of systems for whiclwherer is the characteristic rate of reproduction. Then one
this behavior does arise, namely, those in which the systemrites the following integrodifference equation:
has two equilibrium states, one of them being stable and the
other one unstable. Moreover, the dispersion will be depjodel A:
scribed by means of a kernel, in contrast to the more usual,
diffusive approach in which it is described as a Laplacian of
the particle number density in the particle number evolution p(X,t+ T)Zf
equation(this classical limit will be retrieved as a special
case. Also, the initial condition we shall use is such that all

particles are initia_lly c_onf_ined to a_finit_e region, since it is \yhere the kernelp(A) means the probability distribution
known from the diffusive(i.e., classicallimit that for non-  nction of jumps length, so that (A) yields the probability
compact initial conditions the solution may in general bey,at 4 particle makes a jump of length(A may be positive
different from a wave fronf2]. or negativeé. Consider isotropic kernels[i.e., ¢(A)

In this paper, we study the wave-front speed problem for_ o(—A)]. The moments of the kernel are given by

reaction-dispersal systems that have been applied to ecologi-

Il. REACTION-DISPERSAL MODELS

©

p(X+A)e(A)dA+7rf(p), (D)
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where(A™ =0 for oddn. On the other hand, the normaliza-
tion condition read¢A® =1. The integral in Eq(1) must be
done over the set of possible lengths of juipModel A has
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however, is equivalent to demand that the speed must have a
minimum at ki , that is dv*/dk’ =0 as may be easily
checked.

been already studied in order to find out the possible speeds The growth termf(p) we use in this paper is such that
of wave fronts by applying Hamilton-Jacobi theory for a f(0)=f(1)=0 wherep=1 andp=0 are the homogeneous

specific kernel[10] in which all particles jump the same

steady states, stable and unstable, respectively, faf@)

distance. That kernel, which is different from those consid->0. A specific case which will be used for numerical simu-
ered by us below, is very interesting conceptually but notations is the logistic growthi(p)=p(1—p).

very realistic from a practical point of viepd1,12.
The continuous version for Model Ai.e., Fedotov's

Model B[10]) is nothing but the first-order expansion of the

left-hand side of Eq(1) for 7<t. In this way, one gets the
following nondelayed integrodifferential equation:

Model B:

am(x,t):x{ f Zp(xw,t)@(mdz—p(x,t) +1f(p),

()
where\ =1/7. Both Models A and B shall be considered in
this paper.

A. Limiting cases
By expanding the termg(x,t+ 7) andp(x+A,t) in Eq.
(1) in Taylor series forr<t andA<x one has, in general

A2n
§2n)!> &)Z(np(x,t)-l— 7rf(p).

n o

S ex=3

n=1

(4)

Up to the first order inr and up to second order ik, this
yields the following equation:

©)

which is the well-known Fisher—Kolmogorov-Petrovskii-
Piskunov equation, anB=(A?)/(27) is the diffusion coef-

dp=Doyp+rf(p),

ficient, given in terms of the second moment of the distribu-

tion function ¢ (A).
One the other hand, up to the second order and up to
second order i\, the following equation is obtained:

T

2 dup+op=Daxxp+rf(p).

(6)

This equation has been recently studied to take into accoun!

memory effects in the transport proc¢4s].

Ill. FRONT SPEED PROBLEM

To study the front speed problem, we will make use of the
marginal stability analysis to find the speed of wave fronts in

terms of a dispersal relation= w(k) where, in principle w

A. Speed of fronts in Model A

We show now how to derive the speed of wave fronts
traveling into the unstable stape=0, for systems evolving
according to Eq(1) by linearizingf(p) around the unstable
statep=0, that is,f(p)=f'(0)p. Then

p(x,t+r)=f:p(xm,t)(pm)dmﬂp, @)

where
B=rrf'(0).

We propose a plane traveling wave solution with the form
p(x,1) ~exdi(kx—wt)] which introduced into Eq(7) yields
the dispersion relation

e 97="o(k)+ 8, ®)

where

b= eonia=\znrTel, @
and F[ ¢(k)] is the Fourier transform of the kernel. The
dispersal relation is given, from E(g), by

-1 .
w=——In[¢(k)+A],
and the asymptotic speed is

Dl Lo g1}, 20
v =—————=min{ —In[¢(K: ,

ik ke
here o(k*)=¢(ik¥). In order to find out the minimum
speed we must find the value &f such that the relation

dv*/dk" =0 is fulfilled. Taking into account Eq(10), k{*
must be found from

~(k* ~l* *d(”\o(ki*)
Lo(ki)+ Alinle (ki) + BI=k" — o= (1D

andk may be complex numbers. Once the dispersal relatiogyich lead us to a transcendent equationkpr However,

is obtained, the asymptotic speed is given by v*
=w*/k* where w* =w(k*), k*=ik¥, kF =0, 0* =i,
andw} =0. The subscriptsandr indicate the imaginary and
real parts, respectively. The value kif must be computed
from the conditionw; /k} =dw /dK* [14]. This condition,

we can find approximate analytical solutions. Let us now to

consider two specific random walks described by typical
probability distribution functions of jumps. The delta kernel
used in Ref[10] assumes that all particles jump the same
length. However, both in physical and in biological pro-
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cesses, this is known to be a rather extreme approximation tc <AZs
the observed dispersal distance distributiopg11,12. 0l 20 400 600 800 1000 1200 1400
Therefore, we apply the above analysis to dispersal kernel ] L
that have been often used in the literature, although theit eod Laplacian Kernel, f(p)=p-p° 4
corresponding front speeds have not been previously ob: ] ]
tained. 504 Model A 7 =05 .
The most usual kernel is the so-called normal or Gaussiar ; . s
one, namely, 3 04 r-05 .
) E ] '
_ —A%a? ]
P(8)= e o] t=1 ]
For this kernelp(k) =exp(—k2a?/4), o(k¥)=exp:2a?/4) 7 )l
and(A")= a"T'(n+ 1/2)/\/ for evenn and 0 for odch. The P A EEEEE———
kurtosis of the kernel, 0 100 200 300 400 500 600 700
2
(%) !

= A2))2 FIG. 1. Comparison between numeri¢aymbolg and analyti-
((A%) cal [solid lines obtained from Eq13)] solutions for the speed of

) ) ) . ) fronts in Model A for Laplacian dispersion. We have uged1/2
is a measure of the disparity of spatial scales for the dispersghg 4 |ogistic reaction ter(p) =p(1—p). The speed of the front
process. Leptokurtic kernels haB >3, and the Gaussian for r=1 is lower than forr=0.5.

kernel hasB,=3, as may be easily checked.

2

We assume that the minimum is attained kfre<1, so a[1+(1+2B)In(1+B)|+?
;Irrl%t we expand Eq11) up to second order ik « and we vt = P EY)
| 1+ B+ (1+B)3An(1+B) 13
/
. 2[(1+p)In(1+p)|"2 Xln 1+ gIn(1+ B) (13
' | 1+8In(1+8)
The analytical solutions obtained for both kernels have been
Finally, the minimum speed is, from E¢L0), given by compared to the numerical solutions to the transcendental
Eqg. (11), and also to the speed of fronts observed in numeri-
a 1+BIn(1+p) 12 cal simulations of Eq(1). We have performed the numerical
V=S W simulations by using a logisitc growth terfrf(p)=p(1
—p)] and a “double-step” function for the initial profile,
XIn[(1+ g)A+AIL+AINA+AI 4 g7, (12 namely,
The second kernel we use is the Laplace kefh#|15 0 if X<=Xo
p(x,t=0)=4 1 if —Xu<Xx<Xo, (14)
1 .
— A lAle 0 if x>Xq
(A)=5—e 14,

and applying the fast-Fourier-transforrfFFT) method,
For this kernelp(k) = 1/(1+k?a?), o(k¥)=1/(1-k*2a?) which allows us to derive precise results in a much shorter

and(A™ = a"n! for evenn and 0 for oddn. The kurtosis of ~computer time[16]. _

this kernel isB,=6>3, i.e., it is leptokurtic. These kinds of [N Figs. 1 and 2 we plot the speeds observed in the nu-
kernels have been found more realistic for ecological probMerical simulations for Model Asymboly, as well as the
lems than the Gaussian onfdd]. In this case, the minimum analytical predictiongsolid lines, for Laplacian(Fig. 1) and
value for the speed of the front must be computed within thé>aussian(Fig. 2) dispersal. We have checked that the pre-
interval k* e (0,1/a) to guarantee the positive and finite dictions of the transcendental Ed.1) are the same as those

s . . . of the explicit analytical Eqs(12) and (13) [full curves in
value for ¢(k{"), so that in this case we also considéra Figs. 1 and 2 We observe that in Figs. 1 and 2, Eq$2)

<1. Expanding Eq(11) up to second order ikf" @ and We  54(13) are very good approximations since they agree with

get the simulations, and we note that the speed increases with the
2 characteristic dispersal distaneg as was to be expected
k-*zl (1+B)In(1+p) intuitively. In both figures one observes that the speed is
'oa| 1+ (1+28)In(1+RB)| lower for higher values of the waiting time, also as ex-
pected. From Egs(12) and (13) we obtain that the speed
and the speed at this point is found to be varies linearly witha. However, in Figs. 1 and 2, as well as
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<AZs consistent with physical intuition and our analytical and nu-
0 200 400 600 800 1000 1200 1400 merical results.
60 T T T T T T T T T T T T T
. 2
504 Gaussian kernel, f(p)=p-p | B. Speed of fronts in model B
Model A T =05 Y We also linearize Eq(3) around the unstable stape=0,
40 g so that
- r=0.5 "
§ 80+ 3 &tp(xyt)=>\“ p(X+A,D)e(A)dz—p(x,t) |+ yp,
w d d — o0
20 - 7 =1 i (15
where y=rf’(0). Assuming a plane traveling wave, we
10 T have the dispersal relation
0 4+ —r—r —r— —— —— — i =\ _
0 SCIJO 10|00 15|00 20|00 25I00 o= )\[ QD(k) 1] + s (16)

2
o

where ¢(k) is given by Eq.(9). The asymptotic speed is
FIG. 2. Comparison between numeri¢aymbolg and analyti-  given then by

cal [solid lines obtained from Eq12)] solutions for the speed of

fronts in Model A for Gaussian dispersion. We have takenl/2 o(k=ik})

and a logistic reaction terrfi(p) =p(1—p). ¥ =—————=min

{A[&»(kr)—l]w
K

k*

. 1
i . ] o
in Fig. 3 for Model B, we usex? (and(A?), which is pro-

portional to &%) rather thane as independent variable, be- We must find now the value dk* such that the relation
causew, in contrast to the mean-square jump distawé),  dv*/dk* =0 is fulfilled. Taking into account Eq17), k*
does not have a single physical interpretation for both kermust be found from

nels. Note that for the Laplacian kerr@d?)=2«?, whereas

for the Gaussian ongA?)=a?/2. Comparing Figs. 1 and 2, A y do (k)
we also see that the Laplace kernel gives a higher front qo(ki")-i-x—l:ki* S (18
speed. This could have been expected intuitively because the dk

Gaussian kernel decays faster with distance, so that fewer i . )
particles disperse to high distances. We can expect then, fiof the Gaussian kernel, we assume that the minimum is
general, that the speed of fronts increases with the kurtosis @ftained fork{" @<1. If one expands Eq18) up to second
the kernel and therefore leptokurtic kernels yield higherorder inki « one gets

speed of front than platikurticB,<3) kernels. Although a

general proof is not available, we have noted that this is ki a=2\/m,

55 T T T T T and from Eq.(17) one obtains
o] ModelB, f(p)=p-p°

45 . v*zg\ﬂ()\ew‘—)\-i- V). (29
ol r=1/10 ] 2 Vy
s 21 a=10 ] For the Laplace kernel, one proceeds along the same way
§ 30 ] and the value fok;* which minimizes the speed is given by
o A Laplace ]
TZT v Gauss ] K a= %
] ] +2yIN
0] theory
5] ] and the speed is given by
0 ] 4 T T T 4 T T T T T T T T -
0 200 400 600 800 1000 1200 1400 2Nty
<A®s vV=q )H_y\/y)\-l-Zyz. (20

FIG. 3. Comparison between numeri¢aymbolg and analyti- , .
cal [solid curve,v* =2\(AZ)/2\/yx from Eg. (21)] solutions for Let us now assume thay=rf’(0)<\. The physical
the speed of fronts in Model B. The speed of the fronts for Laplacmeaning of this approximation is the following: sinae *
ian and Gaussian kernels is the same sirfae<1. We have used andr ~! are the timescales of the dispersal and reactive pro-
r=1/10,A=10, and a logistic reaction source functibfp)=p(1  cesses, respectively, for a logistic growth wftf{0)=1 the
—p). limit r<\ holds when dispersal process is much fagter
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FIG. 4. Front profiles for =0.1 and the Laplacian kernel with
a?=700. In Model B\ = 1/7, with 7= 2 the value used in Model A,
as explained in the main text. Note that Model B yields a faste
front, which also has a wider reaction zone.

FIG. 5. Front width versus delay time. The rhombs are the re-
sults from the numerical simulations, and the curves are the theo-
Tretical predictions. In Model B\ = 1/r so that Model B is a first-
order approximation to the full dynamics described by Model A.
The front speed is proportional to the front widtH see Eq.(23)].
equivalently, the delay time is low enough than the growth
process. In this case, it is interesting to note that both Egs. IV. WIDTH OF WAVE FRONT

(19) and(20) yield The knowledge of the width of a front is interesting in

virus phage fronts, where the front profile may be observed
directly in order to validate modelsl9], as well as in the
—o [TADN> _
vt =2(A )/2@—2\/5, (21) context of fire fronts, where the width of the combustion
zone is a relevant predictidi20]. From Fig. 4 we observe

. . - L that there exists an inflection poirt such thatd,p reaches
where the diffusion coefficient is given by =(A2)/(27) a maximum value atx=x* gnd @) f% for n
X X=x*

and\=7"1. Note that this additional approximatian<1 _ R
does not hold for cases such as those in Figs. 1 and 2. Theré—l’z'3 -+ In thelimit <t one has from Eqg(1) and(4)

fore, in Fig. 3 we check the agreement between both Models P(X* 4 T)=p(X* 1) + T3]y g
A and B forr 7=0.01<1. Both the simulation and the theo-
retical results yield the same speeds, as expected, because =r7f(p)[x=xx + p(X* 1),

Model B reduces to Model A ik=1/7 and 7<1/r holds.

The physical reason for this agreement is that the effect o$0 that
the delay time is small enough so that Fisher’s appr¢&ch _
(5), which neglects the role of the term inappearing in Eq. 70| xxr =T () [xxs- (22

(6)] holds approximately. However, we stress that if the apyye change into a frame moving with the front by defining
proximationr 7<1 breaks down, then Models A and B yield o coordinatez=x—uv*t. For x=x* one hasz* =x—v*t

0.2 n Fig. 4, where the procictions of both models are 1o, O E22) We Get 0% duply1s <11(p)vr- The

' g- 9, predictions or both models are \idth of the frontL is given by

seen to be very different, as checked by the numerical simu-

lations. It shows that Model B, which is only a first-order r

approximation to Model A, is not available to capture the L‘1=—a2p|2:2*:—*f(p)|Z:Z*. (23

detailed dynamics of the front. Therefore, when dealing with v

specific applications, in order to distinguish clearly the con- , ) .

sequences of the dispersion probability kernel on the front ' Fig. 5 we compare this prediction to the results of

speed, Model A should be preferred to Model B, unless ther@Umerical simulations  for a logistic reactive process

is some experimental information relative to the microscopid f(p)|,=-+ = f(3) = 7]. The front width is estimated from the

random-walk rest time probability distribution functidgeee  simulated profiles by fitting a straight line to the central

Refs.[10,17,19). range p=1/2) of profiles such as those in Fig. 4 and, as
Figure 4 presents some simulated fronts according to botmentioned above, the front width is estimated as the inverse

models. It is seen that Model B, which is only an approxi-of the slope of the fitted line. From Fig. 5, we see that there

mation to Model A, yields a faster froriFig. 4, inset. It is  is good agreement with the theoretical prediction given by

also seen that Model B yields a wider frofrhain Fig. 4. Eq. (23). Note that from Eq(23), the front speed is propor-

This is also shown in Fig. 5, for several values of the delaytional to the front width in both models. A higher value of the

time 7, and is discussed in more detail in Sec. IV below. delay time corresponds to a narrower, slower front, as was to
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be expected. Figure 5 shows that, the higher the valug of known, has been derived from the marginal stability analysis
the more error results from using Model B as an approximausually employed for reaction-diffusion proces$6$ Ap-

tion to Model A, also as expected. This error is higher tharnproximate analytical expressions for the speed have been
20% in Fig. 5 and is the same for the front speed and théound and compared with numerical simulations, exhibiting
front width, because they are proportional to each ofkee rather good agreement. We have shown how the speed di-
Eq. (23), which makes it possible to determine the speedminishes with increasing values of the waiting timgand
from any value of the front width in Fig.]J5Therefore, when increases with the characteristic length of jumap The
using Model B as an approximation to Model A, one shouldLaplace kernel yields a higher front speed than the Gaussian
previously see if the error, computed in the way explained irone, which exhibits that leptokurtic kernels should be ex-
this paper and illustrated by Fig. 5, is negligible or not for pected intuitively to yield higher front speeds than platikurtic

the parameter values used. ones. When the waiting timeis small ¢> r), Model A may
be approximated by Model B. For<r !, one recovers
V. CONCLUSIONS Fisher's result from both models. However, in general,

] ) i Model B yields a faster, as well as wider, front than Model
We have studied the speed of fronts for integrodifferencea__again in agreement with our theoretical formulas.

(Model A) and integrodifferentialModel B) equations that
model reaction-dispersal processes. These models have been
applied to a wide range of ecological invasidi?s6,11. In

the present paper, the dispersal process has been modeled by
Laplace and Gaussian kernels, and all of the particles wait a The computing equipment used was funded in part by the
time 7 below making the next jump. When dispersal andCICYT of the Ministry of Science and Tecnology under
reaction work together, traveling wave fronts can appear. Th&rant Nos. BFM 2000-0351 and SGR-2001-001&86M.
asymptotic speed of the fronts, which was previously un-and J.B. and REN 2000-1621 CL(T.P. and J.F.
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