
VOLUME 89, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 21 OCTOBER 2002
Time-Delayed Spread of Viruses in Growing Plaques
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The spread of viruses in growing plaques predicted by classical models is greater than that measured
experimentally. There is a widespread belief that this discrepancy is due to biological factors. Here we
show that the observed speeds can be satisfactorily predicted by a purely physical model that takes into
account the delay time due to virus reproduction inside infected cells. No free or adjustable parameters
are used.
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containing agar-immobilized, stationary-phase host bac-
teria [13–15]. We deal with this case. Then, it is possible �V�t � �B�t � �k1�V��B� � ��I�t; (4)
I. Introduction.—Reaction-diffusion fronts arise in
solidification [1], superconductors [2], liquid crystals
[3], and combustion [4]. They also appear in ecology
[5], archaeology [6], genetics [7], and virology [8]. But
time-delayed front speed predictions have been so far
compared to observations only in two applications,
namely, the Neolithic transition in Europe [6] and the
Black Death plague [9]. Up to now, the delay time has
never previously been taken into account in predicting the
speed of fronts that can be experimentally reproduced
in the laboratory. This is done here for the first time. A
delay effect is used below to explain the replication and
spread of viruses in growing plaques. This work is also
relevant to physics, because wave-front solutions are im-
portant in many fields where a delay time must also be
included [10–12].

We investigate the spreading dynamics of viruses
which infect bacteria. It is shown that the present type
of models are inadequate as they do not take into account
the time delay between the arrival of a virus into a cell
and the reproduction of the virus. We extend the present
models by including this effect. No free or adjustable
parameters are used at all. Experiments independent to
those we want to explain are used to determine the values
of all parameters. With the values thus obtained, we are
able to explain the dependence for the front velocity as a
function of the bacterial concentration. This is the first
type of evidence for the relevance of delay effects in front
propagation experiments which can be repeated in the
laboratory.

A plaque is a region of dead (i.e., lysed) cells. It forms
due to the adsorption of viruses to host cells, their repli-
cation within, and the spread of the new generation after
lysis. Many virus phages can be successful only in a
medium of growing cells. In such cases, plaques will
stop growing after the bacteria reach an stationary phase.
On the other hand, for viruses such as T7, it has been
observed that plaques grow without bound in a medium
0031-9007=02=89(17)=178101(4)$20.00 
to measure the speed over a long period, but it does not
agree with that predicted by existing models [16–18].

II. Virus-cell interactions.—In a growing plaque, there
are three species. Their interactions can be summarized
by the reactions

V � B !k1 I !k2 Y � V; (1)

where Y is the production (or yield) of new viruses (V) per
infected host (I), k1 is the rate constant of adsorption of
viruses (V) to uninfected bacteria (B), and k2 is the rate
constant for death (or lysis) of infected bacteria (I).

Instead of presenting the equations of our model di-
rectly, it will be much clearer to introduce them after
considering several very simple situations.

Consider first a homogeneous medium, composed ini-
tially of infected cells (I) and a few free viruses. As time
goes on, cells will die and viruses (V) will appear at a
rate determined by the second of the reactions (1). This
process can be modeled by means of the usual logistic
equations,

�V�t � �Y�I�t � Yk2�I�
�
1�

�I�
�I�max

�
; (2)

where �� � �� denotes concentration, and the subindex
�� � ��t � @=@t stands for the time derivative. The solution
to Eqs. (2) under the appropriate boundary conditions
( lim�I�!�I�max

�V� � 0 and lim�I�!0�V� � �V�max) is easily
found,

�V� �
Y�I�max

1� c1 exp	�k2t

; (3)

which describes well the corresponding experimental
data and makes it possible to determine the values of
k2 and the yield Y (see Fig. 1). c1 is an integration con-
stant which depends on the arbitrary definition of the
moment t � 0.

Another very simple case corresponds to the homoge-
neous, nonreproductive adsorption of viruses [first reac-
tion in (1)]. Then, the usual equations are
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FIG. 1. One-step growth of virus T7 on E. coli versus the time
elapsed after adsorption (t � 0). In this experiment, the con-
centration is uniform and adsorption is negligible (�B�t � 0),
attained by dilution. Full line: least-square fit of the experi-
mental data points [14] to Eq. (3), which yields k2 �
1:39 min�1 and � � 18:4 min. Before the rise in �V�, the
experimental dots refer in fact to infected bacteria [19], and
the yield is the ratio of the final value �V�max to this initial
concentration [19], in this case Y � 34:5. Inset: T7 adsorption
on E. coli, based on the data in Ref. [20]. The assay was carried
out in the presence of KCN, which is known to inhibit the virus
reproduction. Then Eqs. (4) hold; thus, �B� � �V� � const.
From the initial concentrations (taking care of the multiplicity)
in Ref. [20], we find const� 1:39�108 ml�1. The solution for
�V� satisfies g	�V�
� lnf	�V��const
=�V�g � lnf	�V�t�0�
const
=�V�t�0g� const�k1t. Full line: least-square fit of the
experimental data [20] to this equation. The slope yields k1 �
	1:29�0:59
�10�9 ml=min. This value is rather uncertain,
but it turns out that the predictions are essentially the same
throughout this range of values for k1 (Fig. 2).
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FIG. 2. Speed of the growth of T7 virus plaques on E. coli as
a function of the bacterial relative concentration f. Upper
curves: predictions of the classical model [17], i.e., Eqs. (7)
with � � 0. Lower curves: time-delayed model (� � 18:4 min,
from Fig. 1). Symbols: experimental data [17]. The open and
closed data symbols refer to initial bacterial concentrations of
107 and 108 ml�1, respectively. The mean value and error for
f � 0:2 has been computed by taking into account that there
are some additional experimental data available for f � 0:2 in
Refs. [14,15]. In (b), the two lower curves are not distinguish-
able from each other at this scale, showing that the uncertainty
in the value of k1 (Fig. 1, inset) has very little effect on the
predicted speed.
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which, comparing to the appropriate experiment, allow
us to determine the value of k1 (Fig. 1, inset).

III. Plaque growth.—Consider now a situation in
which both adsorption and reproduction take place. If
the virus concentration is not uniform, virus diffusion
has also to be considered and the simplest generalization
of Eqs. (2) and (4) is8>><

>>:
�V�t � Deff�V�rr � FV	�V�; �B�; �I�


�B�t � FB	�V�; �B�; �I�


�I�t � FI	�V�; �B�; �I�
;

(5)

where Deff is the effective diffusion coefficient (explained
in detail in Sec. V), �� � ��rr � @2=@r2 stands for the sec-
ond spatial derivative in the radial direction from the
plaque center, and

8>>><
>>>:

FV	�V�; �B�; �I�
 � �k1�V��B� � Yk2�I�	1�
�I�

�I�max



FB	�V�; �B�; �I�
 � �k1�V��B�

FI	�V�; �B�; �I�
 � k1�V��B� � k2�I�	1�
�I�

�I�max

:
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IV. Time-delayed diffusion: approximate treatment.—
Equations (5) are Yin’s classical model [16–18] of plaque
growth with logistic dynamics. However, this model is
unable to explain experiments [16–18]. Our idea is very
simple. We will modify the classical model above by tak-
ing into account that there is a delay time between the
moment when a virus adsorbs into a cell and that in which
the cell dies and the new generation of viruses begins to
spread. Therefore, in agreement with the derivation in
Ref. [6], we propose to take into account this delay in
the diffusion process by modifying the first of Eqs. (5) by
its corresponding hyperbolic generalization, namely [6],

�V�t �
�
2
�V�tt � Deff�V�rr � FV �

�
2
	FV
t: (6)
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We stress that, for the moment, we are building the simplest possible model with a time delay by considering the well-
known hyperbolic approximation to the full time-delayed evolution equation (see ‘‘note added’’ at the end of this
Letter). In the simple, hyperbolic approximation considered, our model is

�V�t �
�
2
�V�tt � Deff�V�rr � k1

�
�V��B� �

�
2
	�V��B�
t

�
�Yk2

�
�I�

�
1�

�I�
�I�max

�
�

�
2

	
�I�

�
1�

�I�
�I�max

�

t

�
;

�B�t � �k1�V��B�; �I�t � k1�V��B� � k2�I�
�
1�

�I�
�I�max

�
:

(7)

In the first of Eqs. (7), � is the rest time, i.e., the time

interval during which particles (viruses in our case) do
not move [see Ref. [6] for the microscopic derivation of
Eq. (6), including the factor 1

2 appearing in its terms with
�]. Therefore, in the case considered here, � is simply the
mean time interval from the adsorption of a virus by an
uninfected host until the death of the thus infected cell.
Thus, it may be inferred from Fig. 1 to be � � 18:4 min.
Note that the interpretation of the delay time above is
analogous to that in the single-species, time-delayed
theory of the Neolithic transition in Europe, where � is
the time interval between two successive migrations [6].

Let B0 stand for the initial concentration of bacteria,
previous to the arrival of viruses. We introduce the di-
mensionless variables �BB��B�=B0, �VV��V�=B0, �II��I�=
B0, �tt�k2t, ����k2�, �rr� r

����������������
k2=Deff

p
, and �1�k1B0=k2. We

look for front solutions [17,21] by assuming the concen-
trations depend only on �zz� �rr� �cc�tt, where �cc�c=

�������������
Deffk2

p

and c is the front speed, and linearizing the system (7) in
the wave-front edge z!1, 	 �VV; �BB; �II
� 	"V;1�"B;"I
�
	0;1;0
, with "�	"V;"B;"I
�"0 exp	��z
. For a solu-
tion 	"V;"B;"I
� 	0;0;0
 to exist, the determinant of the
matrix corresponding to the linearized form of Eqs. (7)
must vanish. This yields the characteristic equation for
our problem, namely,

0�

�
�1�

���
2
�cc2
�
�cc�3�

�
�1�

	
1�	�1�1


���
2



�cc2
�
�2

�

�
�1 �cc

	
1�

���
2
	Y�1




��cc

�
���1	Y�1
:

(8)

If the values of the parameters are known, this equation
can be solved numerically in order to find out the dimen-
sionless front speed �cc. Numerical simulations [22] for a
variety of cases have shown that the front travels with the
minimum possible speed. Therefore, the minimum speed
is calculated from �cc�min�>0� �cc	�
�, where �cc	�
 is given
by characteristic Eq. (8). This is the marginal stability or
linearization speed selection mechanism, which applies
to the so-called pulled fronts [23,24].

V. Hindered diffusion.—We now have a time-delayed
model and the values of the reactive parameters. Concern-
ing diffusion, the effective coefficient for a solute (vi-
ruses in our case) dispersing through a continuous me-
dium (agar) in the presence of a suspension of spheroids
(host bacteria) which adsorb the solute is given by Fricke’s
equation [25],

Deff �
1� f

1� f
x

D; (9)
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where f � B0=Bmax is the concentration of bacteria rela-
tive to its maximum possible value. In the experiments
[14,15,17], f was measured indirectly by noting that the
bacterial concentration B0 (and thus Bmax) depends on the
initial nutrient concentration, and typical bacterial con-
centrations were estimated in the range 107–108 ml�1

[17]. In Eq. (9), D is the diffusion coefficient in the
absence of suspended particles, and x takes care of their
shape according to

x �
�1

1� 1
3 	

2
1�M

2
� 1

M

; (10)

where

M �
1

sin2�0
�

1

2

cos2�0

sin3�0
ln

�
1� sin�0

1� sin�0

�
; (11)

and cos�0 � b=a, with a the dimension of the suspended
spheroids (cells) along their axis of symmetry and b their
size along the other axis. Fricke’s results have been found
to agree very well with experimental observations of
blood cell suspensions [25,26]. For spherical particles
(a � b), x � 2 and one recovers Maxwell’s formula
[27], which is the approximation previously used in virus
diffusion by some authors [16,17]. For E. coli, a=b � 4:0
[28], which yields x � 1:67, and we use this more accu-
rate value. Also in Eq. (9), D is the diffusion coefficient
of the virus through agar in the absence of bacteria,
which can be approximated to that of P22 [17] because
it is very similar to T7 in size and shape [29], i.e., D �
4� 10�8 cm2=s [30]. Now that we have estimations of
the values for all of the parameters in the model (Y, k2, �,
k1, Bmax, x, and D) from independent experiments, we can
compare the predictions both from our new, time-delayed
model (� � 18:4 min) and from the classical one (� � 0)
to the observed infection speeds, without making use of
any free or adjustable parameters.

VI. Theory versus experiment.—They are compared in
Fig. 2. The classical approach (upper curves in Fig. 2)
predicts speeds that are clearly inconsistent with the
observed ones, as previously noted [16–18]. In contrast,
the new time-delayed model (lower curves in Fig. 2)
yields good quantitative agreement with the observations.
This is the first time that the time-delay effect is used to
explain wave-front propagation experiments that can be
reproduced under controlled conditions.

VII. Conclusions.—Our model provides a satisfactory
explanation for the growth of virus plaques. This is a
basic problem which is also important because it provides
an alternative way to predict and recognize virus strains,
178101-3
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as well as their evolution [14,15]. Previous attempts to use
reaction-diffusion models were unsuccessful. This led to
the misbelief that physical models cannot explain these
experiments [17,31]. Agreement to experiment has been
attained here, after taking proper care of (i) the role of
the delay time, (ii) the fact that the volume occupied by
cells hinders the diffusion of viruses, and (iii) a careful
reevaluation of the values of all of the parameters from
independent experiments.

On the theoretical side, the present paper is the first one
in which a system of reaction-diffusion equations, one of
which is time delayed, has been derived and solved to
obtain the front speed. The time-delayed approach re-
ported should thus be useful in physical applications
such as combustion [4] and superconducting [2] fronts,
since the delay time arises naturally from the kinetic
theory [10,11]. On the other hand, physicists can contrib-
ute to further topics related to that reported here, e.g., the
characterization of mutant virus strains (which are rec-
ognized because of their front speeds [13,14]), the mod-
eling of the front shapes in virus infections [15], etc.
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Note added.—Our analysis above makes use of Eq. (6),
which is in fact an approximation to the full time-delayed
equation. It is an approximation because it keeps only a
few terms in some Taylor expansions, e.g., V 	r; t� �
 �
V 	r; t
 ’ � @V

@t �
�2
2
@2V
@t2

[6,22]. But since �V� changes rap-
idly at a time scale smaller than � (Fig. 1), this approxi-
mation may, in principle, break down. To see how this
affects the results, we consider the full time-delayed
equation, namely [see Ref. [32], Eqs. (16) and (21)],

�V�	r; t� �
 � �V�	r; t
 �
X1
k�1

	2Deff�

k

	2k
!
@2k�V�

@r2k

�
X1
k�1

�k

k!
@k�1FV

@tk�1
; (12)

instead of its hyperbolic (or second-order) approximation
(6). Then, it is easily seen by repeating the same steps as
in Sec. IV that Eq. (8) is replaced by

	exp�c��� � 1
�	1� c�
	c�� �1
 � �1Y�

� �cosh	�
������
2�

p

 � 1�c�	1� c�
: (13)

We have repeated the calculations leading to Fig. 2 by
using this equation instead of (8), and the results change
at most by a few percent (typically, below 1%). The
changes are so small that they cannot be seen in Fig. 2.
This strengthens our conclusion that, for the first time, an
178101-4
experiment which (i) was previously unexplained and
(ii) can be reproduced in the lab, has been explained in
terms of time-delayed wave-front propagation.
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